A Facile Surface Modification Strategy for Antibody Immobilization on 3D-Printed Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Device Design and Fabrication
2.3. Surface Preparation and Streptavidin Immobilization
2.4. ELISA Protocol
3. Results and Discussion
3.1. Surface Modification Principle and Procedure
3.2. Demonstration of ELISA
3.3. Surface Modification in 3D-Printed Microchannels
3.4. Comparison with Commercial ELISA Well Plates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ELISA | Enzyme-linked immunosorbent assay |
POC | Point of care |
GLYMO | (3-glycidyloxpropyl) trimethoxyl-silane |
References
- Berlanda, S.F.; Breitfeld, M.; Dietsche, C.L.; Dittrich, P.S. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal. Chem. 2021, 93, 311–331. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Hu, C.; Yttri, E.A.; Panat, R. Recent Advances in 3D Printing of Biomedical Sensing Devices. Adv. Funct. Mater. 2022, 32, 2107671. [Google Scholar] [CrossRef]
- Chan, H.N.; Tan, M.J.A.; Wu, H. Point-of-Care Testing: Applications of 3D Printing. Lab Chip 2017, 17, 2713–2739. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.C.; Figueredo, F.; Chagas, C.L.S.; Cortón, E.; Coltro, W.K.T. A Review of the Recent Achievements and Future Trends on 3D Printed Microfluidic Devices for Bioanalytical Applications. Anal. Chim. Acta 2024, 1299, 342429. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wu, Y.; Fu, J.; Gao, Q.; Qiu, J. Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: A Review. Electroanalysis 2016, 28, 1658–1678. [Google Scholar] [CrossRef]
- Lambert, A.; Valiulis, S.; Cheng, Q. Advances in Optical Sensing and Bioanalysis Enabled by 3D Printing. ACS Sens. 2018, 3, 2475–2491. [Google Scholar] [CrossRef]
- Liu, C.; Staples, R.; Gómez-Cerezo, M.N.; Ivanovski, S.; Han, P. Emerging Technologies of Three-Dimensional Printing and Mobile Health in COVID-19 Immunity and Regenerative Dentistry. Tissue Eng. Part C Methods 2023, 29, 163–182. [Google Scholar] [CrossRef]
- Nyenhuis, J.; Heuer, C.; Bahnemann, J. 3D Printing in Biocatalysis and Biosensing: From General Concepts to Practical Applications. Chem. Asian J. 2024, 19, e202400717. [Google Scholar] [CrossRef]
- Prabhakar, P.; Sen, R.K.; Dwivedi, N.; Khan, R.; Solanki, P.R.; Srivastava, A.K.; Dhand, C. 3D-Printed Microfluidics and Potential Biomedical Applications. Front. Nanotechnol. 2021, 3, 609355. [Google Scholar] [CrossRef]
- Remaggi, G.; Zaccarelli, A.; Elviri, L. 3D Printing Technologies in Biosensors Production: Recent Developments. Chemosensors 2022, 10, 65. [Google Scholar] [CrossRef]
- Kalinke, C.; Wosgrau, V.; Oliveira, P.R.; Oliveira, G.A.; Martins, G.; Mangrich, A.S.; Bergamini, M.F.; Marcolino-Junior, L.H. Green Method for Glucose Determination Using Microfluidic Device with a Non-Enzymatic Sensor Based on Nickel Oxyhydroxide Supported at Activated Biochar. Talanta 2019, 200, 518–525. [Google Scholar] [CrossRef]
- Caetano, F.R.; Carneiro, E.A.; Agustini, D.; Figueiredo-Filho, L.C.S.; Banks, C.E.; Bergamini, M.F.; Marcolino-Junior, L.H. Combination of Electrochemical Biosensor and Textile Threads: A Microfluidic Device for Phenol Determination in Tap Water. Biosens. Bioelectron. 2018, 99, 382–388. [Google Scholar] [CrossRef]
- de, C.; Costa, B.M.; Griveau, S.; Bedioui, F.; Orlye, F.D.; Da Silva, J.A.F.; Varenne, A. Stereolithography Based 3D-Printed Microfluidic Device with Integrated Electrochemical Detection. Electrochim. Acta 2022, 407, 139888. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Ferreira, V.S.; Lucca, B.G. A Novel All-3D-Printed Thread-Based Microfluidic Device with an Embedded Electrochemical Detector: First Application in Environmental Analysis of Nitrite. Anal. Methods 2021, 13, 1349–1357. [Google Scholar] [CrossRef]
- Salve, M.; Mandal, A.; Amreen, K.; Pattnaik, P.K.; Goel, S. Greenly Synthesized Silver Nanoparticles for Supercapacitor and Electrochemical Sensing Applications in a 3D Printed Microfluidic Platform. Microchem. J. 2020, 157, 104973. [Google Scholar] [CrossRef]
- Yafia, M.; Ymbern, O.; Olanrewaju, A.O.; Parandakh, A.; Sohrabi Kashani, A.; Renault, J.; Jin, Z.; Kim, G.; Ng, A.; Juncker, D. Microfluidic Chain Reaction of Structurally Programmed Capillary Flow Events. Nature 2022, 605, 464–469. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Huffman, J.; Curtin, K.; Garner, K.L.; Bowdridge, E.C.; Li, X.; Nurkiewicz, T.R.; Li, P. Composable Microfluidic Plates (cPlate): A Simple and Scalable Fluid Manipulation System for Multiplexed Enzyme-Linked Immunosorbent Assay (ELISA). Anal. Chem. 2021, 93, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Lee, Y.; Kulinsky, L. Fabrication of a Malaria-Ab ELISA Bioassay Platform with Utilization of Syringe-Based and 3D Printed Assay Automation. Micromachines 2018, 9, 502. [Google Scholar] [CrossRef]
- Kadimisetty, K.; Malla, S.; Bhalerao, K.S.; Mosa, I.M.; Bhakta, S.; Lee, N.H.; Rusling, J.F. Automated 3D-Printed Microfluidic Array for Rapid Nanomaterial-Enhanced Detection of Multiple Proteins. Anal. Chem. 2018, 90, 7569–7577. [Google Scholar] [CrossRef]
- Ukita, Y.; Utsumi, Y.; Takamura, Y. Direct Digital Manufacturing of a Mini-Centrifuge-Driven Centrifugal Microfluidic Device and Demonstration of a Smartphone-Based Colorimetric Enzyme-Linked Immunosorbent Assay. Anal. Methods 2016, 8, 256–262. [Google Scholar] [CrossRef]
- McCallen, J.D.; Schaefer, A.; Lee, P.; Hing, L.; Lai, S.K. Stereolithography-Based 3D Printed “Pillar Plates” That Minimizes Fluid Transfers During Enzyme Linked Immunosorbent Assays. Ann. Biomed. Eng. 2017, 45, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.; Tavakoli, M.; Mirhaj, M.; Varshosaz, J.; Labbaf, S.; Karbasi, S.; Jafarpour, F.; Kazemi, N.; Salehi, S.; Mehrjoo, M.; et al. A 3D Printed Polylactic Acid-Baghdadite Nanocomposite Scaffold Coated with Microporous Chitosan-VEGF for Bone Regeneration Applications. Carbohydr. Polym. 2023, 312, 120787. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Jing, Z.; Xiong, C.; Meng, D.; Wei, C.; Cai, H. Effect of Micro-Arc Oxidation Surface Modification of 3D-Printed Porous Titanium Alloys on Biological Properties. Ann. Transl. Med. 2022, 10, 710. [Google Scholar] [CrossRef] [PubMed]
- Imani, S.M.; Badv, M.; Shakeri, A.; Yousefi, H.; Yip, D.; Fine, C.; Didar, T.F. Micropatterned Biofunctional Lubricant-Infused Surfaces Promote Selective Localized Cell Adhesion and Patterning. Lab Chip 2019, 19, 3228–3237. [Google Scholar] [CrossRef]
- Jaidev, L.R.; Chatterjee, K. Surface Functionalization of 3D Printed Polymer Scaffolds to Augment Stem Cell Response. Mater. Des. 2019, 161, 44–54. [Google Scholar] [CrossRef]
- Saniei, H.; Mousavi, S. Surface Modification of PLA 3D-Printed Implants by Electrospinning with Enhanced Bioactivity and Cell Affinity. Polymer 2020, 196, 122467. [Google Scholar] [CrossRef]
- Stefano, J.S.; Guterres e Silva, L.R.; Rocha, R.G.; Brazaca, L.C.; Richter, E.M.; Abarza Muñoz, R.A.; Janegitz, B.C. New Conductive Filament Ready-to-Use for 3D-Printing Electrochemical (Bio)Sensors: Towards the Detection of SARS-CoV-2. Anal. Chim. Acta 2022, 1191, 339372. [Google Scholar] [CrossRef]
- Martins, G.; Gogola, J.L.; Budni, L.H.; Janegitz, B.C.; Marcolino-Junior, L.H.; Bergamini, M.F. 3D-Printed Electrode as a New Platform for Electrochemical Immunosensors for Virus Detection. Anal. Chim. Acta 2021, 1147, 30–37. [Google Scholar] [CrossRef]
- López Marzo, A.M.; Mayorga-Martinez, C.C.; Pumera, M. 3D-Printed Graphene Direct Electron Transfer Enzyme Biosensors. Biosens. Bioelectron. 2020, 151, 111980. [Google Scholar] [CrossRef]
- Rocha, D.P.; Squissato, A.L.; Da Silva, S.M.; Richter, E.M.; Munoz, R.A.A. Improved Electrochemical Detection of Metals in Biological Samples Using 3D-Printed Electrode: Chemical/Electrochemical Treatment Exposes Carbon-Black Conductive Sites. Electrochim. Acta 2020, 335, 135688. [Google Scholar] [CrossRef]
- Stefano, J.S.; Kalinke, C.; Da Rocha, R.G.; Rocha, D.P.; Da Silva, V.A.O.P.; Bonacin, J.A.; Angnes, L.; Richter, E.M.; Janegitz, B.C.; Muñoz, R.A.A. Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Anal. Chem. 2022, 94, 6417–6429. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Shimojima, M.; Fukushi, S.; Le Van, A.; Sugamata, M.; Yang, M. Increased Sensitivity of 3D-Well Enzyme-Linked Immunosorbent Assay (ELISA) for Infectious Disease Detection Using 3D-Printing Fabrication Technology. Biomed. Mater. Eng. 2015, 26, S45–S53. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Kadimisetty, K.; Bhalerao, K.R.; Bist, I.; Jones, A.; Chen, T.; Lee, N.H.; Rusling, J.F. Accessible Telemedicine Diagnostics with ELISA in a 3D Printed Pipette Tip. Anal. Chem. 2019, 91, 7394–7402. [Google Scholar] [CrossRef] [PubMed]
- Surface Chemistry Modification. Available online: https://harrickplasma.com/surface-chemistry/ (accessed on 27 February 2025).
- Solidworks. Solidworks 3D CAD. Available online: https://www.solidworks.com/product/solidworks-3d-cad (accessed on 16 January 2025).
- Phrozen Sonic Mighty 8K Resin 3D Printer. Available online: https://phrozen3d.com/products/sonic-mighty-8k (accessed on 16 January 2025).
- Conjure Rigid. Available online: https://www.chitusystems.com/products/conjure-rigid-clear-3d-printing-resin?variant=44530826608876 (accessed on 16 January 2025).
- Shakeri, A.; Jarad, N.A.; Terryberry, J.; Khan, S.; Leung, A.; Chen, S.; Didar, T.F. Antibody Micropatterned Lubricant-Infused Biosensors Enable Sub-Picogram Immunofluorescence Detection of Interleukin 6 in Human Whole Plasma. Small 2020, 16, 2003844. [Google Scholar] [CrossRef]
- Coad, B.R.; Vasilev, K.; Diener, K.R.; Hayball, J.D.; Short, R.D.; Griesser, H.J. Immobilized Streptavidin Gradients as Bioconjugation Platforms. Langmuir 2012, 28, 2710–2717. [Google Scholar] [CrossRef] [PubMed]
- Human/Mouse/Rat Activin A Quantikine ELISA Kit (DAC00B) by R&D Systems, Part of Bio-Techne. Available online: https://www.bio-techne.com/p/elisa-kits/human-mouse-rat-activin-a-quantikine-elisa-kit_dac00b (accessed on 16 January 2025).
- Pawde, S.M.; Deshmukh, K. Surface Characterization of Air Plasma Treated Poly Vinylidene Fluoride and Poly Methyl Methacrylate Films. Polym. Eng. Sci. 2009, 49, 808–818. [Google Scholar] [CrossRef]
- Abdel–Fattah, E. Surface Activation of Poly(Methyl Methacrylate) with Atmospheric Pressure Ar + H2O Plasma. Coatings 2019, 9, 228. [Google Scholar] [CrossRef]
- Rymuszka, D.; Terpiłowski, K.; Hołysz, L.; Chibowski, E. Changes in Surface Properties of Polymethylmethacrylate (PMMA) Treated with Air Plasma. Ann. UMCS Chem. 2015, 70, 65–78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binkley, B.; Li, P. A Facile Surface Modification Strategy for Antibody Immobilization on 3D-Printed Surfaces. Biosensors 2025, 15, 211. https://doi.org/10.3390/bios15040211
Binkley B, Li P. A Facile Surface Modification Strategy for Antibody Immobilization on 3D-Printed Surfaces. Biosensors. 2025; 15(4):211. https://doi.org/10.3390/bios15040211
Chicago/Turabian StyleBinkley, Brandi, and Peng Li. 2025. "A Facile Surface Modification Strategy for Antibody Immobilization on 3D-Printed Surfaces" Biosensors 15, no. 4: 211. https://doi.org/10.3390/bios15040211
APA StyleBinkley, B., & Li, P. (2025). A Facile Surface Modification Strategy for Antibody Immobilization on 3D-Printed Surfaces. Biosensors, 15(4), 211. https://doi.org/10.3390/bios15040211