Heavy Metal–Gut Microbiota Interactions: Probiotics Modulation and Biosensors Detection
Abstract
:1. Introduction
2. Effects of Heavy Metal Exposure on the Gut Microbiota
2.1. Arsenic
2.2. Cadmium
2.3. Mercury
2.4. Lead
3. The Role of Probiotics in Reducing Heavy Metal Toxicity
Limitations of Probiotic Therapies in HM Detoxification
4. Biosensors for Heavy Metals Detection from Urine
4.1. Arsenic Detection in Urine Using Advanced Biosensors
4.2. Mercury Detection in Urine Using Advanced Biosensors
4.3. Cadmium Detection in Urine Using Advanced Biosensors
4.4. Copper Detection in Urine Using Advanced Biosensors
4.5. Lead Detection in Urine Using Advanced Biosensors
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duan, H.; Yu, L.; Tian, F.; Zhai, Q.; Fan, L.; Chen, W. Gut Microbiota: A Target for Heavy Metal Toxicity and a Probiotic Protective Strategy. Sci. Total Environ. 2020, 742, 140429. [Google Scholar] [CrossRef] [PubMed]
- Kandpal, M.; Indari, O.; Baral, B.; Jakhmola, S.; Tiwari, D.; Bhandari, V.; Pandey, R.K.; Bala, K.; Sonawane, A.; Jha, H.C. Dysbiosis of Gut Microbiota from the Perspective of the Gut–Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022, 12, 1064. [Google Scholar] [CrossRef] [PubMed]
- Motta-Romero, H.A.; Perez-Donado, C.E.; Auchtung, J.M.; Rose, D.J. Toxicity of Cadmium on Dynamic Human Gut Microbiome Cultures and the Protective Effect of Cadmium-Tolerant Bacteria Autochthonous to the Gut. Chemosphere 2023, 338, 139581. [Google Scholar] [CrossRef]
- Gao, B.; Chi, L.; Mahbub, R.; Bian, X.; Tu, P.; Ru, H.; Lu, K. Multi-Omics Reveals That Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways. Chem. Res. Toxicol. 2017, 30, 996–1005. [Google Scholar] [CrossRef]
- Peng, Z.; Liao, Y.; Yang, W.; Liu, L. Metal(Loid)-Gut Microbiota Interactions and Microbiota-Related Protective Strategies: A Review. Environ. Int. 2024, 192, 109017. [Google Scholar] [CrossRef]
- Giambò, F.; Italia, S.; Teodoro, M.; Briguglio, G.; Furnari, N.; Catanoso, R.; Costa, C.; Fenga, C. Influence of Toxic Metal Exposure on the Gut Microbiota (Review). World Acad. Sci. J. 2021, 3, 19. [Google Scholar] [CrossRef]
- Claus, S.P.; Ellero, S.L.; Berger, B.; Krause, L.; Bruttin, A.; Molina, J.; Paris, A.; Want, E.J.; de Waziers, I.; Cloarec, O.; et al. Colonization-Induced Host-Gut Microbial Metabolic Interaction. mBio 2011, 2, e00271-10. [Google Scholar] [CrossRef]
- Zhai, Q.; Tian, F.; Zhao, J.; Zhang, H.; Narbad, A.; Chen, W. Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier. Appl. Environ. Microbiol. 2016, 82, 4429–4440. [Google Scholar] [CrossRef]
- Ghosh, S.; Nukavarapu, S.P.; Jala, V.R. Effects of Heavy Metals on Gut Barrier Integrity and Gut Microbiota. Microbiota Host 2024, 2, e230015. [Google Scholar] [CrossRef]
- Liu, Z.; Cascioli, V.; McCarthy, P.W. Healthcare Monitoring Using Low-Cost Sensors to Supplement and Replace Human Sensation: Does It Have Potential to Increase Independent Living and Prevent Disease? Sensors 2023, 23, 2139. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, B.; Zhang, F.; Zhang, B.; Guo, Y.; Pang, M.; Huang, L.; Wang, T. Toxic and Essential Metals: Metabolic Interactions with the Gut Microbiota and Health Implications. Front. Nutr. 2024, 11, 1448388. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Tu, H.; Chen, T. Potential Application of Living Microorganisms in the Detoxification of Heavy Metals. Foods 2022, 11, 1905. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, K.; Periyasamy, S.; Kumar, P.S.; Rangasamy, G.; Nisha Pauline, J.M.; Ramaraju, P.; Mohanasundaram, S.; Nguyen Vo, D.-V. Biosensor for Heavy Metals Detection in Wastewater: A Review. Food Chem. Toxicol. 2022, 168, 113307. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, H.; Shin, W.H.; Oh, J.-M.; Koo, S.-M.; Kim, Y.; Lee, T.; Yu, B.J.; Park, C. Development of Colorimetric Whole-Cell Biosensor for Detection of Heavy Metals in Environment for Public Health. Int. J. Environ. Res. Public. Health 2021, 18, 12721. [Google Scholar] [CrossRef]
- Zheng, C.; Tang, J.; Pan, X.; Shen, H.; Hu, Z.; Zhang, J.; Wang, L.; Wu, P.; Tan, Y. Development and Validation of a High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry Method for the Simultaneous Determination of Arsenic and Mercury Species in Human Urine. Chemosensors 2025, 13, 78. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, S.; Wang, Q.; Li, J. Recent Progress in Biosensor Regeneration Techniques. Nanoscale 2024, 16, 2834–2846. [Google Scholar] [CrossRef]
- Anchidin-Norocel, L.; Gutt, G.; Tătăranu, E.; Amariei, S. Electrochemical Sensors and Biosensors: Effective Tools for Detecting Heavy Metals in Water and Food with Possible Implications for Children’s Health. Int. J. Electrochem. Sci. 2024, 19, 100643. [Google Scholar] [CrossRef]
- Anchidin-Norocel, L.; Savage, W.K.; Nemțoi, A.; Dimian, M.; Cobuz, C. Recent Progress in Saliva-Based Sensors for Continuous Monitoring of Heavy Metal Levels Linked with Diabetes and Obesity. Chemosensors 2024, 12, 269. [Google Scholar] [CrossRef]
- Popenda, A.; Wiśniowska, E.; Manuel, C. Biosensors in Environmental Analysis of Microplastics and Heavy Metal Compounds—A Review on Current Status and Challenges. Desalination Water Treat. 2024, 319, 100456. [Google Scholar] [CrossRef]
- Stremmel, W.; Weiskirchen, R. Wilson Disease: More Complex than Just Simply a Copper Overload Condition?—A Narrative Review. AME Med. J. 2022, 7, 26. [Google Scholar] [CrossRef]
- Huang, W.-S.; Lee, Y.-J.; Wang, L.; Chen, H.-H.; Chao, Y.-J.; Cheng, V.; Liaw, S.-J. Copper Affects Virulence and Diverse Phenotypes of Uropathogenic Proteus Mirabilis. J. Microbiol. Immunol. Infect. 2024, 57, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Ye, Z.; Kakade, A.; Virk, A.K.; Li, X.; Liu, P. A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients 2018, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Assefa, S.; Köhler, G. Intestinal Microbiome and Metal Toxicity. Curr. Opin. Toxicol. 2020, 19, 21–27. [Google Scholar] [CrossRef]
- Shao, M.; Zhu, Y. Long-Term Metal Exposure Changes Gut Microbiota of Residents Surrounding a Mining and Smelting Area. Sci. Rep. 2020, 10, 4453. [Google Scholar] [CrossRef]
- Chiocchetti, G.M.; Domene, A.; Kühl, A.A.; Zúñiga, M.; Vélez, D.; Devesa, V.; Monedero, V. In Vivo Evaluation of the Effect of Arsenite on the Intestinal Epithelium and Associated Microbiota in Mice. Arch. Toxicol. 2019, 93, 2127–2139. [Google Scholar] [CrossRef]
- Chiocchetti, G.M.; Vélez, D.; Devesa, V. Inorganic Arsenic Causes Intestinal Barrier Disruption. Metallomics 2019, 11, 1411–1418. [Google Scholar] [CrossRef]
- Fernández Fernández, N.; Estevez Boullosa, P.; Gómez Rodríguez, A.; Rodríguez Prada, J.I. A Rare Cause of Gastric Injury: Arsenic Intake. Am. J. Gastroenterol. 2019, 114, 1193. [Google Scholar] [CrossRef]
- Chiocchetti, G.M.; Vélez, D.; Devesa, V. Effect of Subchronic Exposure to Inorganic Arsenic on the Structure and Function of the Intestinal Epithelium. Toxicol. Lett. 2018, 286, 80–88. [Google Scholar] [CrossRef]
- Calatayud, M.; Devesa, V.; Vélez, D. Differential Toxicity and Gene Expression in Caco-2 Cells Exposed to Arsenic Species. Toxicol. Lett. 2013, 218, 70–80. [Google Scholar] [CrossRef]
- Calatayud, M.; Gimeno-Alcañiz, J.V.; Vélez, D.; Devesa, V. Trivalent Arsenic Species Induce Changes in Expression and Levels of Proinflammatory Cytokines in Intestinal Epithelial Cells. Toxicol. Lett. 2014, 224, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Brabec, J.L.; Wright, J.; Ly, T.; Wong, H.T.; McClimans, C.J.; Tokarev, V.; Lamendella, R.; Sherchand, S.; Shrestha, D.; Uprety, S.; et al. Arsenic Disturbs the Gut Microbiome of Individuals in a Disadvantaged Community in Nepal. Heliyon 2020, 6, e03313. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Luo, Y.; Li, C.; Wang, J.; Chen, L.; Zhong, X.; Zhang, B.; Zhu, Q.; Zou, R.; Guo, X.; et al. Sub-Chronic Low-Dose Arsenic in Rice Exposure Induces Gut Microbiome Perturbations in Mice. Ecotoxicol. Environ. Saf. 2021, 227, 112934. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chi, L.; Liu, C.-W.; Hsiao, Y.-C.; Lu, K. Chronic Arsenic Exposure Perturbs Gut Microbiota and Bile Acid Homeostasis in Mice. Chem. Res. Toxicol. 2023, 36, 1037–1043. [Google Scholar] [CrossRef]
- Wu, H.; Wu, R.; Chen, X.; Geng, H.; Hu, Y.; Gao, L.; Fu, J.; Pi, J.; Xu, Y. Developmental Arsenic Exposure Induces Dysbiosis of Gut Microbiota and Disruption of Plasma Metabolites in Mice. Toxicol. Appl. Pharmacol. 2022, 450, 116174. [Google Scholar] [CrossRef]
- Li, X.; Brejnrod, A.D.; Ernst, M.; Rykær, M.; Herschend, J.; Olsen, N.M.C.; Dorrestein, P.C.; Rensing, C.; Sørensen, S.J. Heavy Metal Exposure Causes Changes in the Metabolic Health-Associated Gut Microbiome and Metabolites. Environ. Int. 2019, 126, 454–467. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Xia, Y.; Liu, K.; Ren, L.; Ji, Y. The Dysbiosis of Gut Microbiota Caused by Low-Dose Cadmium Aggravate the Injury of Mice Liver through Increasing Intestinal Permeability. Microorganisms 2020, 8, 211. [Google Scholar] [CrossRef]
- Yang, J.; Chen, W.; Sun, Y.; Liu, J.; Zhang, W. Effects of Cadmium on Organ Function, Gut Microbiota and Its Metabolomics Profile in Adolescent Rats. Ecotoxicol. Environ. Saf. 2021, 222, 112501. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, H.; Deng, P.; Tan, M.; Chen, C.; Tang, B.; Li, J.; Chen, F.; Zhao, Q.; Li, L.; et al. Environmental Cadmium Exposure Facilitates Mammary Tumorigenesis via Reprogramming Gut Microbiota-Mediated Glutamine Metabolism in MMTV-Erbb2 Mice. Sci. Total Environ. 2023, 897, 165348. [Google Scholar] [CrossRef]
- Aduayom, I.; Denizeau, F.; Jumarie, C. Multiple Effects of Mercury on Cell Volume Regulation, Plasma Membrane Permeability, and Thiol Content in the Human Intestinal Cell Line Caco-2. Cell Biol. Toxicol. 2005, 21, 163–179. [Google Scholar] [CrossRef]
- Ruan, Y.; Wu, C.; Guo, X.; Xu, Z.; Xing, C.; Cao, H.; Zhang, C.; Hu, G.; Liu, P. High Doses of Copper and Mercury Changed Cecal Microbiota in Female Mice. Biol. Trace Elem. Res. 2019, 189, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, W.; He, L.; Xie, H.; Feng, B.; Zhu, H.; Zhao, J.; Cui, L.; Li, B.; Li, Y.-F. Understanding the Hepatoxicity of Inorganic Mercury through Guts: Perturbance to Gut Microbiota, Alteration of Gut-Liver Axis Related Metabolites and Damage to Gut Integrity. Ecotoxicol. Environ. Saf. 2021, 225, 112791. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhao, J.; Zhang, W.; He, L.; Wang, L.; Chang, D.; Cui, L.; Gao, Y.; Li, B.; Chen, C.; et al. Acute Oral Methylmercury Exposure Perturbs the Gut Microbiome and Alters Gut-Brain Axis Related Metabolites in Rats. Ecotoxicol. Environ. Saf. 2020, 190, 110130. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Wang, J.; Cen, S.; Zhao, J.; Zhang, H.; Tian, F.; Chen, W. Modulation of the Gut Microbiota by a Galactooligosaccharide Protects against Heavy Metal Lead Accumulation in Mice. Food Funct. 2019, 10, 3768–3781. [Google Scholar] [CrossRef]
- Xia, J.; Jin, C.; Pan, Z.; Sun, L.; Fu, Z.; Jin, Y. Chronic Exposure to Low Concentrations of Lead Induces Metabolic Disorder and Dysbiosis of the Gut Microbiota in Mice. Sci. Total Environ. 2018, 631, 439–448. [Google Scholar] [CrossRef]
- Zhai, Q.; Li, T.; Yu, L.; Xiao, Y.; Feng, S.; Wu, J.; Zhao, J.; Zhang, H.; Chen, W. Effects of Subchronic Oral Toxic Metal Exposure on the Intestinal Microbiota of Mice. Sci. Bull. 2017, 62, 831–840. [Google Scholar] [CrossRef]
- Eggers, S.; Safdar, N.; Sethi, A.K.; Suen, G.; Peppard, P.E.; Kates, A.E.; Skarlupka, J.H.; Kanarek, M.; Malecki, K.M.C. Urinary Lead Concentration and Composition of the Adult Gut Microbiota in a Cross-Sectional Population-Based Sample. Environ. Int. 2019, 133, 105122. [Google Scholar] [CrossRef]
- Nucera, S.; Serra, M.; Caminiti, R.; Ruga, S.; Passacatini, L.C.; Macrì, R.; Scarano, F.; Maiuolo, J.; Bulotta, R.; Mollace, R.; et al. Non-Essential Heavy Metal Effects in Cardiovascular Diseases: An Overview of Systematic Reviews. Front. Cardiovasc. Med. 2024, 11, 1332339. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Kumar, P.S.; Jaikumar, V.; Vardhan, K.H.; SundarRajan, P. Microalgae for Biofuel Production and Removal of Heavy Metals: A Review. Environ. Chem. Lett. 2020, 18, 1905–1923. [Google Scholar] [CrossRef]
- Bayuo, J.; Rwiza, M.; Mtei, K. A Comprehensive Review on the Decontamination of Lead( <scp>ii</Scp> ) from Water and Wastewater by Low-Cost Biosorbents. RSC Adv. 2022, 12, 11233–11254. [Google Scholar] [CrossRef]
- Goswami, R.K.; Agrawal, K.; Shah, M.P.; Verma, P. Bioremediation of Heavy Metals from Wastewater: A Current Perspective on Microalgae-Based Future. Lett. Appl. Microbiol. 2022, 75, 701–717. [Google Scholar] [CrossRef] [PubMed]
- Moukadiri, H.; Noukrati, H.; Ben Youcef, H.; Iraola, I.; Trabadelo, V.; Oukarroum, A.; Malka, G.; Barroug, A. Impact and Toxicity of Heavy Metals on Human Health and Latest Trends in Removal Process from Aquatic Media. Int. J. Environ. Sci. Technol. 2024, 21, 3407–3444. [Google Scholar] [CrossRef]
- Rama Jyothi, N. Heavy Metal Sources and Their Effects on Human Health. In Heavy Metals—Their Environmental Impacts and Mitigation; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/74650 (accessed on 30 January 2025).
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals--Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Ahemad, M.; Kibret, M. Recent Trends in Microbial Biosorption of Heavy Metals: A Review. Biochem. Mol. Biol. 2013, 1, 19. [Google Scholar] [CrossRef]
- Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Freitas, H. Potential of Siderophore-Producing Bacteria for Improving Heavy Metal Phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef]
- Huang, L.; Xie, J.; Lv, B.; Shi, X.; Li, G.; Liang, F.; Lian, J. Optimization of Nutrient Component for Diesel Oil Degradation by Acinetobacter Beijerinckii ZRS. Mar. Pollut. Bull. 2013, 76, 325–332. [Google Scholar] [CrossRef]
- Yu, H.; Wu, B.; Zhang, X.-X.; Liu, S.; Yu, J.; Cheng, S.; Ren, H.-Q.; Ye, L. Arsenic Metabolism and Toxicity Influenced by Ferric Iron in Simulated Gastrointestinal Tract and the Roles of Gut Microbiota. Environ. Sci. Technol. 2016, 50, 7189–7197. [Google Scholar] [CrossRef]
- Yin, N.; Zhang, Z.; Cai, X.; Du, H.; Sun, G.; Cui, Y. In Vitro Method To Assess Soil Arsenic Metabolism by Human Gut Microbiota: Arsenic Speciation and Distribution. Environ. Sci. Technol. 2015, 49, 10675–10681. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Khatun, S.; Maity, M.; Jana, S.; Perveen, H.; Dash, M.; Dey, A.; Jana, L.R.; Maity, P.P. Association of Vitamin B12, Lactate Dehydrogenase, and Regulation of NF-ΚB in the Mitigation of Sodium Arsenite-Induced ROS Generation in Uterine Tissue by Commercially Available Probiotics. Probiotics Antimicrob. Proteins 2019, 11, 30–42. [Google Scholar] [CrossRef]
- Saeed Alahmari, A. Immunotoxic and Genotoxic Effects of Arsenic and Ameliorative Potential of Quercetin and Probiotics in Wistar Rat. Am. J. Life Sci. 2017, 5, 108. [Google Scholar] [CrossRef]
- Mohmmad Monadi Al-Enazi, A.; Virk, P.; Hindi, A.; Awad, M.A.; Elobeid, M.; Qindeel, R. Protective Effect of Probiotic Bacteria and Its Nanoformulation against Cadmium-Induced Oxidative Stress in Male Wistar Rat. J. King Saud. Univ. Sci. 2020, 32, 3045–3051. [Google Scholar] [CrossRef]
- Djurasevic, S.; Jama, A.; Jasnic, N.; Vujovic, P.; Jovanovic, M.; Mitic-Culafic, D.; Knezevic-Vukcevic, J.; Cakic-Milosevic, M.; Ilijevic, K.; Djordjevic, J. The Protective Effects of Probiotic Bacteria on Cadmium Toxicity in Rats. J. Med. Food 2017, 20, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Dubey, V.; Mishra, A.K.; Ghosh, A.R.; Mandal, B.K. Probiotic Pediococcus Pentosaceus GS4 Shields Brush Border Membrane and Alleviates Liver Toxicity Imposed by Chronic Cadmium Exposure in Swiss Albino Mice. J. Appl. Microbiol. 2019, 126, 1233–1244. [Google Scholar] [CrossRef]
- G Allam, N.; M Ali, E.M.; Shabanna, S.; Abd-Elrahman, E. Protective Efficacy of Streptococcus Thermophilus Against Acute Cadmium Toxicity in Mice. Iran. J. Pharm. Res. 2018, 17, 695–707. [Google Scholar]
- Majlesi, M.; Shekarforoush, S.S.; Ghaisari, H.R.; Nazifi, S.; Sajedianfard, J.; Eskandari, M.H. Effect of Probiotic Bacillus Coagulans and Lactobacillus Plantarum on Alleviation of Mercury Toxicity in Rat. Probiotics Antimicrob. Proteins 2017, 9, 300–309. [Google Scholar] [CrossRef]
- Jiang, X.; Gu, S.; Liu, D.; Zhao, L.; Xia, S.; He, X.; Chen, H.; Ge, J. Lactobacillus Brevis 23017 Relieves Mercury Toxicity in the Colon by Modulation of Oxidative Stress and Inflammation Through the Interplay of MAPK and NF-ΚB Signaling Cascades. Front. Microbiol. 2018, 9, 2425. [Google Scholar] [CrossRef]
- Assumaidaee, A.A.M.; Ali, N.M.; Akutbi, S.H.; Fadhil, A.A. Efficacy Of Probiotic (Protoxine) On Mercury-Induced Nephrotoxicity And Lipid Peroxidation In Rats. Diyala Agric. Sci. J. (DASJ) 2018, 10, 114–126. [Google Scholar]
- Zhai, Q.; Yang, L.; Zhao, J.; Zhang, H.; Tian, F.; Chen, W. Protective Effects of Dietary Supplements Containing Probiotics, Micronutrients, and Plant Extracts Against Lead Toxicity in Mice. Front. Microbiol. 2018, 9, 2134. [Google Scholar] [CrossRef]
- Tian, F.; Zhai, Q.; Zhao, J.; Liu, X.; Wang, G.; Zhang, H.; Zhang, H.; Chen, W. Lactobacillus Plantarum CCFM8661 Alleviates Lead Toxicity in Mice. Biol. Trace Elem. Res. 2012, 150, 264–271. [Google Scholar] [CrossRef]
- Yi, Y.-J.; Lim, J.-M.; Gu, S.; Lee, W.-K.; Oh, E.; Lee, S.-M.; Oh, B.-T. Potential Use of Lactic Acid Bacteria Leuconostoc Mesenteroides as a Probiotic for the Removal of Pb(II) Toxicity. J. Microbiol. 2017, 55, 296–303. [Google Scholar] [CrossRef]
- Hu, C.; Yu, C.; Liu, Y.; Hou, X.; Liu, X.; Hu, Y.; Jin, C. A Hybrid Mechanism for the Synechocystis Arsenate Reductase Revealed by Structural Snapshots during Arsenate Reduction. J. Biol. Chem. 2015, 290, 22262–22273. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-S.; Osman, A.I.; Hosny, M.; Elgarahy, A.M.; Eltaweil, A.S.; Rooney, D.W.; Chen, Z.; Rahim, N.S.; Sekar, M.; Gopinath, S.C.B.; et al. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega 2024, 9, 5100–5126. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, T.; Lu, B.; Li, X.; Jiang, L. Application of Cofactors in the Regulation of Microbial Metabolism: A State of the Art Review. Front. Microbiol. 2023, 14, 1145784. [Google Scholar] [CrossRef]
- Ķimse, L.; Reinis, A.; Miķelsone-Jansone, L.; Gintere, S.; Krūmiņa, A. A Narrative Review of Psychobiotics: Probiotics That Influence the Gut–Brain Axis. Medicina 2024, 60, 601. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J.; Dharmasiddhi, I.P.W.; Chen, S.; Liu, Y.; Liu, H. Review of the Potential of Probiotics in Disease Treatment: Mechanisms, Engineering, and Applications. Processes 2024, 12, 316. [Google Scholar] [CrossRef]
- Chandravanshi, L.; Shiv, K.; Kumar, S. Developmental Toxicity of Cadmium in Infants and Children: A Review. Environ. Anal. Health Toxicol. 2021, 36, e2021003. [Google Scholar] [CrossRef]
- Basnet, J.; Eissa, M.A.; Yanes Cardozo, L.L.; Romero, D.G.; Rezq, S. Impact of Probiotics and Prebiotics on Gut Microbiome and Hormonal Regulation. Gastrointest. Disord. 2024, 6, 801–815. [Google Scholar] [CrossRef]
- Han, H.; Zhang, Y.; Tang, H.; Zhou, T.; Khan, A. A Review of the Use of Native and Engineered Probiotics for Colorectal Cancer Therapy. Int. J. Mol. Sci. 2024, 25, 3896. [Google Scholar] [CrossRef]
- Gao, W.; Nyein, H.Y.Y.; Shahpar, Z.; Fahad, H.M.; Chen, K.; Emaminejad, S.; Gao, Y.; Tai, L.-C.; Ota, H.; Wu, E.; et al. Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sens. 2016, 1, 866–874. [Google Scholar] [CrossRef]
- Pan, Y.; Sonn, G.A.; Sin, M.L.Y.; Mach, K.E.; Shih, M.-C.; Gau, V.; Wong, P.K.; Liao, J.C. Electrochemical Immunosensor Detection of Urinary Lactoferrin in Clinical Samples for Urinary Tract Infection Diagnosis. Biosens. Bioelectron. 2010, 26, 649–654. [Google Scholar] [CrossRef]
- Sharma, A.; Agrawal, A.; Awasthi, K.K.; Awasthi, K.; Awasthi, A. Biosensors for Diagnosis of Urinary Tract Infections: Advances and Future Challenges. Mater. Lett. X 2021, 10, 100077. [Google Scholar] [CrossRef]
- Sani, A.; Abdullahi, I.L. Evaluation of Some Heavy Metals Concentration in Body Fluids of Metal Workers in Kano Metropolis, Nigeria. Toxicol. Rep. 2017, 4, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Zhu, Z.; Xiang, Y.; Yang, Q.; Yuan, Q.; Li, X.; Yu, G. Associations of Blood and Urinary Heavy Metals with Stress Urinary Incontinence Risk Among Adults in NHANES, 2003–2018. Biol. Trace Elem. Res. 2024, 203, 1327–1341. [Google Scholar] [CrossRef]
- Ogunfowokan, A.O.; Adekunle, A.S.; Oyebode, B.A.; Oyekunle, J.A.O.; Komolafe, A.O.; Omoniyi-Esan, G.O. Determination of Heavy Metals in Urine of Patients and Tissue of Corpses by Atomic Absorption Spectroscopy. Chem. Afr. 2019, 2, 699–712. [Google Scholar] [CrossRef]
- Hwang, C.; Lee, W.-J.; Kim, S.D.; Park, S.; Kim, J.H. Recent Advances in Biosensor Technologies for Point-of-Care Urinalysis. Biosensors 2022, 12, 1020. [Google Scholar] [CrossRef]
- Andreasi Bassi, C.; Wu, Z.; Forst, L.; Papautsky, I. Determination of Mercury with a Miniature Sensor for Point-of-care Testing. Electroanalysis 2023, 35, e202200234. [Google Scholar] [CrossRef]
- Duan, W.; Xu, C.; Liu, Q.; Xu, J.; Weng, Z.; Zhang, X.; Basnet, T.B.; Dahal, M.; Gu, A. Levels of a Mixture of Heavy Metals in Blood and Urine and All-Cause, Cardiovascular Disease and Cancer Mortality: A Population-Based Cohort Study. Environ. Pollut. 2020, 263, 114630. [Google Scholar] [CrossRef]
- Alkufi, A.A.; Oleiwi, M.H.; Abojassim, A.A. Comparison of Heavy Metals in Urine Samples of Smoker and Non-Smoker Persons. Biol. Trace Elem. Res. 2024, 202, 5349–5355. [Google Scholar] [CrossRef]
- Men, Y.; Li, L.; Zhang, F.; Kong, X.; Zhang, W.; Hao, C.; Wang, G. Evaluation of Heavy Metals and Metabolites in the Urine of Patients with Breast Cancer. Oncol. Lett. 2020, 19, 1331–1337. [Google Scholar] [CrossRef]
- Sallsten, G.; Ellingsen, D.G.; Berlinger, B.; Weinbruch, S.; Barregard, L. Variability of Lead in Urine and Blood in Healthy Individuals. Environ. Res. 2022, 212, 113412. [Google Scholar] [CrossRef]
- Wu, B.; Ga, L.; Wang, Y.; Ai, J. Recent Advances in the Application of Bionanosensors for the Analysis of Heavy Metals in Aquatic Environments. Molecules 2023, 29, 34. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.; Vidal, L.; Costa-García, A.; Canals, A. Mercury Determination in Urine Samples by Gold Nanostructured Screen-Printed Carbon Electrodes after Vortex-Assisted Ionic Liquid Dispersive Liquid–Liquid Microextraction. Anal. Chim. Acta 2016, 915, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Pasini, P.; Mirasoli, M.; Guardigli, M.; Russo, C.; Musiani, M.; Baraldini, M. Sensitive determination of urinary mercury(ii) by a bioluminescent transgenic bacteria-based biosensor. Anal. Lett. 2001, 34, 29–41. [Google Scholar] [CrossRef]
- Ma, B.; Guo, Y.; Lin, Y.; Zhang, J.; Wang, X.; Zhang, W.; Luo, J.; Chen, Y.; Zhang, N.; Lu, Q.; et al. High-Throughput Screening of Human Mercury Exposure Based on a Low-Cost Naked Eye-Recognized Biosensing Platform. Biosens. Bioelectron. 2024, 248, 115961. [Google Scholar] [CrossRef]
- Valera, D.; Sánchez, M.; Domínguez, J.R.; Alvarado, J.; Espinoza-Montero, P.J.; Carrera, P.; Bonilla, P.; Manciati, C.; González, G.; Fernández, L. Electrochemical Determination of Lead in Human Blood Serum and Urine by Anodic Stripping Voltammetry Using Glassy Carbon Electrodes Covered with Ag–Hg and Ag–Bi Bimetallic Nanoparticles. Anal. Methods 2018, 10, 4114–4121. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y.; Lin, Y.; Ma, B.; Ge, X.; Zhang, W.; Zhang, N.; Yang, S.; Hui, C. Detection of Cadmium in Human Biospecimens by a Cadmium-Selective Whole-Cell Biosensor Based on Deoxyviolacein. ACS Biomater. Sci. Eng. 2024, 10, 4046–4058. [Google Scholar] [CrossRef]
- Gazica, K.; FitzGerald, E.; Dangel, G.; Haynes, E.N.; Yadav, J.; Alvarez, N.T. Towards On-Site Detection of Cadmium in Human Urine. J. Electroanal. Chem. 2020, 859, 113808. [Google Scholar] [CrossRef]
- Argun, A.A.; Banks, A.M.; Merlen, G.; Tempelman, L.A.; Becker, M.F.; Schuelke, T.; Dweik, B.M. Highly Sensitive Detection of Urinary Cadmium to Assess Personal Exposure. Anal. Chim. Acta 2013, 773, 45–51. [Google Scholar] [CrossRef]
- Yantasee, W.; Lin, Y.; Hongsirikarn, K.; Fryxell, G.E.; Addleman, R.; Timchalk, C. Electrochemical Sensors for the Detection of Lead and Other Toxic Heavy Metals: The Next Generation of Personal Exposure Biomonitors. Environ. Health Perspect. 2007, 115, 1683–1690. [Google Scholar] [CrossRef]
- Lai, W.-Q.; Chang, Y.-F.; Chou, F.-N.; Yang, D.-M. Portable FRET-Based Biosensor Device for On-Site Lead Detection. Biosensors 2022, 12, 157. [Google Scholar] [CrossRef]
- Lettieri, M.; Scarano, S.; Caponi, L.; Bertolini, A.; Saba, A.; Palladino, P.; Minunni, M. Serotonin-Derived Fluorophore: A Novel Fluorescent Biomaterial for Copper Detection in Urine. Sensors 2023, 23, 3030. [Google Scholar] [CrossRef] [PubMed]
- Gerdan, Z.; Saylan, Y.; Denizli, A. Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines 2022, 13, 1298. [Google Scholar] [CrossRef]
- Chopra, T.; Sasan, S.; Devi, L.; Parkesh, R.; Kapoor, K.K. A Comprehensive Review on Recent Advances in Copper Sensors. Coord. Chem. Rev. 2022, 470, 214704. [Google Scholar] [CrossRef]
- Sorouraddin, M.H.; Saadati, M. Determination of Copper in Urine and Water Samples Using a Simple Led-Based Colorimeter. J. Anal. Chem. 2010, 65, 423–428. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, M.; del Pilar Cañizares-Macías, M. A Prototype Microfluidic Paper-Based Chromatic Device for Simultaneous Determination of Copper(II) and Zinc(II) in Urine. Talanta Open 2023, 7, 100178. [Google Scholar] [CrossRef]
- Geetha, M.; Sadasivuni, K.K.; Al-Ejji, M.; Sivadas, N.; Bhattacharyya, B.; Musthafa, F.N.; Alfarwati, S.; Promi, T.J.; Ahmad, S.A.; Alabed, S.; et al. Design and Development of Inexpensive Paper-Based Chemosensors for Detection of Divalent Copper. J. Fluoresc. 2023, 33, 2327–2338. [Google Scholar] [CrossRef]
- Jerónimo, P.C.A.; Araújo, A.N.; Montenegro, M.C.B.S.M.; Pasquini, C.; Raimundo, I.M. Direct Determination of Copper in Urine Using a Sol–Gel Optical Sensor Coupled to a Multicommutated Flow System. Anal. Bioanal. Chem. 2004, 380, 108–114. [Google Scholar] [CrossRef]
- Mir, T.U.G.; Wani, A.K.; Akhtar, N.; Katoch, V.; Shukla, S.; Kadam, U.S.; Hong, J.C. Advancing Biological Investigations Using Portable Sensors for Detection of Sensitive Samples. Heliyon 2023, 9, e22679. [Google Scholar] [CrossRef]
- Shalvi; Gautam, V.; Lata Verma, K.; Suman; Jain, V.K.; Kumar, A. An Overview of Advanced Approaches for Detecting Arsenic at Trace Levels. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100730. [Google Scholar] [CrossRef]
- Bonthula, S.; Devarajan, S.; Maurya, M.R.; Al-Maadeed, S.; Maalej, R.; Chaari, M.Z.; Sadasivuni, K.K. Advancing Rapid Arsenic (III) Detection Through Device-Integrated Colorimetry. Chem. Afr. 2024, 7, 4381–4391. [Google Scholar] [CrossRef]
- Gebremedhin, K.H.; Kahsay, M.H.; Wegahita, N.K.; Teklu, T.; Berhe, B.A.; Gebru, A.G.; Tesfay, A.H.; Asgedom, A.G. Nanomaterial-Based Optical Colorimetric Sensors for Rapid Monitoring of Inorganic Arsenic Species: A Review. Discov. Nano 2024, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Babar, N.-U.-A.; Joya, K.S.; Tayyab, M.A.; Ashiq, M.N.; Sohail, M. Highly Sensitive and Selective Detection of Arsenic Using Electrogenerated Nanotextured Gold Assemblage. ACS Omega 2019, 4, 13645–13657. [Google Scholar] [CrossRef] [PubMed]
- Merulla, D.; Buffi, N.; Beggah, S.; Truffer, F.; Geiser, M.; Renaud, P.; van der Meer, J.R. Bioreporters and Biosensors for Arsenic Detection. Biotechnological Solutions for a World-Wide Pollution Problem. Curr. Opin. Biotechnol. 2013, 24, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Salek Maghsoudi, A.; Hassani, S.; Mirnia, K.; Abdollahi, M. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int. J. Nanomed. 2021, 16, 803–832. [Google Scholar] [CrossRef]
- Jia, X.; Bu, R.; Zhao, T.; Wu, K. Sensitive and Specific Whole-Cell Biosensor for Arsenic Detection. Appl. Environ. Microbiol. 2019, 85, e00694-19. [Google Scholar] [CrossRef]
- Bhat, A.; Tian, F.; Singh, B. Advances in Nanomaterials and Colorimetric Detection of Arsenic in Water: Review and Future Perspectives. Sensors 2024, 24, 3889. [Google Scholar] [CrossRef]
- Caragea, G.; Vãrzaru, A.C.; Avram, O.; Macovei, R.; Costea, A.; Popescu, D.M.; Smarandache, A.M. An Overview of the Complications of Acute and Chronic Mercury Exposures. Past, Present, and Future. Rom. J. Mil. Med. 2021, 124, 411. [Google Scholar] [CrossRef]
- Lensoni, L.; Adlim, M.; Kamil, H.; Karma, T.; Suhendrayatna, S. Identification and Correlation Test of Mercury Levels in Community Urine at Traditional Gold Processing Locations. J. Ecol. Eng. 2023, 24, 357–365. [Google Scholar] [CrossRef]
- De Craemer, S.; Baeyens, W.; Leermakers, M. Biomonitoring of Total Mercury in Urine: Method Validation and Sample Stability. Biomonitoring 2018, 5, 1–13. [Google Scholar] [CrossRef]
- Nikkey; Swami, S.; Sharma, N.; Saini, A. Captivating Nano Sensors for Mercury Detection: A Promising Approach for Monitoring of Toxic Mercury in Environmental Samples. RSC Adv. 2024, 14, 18907–18941. [Google Scholar] [CrossRef]
- Sosnowska, M.; Pitula, E.; Janik, M.; Bruździak, P.; Śmietana, M.; Olszewski, M.; Nidzworski, D.; Gromadzka, B. Peptide-Based Rapid and Selective Detection of Mercury in Aqueous Samples with Micro-Volume Glass Capillary Fluorometer. Biosens 2024, 14, 530. [Google Scholar] [CrossRef] [PubMed]
- Rajasekar, M.; Narendran, C.; Mary, J.; Meenambigai, S. Recent Trends and Future Perspectives of Photoresponsive-Based Mercury (II) Sensors and Their Biomaterial Applications. Heliyon 2024, 10, e35826. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Yang, D.; Wang, M.; Yue, Q. A Colorimetric Detection of Hg2+ Based on Gold Nanoparticles Synthesized Oxidized N-Methylpyrrolidone as a Reducing Agent. Sci. Rep. 2023, 13, 22208. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Gong, J.; Rong, P.; Liu, C.; Chen, J. A Portable and Quantitative Biosensor for Cadmium Detection Using Glucometer as the Point-of-Use Device. Talanta 2019, 198, 412–416. [Google Scholar] [CrossRef]
- Yoshii, T.; Nishitsugu, F.; Kikawada, K.; Maehashi, K.; Ikuta, T. Identification of Cadmium Compounds in a Solution Using Graphene-Based Sensor Array. Sensors 2023, 23, 1519. [Google Scholar] [CrossRef]
- Hu, S.; Hui, C.; Wu, C.; Gao, C.; Huang, Z.; Guo, Y. Dual-Colored Bacterial Biosensor Responsive to Cadmium, Mercury, and Lead for Detecting Heavy Metal Pollution in Seawater. Ecol. Indic. 2024, 166, 112244. [Google Scholar] [CrossRef]
- Guo, Y.; Hui, C.; Zhang, N.; Liu, L.; Li, H.; Zheng, H. Development of Cadmium Multiple-Signal Biosensing and Bioadsorption Systems Based on Artificial Cad Operons. Front. Bioeng. Biotechnol. 2021, 9, 585617. [Google Scholar] [CrossRef]
- Hui, C.; Guo, Y.; Wu, J.; Liu, L.; Yang, X.; Guo, X.; Xie, Y.; Yi, J. Detection of Bioavailable Cadmium by Double-Color Fluorescence Based on a Dual-Sensing Bioreporter System. Front. Microbiol. 2021, 12, 696195. [Google Scholar] [CrossRef]
- Hui, C.; Guo, Y.; Li, H.; Gao, C.; Yi, J. Detection of Environmental Pollutant Cadmium in Water Using a Visual Bacterial Biosensor. Sci. Rep. 2022, 12, 6898. [Google Scholar] [CrossRef]
- Joe, M.-H.; Lee, K.-H.; Lim, S.-Y.; Im, S.-H.; Song, H.-P.; Lee, I.S.; Kim, D.-H. Pigment-Based Whole-Cell Biosensor System for Cadmium Detection Using Genetically Engineered Deinococcus Radiodurans. Bioprocess. Biosyst. Eng. 2012, 35, 265–272. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, L.; Zeng, Q.; Zhu, H.; Luo, J. High Serum Copper as a Risk Factor of All-Cause and Cause-Specific Mortality among US Adults, NHANES 2011–2014. Front. Cardiovasc. Med. 2024, 11, 1340968. [Google Scholar] [CrossRef] [PubMed]
- Luscombe, D.L.; Bond, A.M.; Davey, D.E.; Bixler, J.W. Copper Determination in Urine by Flow Injection Analysis with Electrochemical Detection at Platinum Disk Microelectrodes of Various Radii. Anal. Chem. 1990, 62, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Gromadzka, G.; Grycan, M.; Przybyłkowski, A.M. Monitoring of Copper in Wilson Disease. Diagnostics 2023, 13, 1830. [Google Scholar] [CrossRef]
- Hyre, A.N.; Kavanagh, K.; Kock, N.D.; Donati, G.L.; Subashchandrabose, S. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization. Infect. Immun. 2017, 85, 10–1128. [Google Scholar] [CrossRef]
Heavy Metal | Effects | References |
---|---|---|
Arsenic | Heart disease (atherosclerosis, coronary heart disease, peripheral arterial disease myocardial infarction, endothelial dysfunction, thrombosis, hypertension, and stroke) Liver fibrosis Pulmonary disease Muscle cramps and pain Hematopoietic system | [48,49] |
Cadmium | Bone damage Lung cancer Renal failure Pneumonitis Proteinuria Heart disease (atherosclerosis, ischemic heart disease, coronary heart disease, dilated cardiomyopathy, heart failure, hypertension, and stroke) | [48,50] |
Lead | Impaired voluntary muscle function Heart disease (atherosclerosis, coronary heart disease, peripheral arterial disease endothelial dysfunction, heart failure, thrombosis, hypertension, and stroke) Kidney damage | [48,51] |
Mercury | Brain damage Neurodegenerative disorders, gastrointestinal system damage, and kidney damage Respiratory failure Developing fetus damage Reproductive system damage Heart disease (atherosclerosis, ischemic heart disease, myocardial infarction, endothelial dysfunction, thrombosis, hypertension, and stroke) Cancer (lung, skin, colorectal, and brain) | [48,52,53] |
Technique Used | Metal Ions | Electrode Substrate/Sensing Platform | Linear Range | Limit of Detection (LOD) | Reference |
---|---|---|---|---|---|
DNA biosensor | Hg(II) | Screen-printed gold electrodes (SPGEs) | 10 pM–1 mM | 0.11 pM | [92] |
Voltammetry | Hg(II) | Screen-printed electrodes modified with gold nanoparticles | - | 2.49–7.48 nM | [93] |
ASV | Hg(II) | Thin-film gold electrode | 99.71–398.82 nM | 74.78 nM | [87] |
Luminescence | Hg(II) | Escherichia coli | 0.167 pM–167 nM | 0.167 pM | [94] |
Whole-cell biosensors (optic) | Hg(II) | Deoxyviolacein M-V (pPmer-vioABCDE), M-DV (pPmer-vioABCE) | 1.57–100 nM | 0.687 nM for M-V and 0.024 nM for M-DV | [95] |
ASV | Pb(II) | Glassy carbon electrodes modified with bimetallic nanoparticle deposits of Ag–Hg and Ag–Bi | - | 0.00319 µMand 0.00116 µM | [96] |
Whole-cell biosensor | Cd(II) | CadR10 and deoxyviolacein pigment | 1.53 nM–100 μM | 3.05 nM | [97] |
SWASV | Cd(II) | Carbon nanotube film on glassy carbon (CNT-GC) | - | 1.9 nM | [98] |
CV | Cd(II) | Ag/AgCl reference and platinum wire counter electrode | - | 1.9 nM in simulated urine, 5.85 nM (female) and 324 nM (male) | [98] |
CV | Cd(II) | Three-electrode setup with BDD electrodes as the working, 3 mm Pt disk as the counter, and Ag/AgCl as the reference. | - | - | [99] |
DPSV | Cd(II) | BDD UME array or a macroelectrode, the counter electrode was a graphite rod, and the reference electrode was a KCl-saturated leakless miniature Ag/AgCl | - | 0.0116 nM | [99] |
FIA/AdSV | Pb(II) | Hg film on the glassy electrode | 0–0.241 µM | - | [100] |
FRET | Pb(II) | 3D-printed frame with 405 nm laser, biochip holder, and smartphone-compatible lens | 0.0229 µM | [101] | |
Fluorescence | Cu(II) | Serotonin-derived fluorophore | - | 0.928 ± 0.047 µM | [102] |
Colorimetric sensor | Cu(II) | Carboxymethyl gum karaya-capped gold nanoparticles | 0.01–1 µM | 0.01 µM | [103] |
SPR | Cu(II) | Molecularly imprinted nanofilm | 0.04–5 μM | - | [103] |
Potentiometric | Cu(II) | 2-N,N-dimethylcarbamimidoyl modified SPE and CPE | - | 1 μM | [104] |
Low-field NMR | Cu(II) | QMNPs | - | 2 μM | [104] |
Colorimetric | Cu(II) | Sodium 8-aminoquinoline-5-azobenzene-4′-sulfonate (SPAQ) | 1.57–31.47 µM | 0.551 µM | [105] |
Microfluidic paper-based chromatic (µPAD) | Cu(II), Zn(II) | 1-(2-pyridylazo)-2-naphthol (PAN) reagent | - | 0.426 µM 35.9 µg L⁻1 | [106] |
Paper-based sensors | Cu(II) | Multi-dye (Cresol red, Thymol blue, Neutral red) | - | 35.09 µM | [107] |
Sol–gel optical sensor coupled to a multicommutated flow system | Cu(II) | 4-(2-pyridylazo)resorcinol (PAR) | 0.0787 µM and 1.26 µM | 0.0472 µM | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anchidin-Norocel, L.; Iatcu, O.C.; Lobiuc, A.; Covasa, M. Heavy Metal–Gut Microbiota Interactions: Probiotics Modulation and Biosensors Detection. Biosensors 2025, 15, 188. https://doi.org/10.3390/bios15030188
Anchidin-Norocel L, Iatcu OC, Lobiuc A, Covasa M. Heavy Metal–Gut Microbiota Interactions: Probiotics Modulation and Biosensors Detection. Biosensors. 2025; 15(3):188. https://doi.org/10.3390/bios15030188
Chicago/Turabian StyleAnchidin-Norocel, Liliana, Oana C. Iatcu, Andrei Lobiuc, and Mihai Covasa. 2025. "Heavy Metal–Gut Microbiota Interactions: Probiotics Modulation and Biosensors Detection" Biosensors 15, no. 3: 188. https://doi.org/10.3390/bios15030188
APA StyleAnchidin-Norocel, L., Iatcu, O. C., Lobiuc, A., & Covasa, M. (2025). Heavy Metal–Gut Microbiota Interactions: Probiotics Modulation and Biosensors Detection. Biosensors, 15(3), 188. https://doi.org/10.3390/bios15030188