Emerging Implantable Sensor Technologies at the Intersection of Engineering and Brain Science
Abstract
1. Introduction
2. Material and Device Innovations in Flexible Neural Interfaces for Chronic Biosensing
3. Wireless and Bioresorbable Neural Interfaces for Transient and Closed-Loop Sensing
4. Multimodal and Chemically Sensitive Neural Sensors
5. Human–Machine Interfaces and Translational Systems
6. Discussion and Outlook
- Chronic immune responses and signal degradation;
- Mechanical fatigue from long-term implantation;
- Limitations in material stability, biocompatibility, and packaging durability.
- Self-powered sensors with energy harvesting from body heat or motion;
- Biodegradable closed-loop systems for temporary interventions;
- Soft robotics integration for sensory restoration and neuromorphic computation;
- AI-enhanced decoding algorithms for high-fidelity neural signal interpretation;
- In situ diagnostics using multiplexed chemical sensors for early disease detection;
- Wireless spinal or peripheral nerve interfaces with AI-assisted decoding for motor recovery (TRL 7–8);
- Flexible CMOS probes for high-density ECoG mapping (TRL 6–7);
- Human-in-the-loop BMIs enabling real-time adaptive control (TRL 7+).
- Thermal dissipation/SAR exposure;
- Link bandwidth and latency;
- Drift-induced degradation and calibration costs.
7. Materials and Interfaces for Chronic Neural Biosensing
8. Toward Clinical Translation and Regulatory Pathways
9. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, E.T.; Hull, J.M.; Hemed, N.M.; Uluşan, H.; Bartram, J.; Zhang, A.; Wang, P.; Pham, A.; Ronchi, S.; Huguenard, J.R.; et al. A CMOS-based highly scalable flexible neural electrode interface. Sci. Adv. 2023, 9, eadf9524. [Google Scholar] [CrossRef]
- Zhang, Y.; Riexinger, J.; Yang, X.; Mikhailova, E.; Jin, Y.; Zhou, L.; Bayley, H. A microscale soft ionic power source modulates neuronal network activity. Nature 2023, 620, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, W.; Tang, Z.; Tan, Z.; He, Y.; Luo, J.; Wang, X. A reconfigurable integrated smart device for real-time monitoring and synergistic treatment of rheumatoid arthritis. Sci. Adv. 2024, 10, eadj0604. [Google Scholar] [CrossRef]
- Ciatti, J.L.; Vázquez-Guardado, A.; Brings, V.E.; Park, J.; Ruyle, B.; Ober, R.A.; McLuckie, A.J.; Talcott, M.R.; Carter, E.A.; Burrell, A.R.; et al. An autonomous implantable device for the prevention of death from opioid overdose. Sci. Adv. 2024, 10, eadr3567. [Google Scholar] [CrossRef] [PubMed]
- Nan, K.; Wong, K.; Li, D.; Ying, B.; McRae, J.C.; Feig, V.R.; Wang, S.; Du, N.; Liang, Y.; Mao, Q.; et al. An ingestible, battery-free, tissue-adhering robotic interface for non-invasive and chronic electrostimulation of the gut. Nat. Commun. 2024, 15, 6749. [Google Scholar] [CrossRef]
- Lee, D.-M.; Kang, M.; Hyun, I.; Park, B.-J.; Kim, H.J.; Nam, S.H.; Yoon, H.-J.; Ryu, H.; Park, H.-M.; Choi, B.-O.; et al. An on-demand bioresorbable neurostimulator. Nat. Commun. 2023, 14, 7315. [Google Scholar] [CrossRef]
- Kang, K.; Ye, S.; Jeong, C.; Jeong, J.; Ye, Y.-S.; Jeong, J.-Y.; Kim, Y.-J.; Lim, S.; Kim, T.H.; Kim, K.Y.; et al. Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function. Nat. Commun. 2024, 15, 10. [Google Scholar] [CrossRef]
- Song, J.W.; Ryu, H.; Bai, W.; Xie, Z.; Vázquez-Guardado, A.; Nandoliya, K.; Avila, R.; Lee, G.; Song, Z.; Kim, J.; et al. Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites. Sci. Adv. 2023, 9, eade4687. [Google Scholar] [CrossRef] [PubMed]
- Čvančara, P.; Valle, G.; Müller, M.; Bartels, I.; Guiho, T.; Hiairrassary, A.; Petrini, F.; Raspopovic, S.; Strauss, I.; Granata, G.; et al. Bringing sensation to prosthetic hands—Chronic assessment of implanted thin-film electrodes in humans. Npj Flex. Electron. 2023, 7, 51. [Google Scholar] [CrossRef]
- Uguz, I.; Ohayon, D.; Yilmaz, S.; Griggs, S.; Sheelamanthula, R.; Fabbri, J.D.; McCulloch, I.; Inal, S.; Shepard, K.L. Complementary integration of organic electrochemical transistors for front-end amplifier circuits of flexible neural implants. Sci. Adv. 2024, 10, eadi9710. [Google Scholar] [CrossRef]
- Kasper, K.A.; Romero, G.F.; Perez, D.L.; Miller, A.M.; Gonzales, D.A.; Siqueiros, J.; Margolis, D.S.; Gutruf, P. Continuous operation of battery-free implants enables advanced fracture recovery monitoring. Sci. Adv. 2025, 11, eadt7488. [Google Scholar] [CrossRef] [PubMed]
- Harland, B.; Matter, L.; Lopez, S.; Fackelmeier, B.; Hazelgrove, B.; Meissner, S.; O’cArroll, S.; Raos, B.; Asplund, M.; Svirskis, D. Daily electric field treatment improves functional outcomes after thoracic contusion spinal cord injury in rats. Nat. Commun. 2025, 16, 5372. [Google Scholar] [CrossRef]
- Ulloa, L. Electroacupuncture activates neurons to switch off inflammation. Nature 2021, 598, 573–574. [Google Scholar] [CrossRef]
- Zhang, Y.; Rytkin, E.; Zeng, L.; Kim, J.U.; Tang, L.; Zhang, H.; Mikhailov, A.; Zhao, K.; Wang, Y.; Ding, L.; et al. Millimetre-scale bioresorbable optoelectronic systems for electrotherapy. Nature 2025, 640, 77–86. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, Z.; Sangwan, V.K.; Qian, J.H.; Wang, X.; Liu, S.E.; Watanabe, K.; Taniguchi, T.; Xu, S.; Jarillo-Herrero, P.; et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 2023, 624, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Sahasrabudhe, A.; Cea, C.; Anikeeva, P. Multifunctional bioelectronics for brain–body circuits. Nat. Rev. Bioeng. 2025, 3, 465–484. [Google Scholar] [CrossRef]
- Jackson, A. Neural interfaces take another step forward. Nature 2016, 539, 177–178. [Google Scholar] [CrossRef]
- Guyenet, P.G. Neuroprosthetic device maintains blood pressure after spinal cord injury. Nature 2021, 590, 223–224. [Google Scholar] [CrossRef]
- Slade, P.; Atkeson, C.; Donelan, J.M.; Houdijk, H.; Ingraham, K.A.; Kim, M.; Kong, K.; Poggensee, K.L.; Riener, R.; Steinert, M.; et al. On human-in-the-loop optimization of human–robot interaction. Nature 2024, 633, 779–788. [Google Scholar] [CrossRef]
- Qu, S.; Yu, Q.; Jiang, C.; Zou, T.; Xu, H.; Zhang, L.; Tao, M.; Zhu, Q.; Zhang, S.; Geng, C.; et al. Oxide semiconductor in a neuromorphic chromaticity communication loop for extreme envi-ronment exploration. Sci. Adv. 2025, 11, eadu3576. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Zou, G.; Huang, J.; Ren, X.; Tian, Q.; Yu, Q.; Wang, P.; Yuan, Y.; Tang, W.; Wang, C.; et al. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 2023, 624, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Farronato, M.; Mannocci, P.; Milozzi, A.; Compagnoni, C.M.; Barcellona, A.; Arena, A.; Crepaldi, M.; Panuccio, G.; Ielmini, D. Seizure detection via reservoir computing in MoS2-based charge trap memory devices. Sci. Adv. 2025, 11, eadr3241. [Google Scholar] [CrossRef]
- Wisniewski, D.J.; Ma, L.; Rauhala, O.J.; Cea, C.; Zhao, Z.; Ranschaert, A.; Gelinas, J.N.; Khodagholy, D. Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors. Nat. Commun. 2025, 16, 517. [Google Scholar] [CrossRef]
- Qi, Y.; Jang, D.; Ryu, J.; Bai, T.; Shin, Y.; Gu, W.; Iyer, A.; Li, G.; Ma, H.; Liou, J.-Y.; et al. Stabilized carbon coating on microelectrodes for scalable and interoperable neurotransmitter sensing. Nat. Commun. 2025, 16, 3300. [Google Scholar] [CrossRef]
- Lorach, H.; Galvez, A.; Spagnolo, V.; Martel, F.; Karakas, S.; Intering, N.; Vat, M.; Faivre, O.; Harte, C.; Komi, S.; et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 2023, 618, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huo, P.; Huang, S.; Gou, G.; Li, Q. Multi-Receptor Skin with Highly Sensitive Tele-Perception Somatosensory Flexible Electronics in Healthcare: Multimodal Sensing and AI-Powered Diagnostics. Adv. Heal. Mater. 2025, 14, e2502901. [Google Scholar] [CrossRef]
- Abbasi, Q.H.; Kiourti, A.; Heidari, H.; He, Y.; Warkiani, M.; Alomainy, A. IEEE Access Special Section Editorial: Wearable and Implantable Devices and Systems. IEEE Access 2019, 7, 139512–139517. [Google Scholar] [CrossRef]
- Jia, Z.; Huth, H.; Teoh, W.Q.; Xu, S.; Wood, B.; Tse, Z.T.H. State of the Art Review of Wearable Devices for Respiratory Monitoring. IEEE Access 2025, 13, 18178–18190. [Google Scholar] [CrossRef]
- Qi, L.; Tao, Z.; Liu, M.; Yao, K.; Song, J.; Shang, Y.; Su, D.; Liu, N.; Jiang, Y.; Wang, Y. Optimizing Flexible Microelectrode Designs for Enhanced Efficacy in Electrical Stimulation Therapy. Micromachines 2024, 15, 1104. [Google Scholar] [CrossRef]
- Han, C.; Huang, J.; Zhangji, A.; Tong, X.; Yu, K.; Chen, K.; Liu, X.; Yang, Y.; Chen, Y.; Memon, W.A.; et al. Accelerated Skin Wound Healing Using Flexible Photovoltaic-Bioelectrode Electrical Stimulation. Micromachines 2022, 13, 561. [Google Scholar] [CrossRef]
- Zhang, A.; Mandeville, E.T.; Xu, L.; Stary, C.M.; Lo, E.H.; Lieber, C.M. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 2023, 381, 306–312. [Google Scholar] [CrossRef]
- Wang, P.; Wu, E.G.; Uluşan, H.; Zhao, E.T.; Phillips, A.J.; Kling, A.; Hays, M.R.; Vasireddy, P.K.; Madugula, S.; Vilkhu, R.; et al. Direct-Print 3D Electrodes for Large-Scale, High-Density, and Customizable Neural Interfaces. Adv. Sci. 2025, 12, 2408602. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Peng, Y.; Guo, J.; Liu, M.; Zhang, B.; Yin, L.; Ding, H.; Sheng, X. Materials and devices for high-density, high-throughput micro-electrocorticography arrays. Fundam. Res. 2025, 5, 17–28. [Google Scholar] [CrossRef]
- Schmidt, S.; Li, W.; Schubert, M.; Binnewerg, B.; Prönnecke, C.; Zitzmann, F.D.; Bulst, M.; Wegner, S.; Meier, M.; Guan, K.; et al. Novel high-dense microelectrode array based multimodal bioelectronic monitoring system for cardiac arrhythmia re-entry analysis. Biosens. Bioelectron. 2024, 252, 116120. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, X.; Chen, J.; Liu, J. Material Selection and Device Design of Scalable Flexible Brain-Computer Interfaces: A Balance Between Electrical and Mechanical Performance. Adv. Mater. 2025, 37, e2413938. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Chen, R.; Li, M.; Song, H.; Zhao, X.; Zhang, L.; Zhou, Y.; Chen, J.; Li, J.; Chen, M. High Antimicrobial Electrotherapy and Wound Monitoring Hydrogel with Bimetal Phenolic Networks for Smart Healthcare. Adv. Funct. Mater. 2024, 35, 2413080. [Google Scholar] [CrossRef]
- Xiao, A.; Jiang, X.; Hu, Y.; Li, H.; Jiao, Y.; Yin, D.; Wang, Y.; Sun, H.; Wu, H.; Lin, L.; et al. A Degradable Bioelectronic Scaffold for Localized Cell Transfection toward Enhancing Wound Healing in a 3D Space. Adv. Mater. 2024, 36, e2404534. [Google Scholar] [CrossRef]
- Wu, B.; Lin, Y.; Tian, Y.; Wei, W.; Xu, Y.; Hu, Y.; Li, J.; Li, K.; Hou, C.; Zhang, Q.; et al. Bioinspired Wearable Thermoelectric Device Constructed with Soft-Rigid Assembly for Personal Thermal Management. Adv. Funct. Mater. 2024, 34, 2402319. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, G.; Li, P.; Tian, B. Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration. Biomaterials 2025, 322, 123385. [Google Scholar] [CrossRef]
- Fan, L.; Wang, L.; Wang, X.; Li, M.; Gu, H.; Zhang, H. Multifunctional Silk and Gelatin Composed Microneedle Patches for Enhanced Wound Healing. Smart Med. 2025, 4, e137. [Google Scholar] [CrossRef]
- Oh, M.; Kim, E.; Lee, J.; Jeong, I.; Kim, E.; Paek, J.; Lee, T.; Kim, D.; An, S.H.; Kim, S.; et al. Machine Learning Enhanced Multimodal Bioelectronics: Advancement Toward Intelligent Healthcare Systems. Adv. Sens. Res. 2025, 4, 2500028. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, H.J.; Lee, S.; Kim, D.H.; Kim, H.J.; Sunwoo, S.H. Intrinsically Soft Implantable Electronics for Long-term Biosensing Applications. Adv. Sens. Res. 2025, 4, 2500002. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, K.; Zhang, Q.; Huang, X.; Chen, Z.; Zhou, Y.; Yu, X. Bioelectronics for electrical stimulation: Materials, devices and biomedical applications. Chem. Soc. Rev. 2024, 53, 8632–8712. [Google Scholar] [CrossRef]
- Zhong, Z.; Quiñones-Pérez, M.; Dai, Z.; Juarez, V.M.; Bhatia, E.; Carlson, C.R.; Shah, S.B.; Patel, A.; Fang, Z.; Hu, T.; et al. Human immune organoids to decode B cell response in healthy donors and patients with lymphoma. Nat. Mater. 2024, 24, 297–311. [Google Scholar] [CrossRef]
- Yang, G.; Zheng, Y.; Tian, B. Perspective on Nano-Enabled Photostimulation Biointerfaces. ACS Nano 2025, 19, 21189–21205. [Google Scholar] [CrossRef]
- Mei, J.; Jin, Y.; Huang, K.; Chen, H.; Mao, Z.; Zhang, Y.; Chen, J. Solar-driven electroconductive multifunctional hydrogel with reversible phase transition for water purifying and on-the-fly monitoring purification. Nano Energy 2025, 143, 111315. [Google Scholar] [CrossRef]
- Luo, T.; Lu, X.; Ma, H.; Cheng, Q.; Liu, G.; Ding, C.; Hu, Y.; Yang, R. Design Strategy, On-Demand Control, and Biomedical Engineering Applications of Wet Adhesion. Langmuir 2024, 40, 25729–25757. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liang, L.; Zhang, Y.; Lin, K.; Yang, M.; Zhu, L.; Yang, X.; Zang, L.; Lu, B. PEDOT:PSS-based electronic materials: Preparation, performance tuning, processing, applications, and future prospect. Prog. Polym. Sci. 2025, 166, 101990. [Google Scholar] [CrossRef]
- Mariello, M. Reliability and stability of Bioelectronic Medicine: A critical and pedagogical perspective. Bioelectron. Med. 2025, 11, 16. [Google Scholar] [CrossRef]
- Hong, G.; Jiang, S.; Malinao, M.; Yang, F.; Zeng, Y.; Hou, S.; Wu, X.; Rommelfanger, N.; Chaunsali, L.; Ding, J.; et al. An ultrasound-scanning in vivo light source. Res. Sq. 2025, rs.3, rs-6773130. [Google Scholar]
- Liang, W.; Zhou, C.; Bai, J.; Zhang, H.; Long, H.; Jiang, B.; Dai, H.; Wang, J.; Zhang, H.; Zhao, J. Current developments and future perspectives of nanotechnology in orthopedic implants: An updated review. Front. Bioeng. Biotechnol. 2024, 12, 1342340. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, C.; Jiang, C.; Huang, X.; Liu, Z.; Zhang, H.; Liang, W.; Zhao, J. Translation of nanotechnology-based implants for orthopedic applications: Current barriers and future perspective. Front. Bioeng. Biotechnol. 2023, 11, 1206806. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Yao, Y.; Ren, Y.; Lin, J.; Hu, J.; Zheng, M.; Song, X.; Zhao, T.; Chen, Y.-Y.; et al. β-Elemene Enhances GAP-43 Expression and Neurite Outgrowth by Inhibiting RhoA Kinase Activation in Rats with Spinal Cord Injury. Neuroscience 2018, 383, 12–21. [Google Scholar] [CrossRef]
- Luo, J.; Firflionis, D.; Turnbull, M.; Xu, W.; Walsh, D.; Escobedo-Cousin, E. The neural engine: A reprogrammable low power platform for closed-loop optogenetics. IEEE Trans. Biomed. Eng. 2020, 67, 3004–3015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Target. Ther. 2023, 8, 261. [Google Scholar] [CrossRef]
- Youssef, A.; Rehman, A.U.; Elebasy, M.; Roper, J.; Sheikh, S.Z.; Karhausen, J.; Yang, W.; Ulloa, L. Vagal stimulation ameliorates murine colitis by regulating SUMOylation. Sci. Transl. Med. 2024, 16, eadl2184. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, T.; Li, W.; Song, T.; Zhao, C.; Wu, Q.; Cui, W.; Hao, Y.; Hou, Y.; Zhu, P. Unraveling the neuroprotective potential of scalp electroacupuncture in ischemic stroke: A key role for electrical stimulation. Neuroscience 2024, 562, 160–181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, D.; Lin, Q.; Cui, X. Therapeutically Fine-Tuning Autonomic Nervous System to Treat Sepsis: A New Perspective on the Immunomodulatory Effects of Acupuncture. J. Inflamm. Res. 2024, 17, 4373–4387. [Google Scholar] [CrossRef]
- Lee, D.; Park, J.; Kim, T.; Lee, J.; Kim, T. Charge Trap Dynamics in Nanobubbles on MoS2 Nanosheets: Implications for Reliability in 2D Electronic Devices. ACS Appl. Nano Mater. 2025, 8, 11185–11191. [Google Scholar] [CrossRef]
- Wang, C.; Sani, E.S.; Shih, C.-D.; Lim, C.T.; Wang, J.; Armstrong, D.G.; Gao, W. Wound management materials and technologies from bench to bedside and beyond. Nat. Rev. Mater. 2024, 9, 550–566. [Google Scholar] [CrossRef]
- Wu, S.J.; Zhao, X. Bioadhesive technology platforms. Chem. Rev. 2023, 123, 14084–14118. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tan, P.; Rao, Y.; Bhattacharya, S.; Wang, Z.; Kim, S.; Gangopadhyay, S.; Shi, H.; Jankovic, M.; Huh, H.; et al. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem. Rev. 2024, 124, 3220–3283. [Google Scholar] [CrossRef] [PubMed]
- Linh, V.T.N.; Han, S.; Koh, E.; Kim, S.; Jung, H.S.; Koo, J. Advances in wearable electronics for monitoring human organs: Bridging external and internal health assessments. Biomaterials 2024, 314, 122865. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Rao, Y.; Wang, X.; He, Q.; Yang, M.; Wang, Y.; Zhou, Y.; Guo, J.; Yan, F. Skin Temperature-Activated Multifunctional Thermoelectric Dressing for Bacterial Infected Wound Treatment. Adv. Funct. Mater. 2024, 35, 2415085. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, Y.; He, Y.; Chen, L.; Wu, C.; Zhang, B.; Yan, F.; Zhao, K.; Wu, Z. A self-powered wound dressing based on “Lock-ON/OFF” drug release combined electric stimulus therapy for accelerated infected wound healing. Adv. Funct. Mater. 2024, 34, 2315086. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Sun, M.; Zhou, L.; Wu, X.; Lu, Y.; Shao, Y.; Liu, C.; Huang, N.; Hu, B.; et al. Flexible bioelectronic systems with large-scale temperature sensor arrays for monitoring and treatments of localized wound inflammation. Proc. Natl. Acad. Sci. USA 2024, 121, e2412423121. [Google Scholar] [CrossRef]
- Chang, L.; Du, H.; Xu, F.; Xu, C.; Liu, H. Hydrogel-enabled mechanically active wound dressings. Trends Biotechnol. 2023, 42, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Drew, L. The ethics of brain-computer interfaces. Nature 2019, 571, S19–S21. [Google Scholar] [CrossRef]
- Siala, H.; Wang, Y. SHIFTing artificial intelligence to be responsible in healthcare: A systematic review. Soc. Sci. Med. 2022, 296, 114782. [Google Scholar] [CrossRef]
- Baldock, S.J.; Kevin, P.; Harper, G.R.; Griffin, R.; Genedy, H.H.; Fong, M.J.; Zhao, Z.; Zhang, Z.; Shen, Y.; Lin, H.; et al. Creating 3D Objects with Integrated Electronics via Multiphoton Fabrication In Vitro and In Vivo. Adv. Mater. Technol. 2023, 8, 2201274. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Kold, S.; Rahbek, O.; Bai, S. Wearable sensors for activity monitoring and motion control: A review. Biomim. Intell. Robot. 2023, 3, 100089. [Google Scholar] [CrossRef]
- Shu, Z.; Liu, P.; Cheng, Y.; Liu, J.; Feng, Y.; Zhu, Z.; Yu, Y.; Han, J.; Wu, J.; Yu, N. A small-sample time-series signal augmentation and analysis method for quantitative assessment of bradykinesia in Parkinson’s disease. Intell. Robot. 2024, 4, 74–86. [Google Scholar] [CrossRef]
- Yeager, J.D.; Phillips, D.J.; Rector, D.M.; Bahr, D.F. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J. Neurosci. Methods 2008, 173, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Degenhart, A.D.; Eles, J.; Dum, R.; Mischel, J.L.; Smalianchuk, I.; Endler, B.; Ashmore, R.C.; Tyler-Kabara, E.C.; Hatsopoulos, N.G.; Wang, W.; et al. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J. Neural Eng. 2016, 13, 046019. [Google Scholar] [CrossRef]
- Chen, Z.; Lee, J.-B. Biocompatibility of SU-8 and Its Biomedical Device Applications. Micromachines 2021, 12, 794. [Google Scholar] [CrossRef]
- Márton, G.; Tóth, E.Z.; Wittner, L.; Fiáth, R.; Pinke, D.; Orbán, G.; Meszéna, D.; Pál, I.; Győri, E.L.; Bereczki, Z. The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study. Mater. Sci. Eng. C 2020, 112, 110870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Le, S.; Niu, L.; Tao, J.; Liang, J.; Zhang, L.; Kang, X. Parylene C as an Insulating Polymer for Implantable Neural Interfaces: Acute Electrochemical Impedance Behaviors in Saline and Pig Brain In Vitro. Polymers 2022, 14, 3033. [Google Scholar] [CrossRef]
- Hassler, C.; Metzen, R.P.; Ruther, P.; Stieglitz, T. Characterization of parylene C as an encapsulation material for implanted neural prostheses. J. Biomed. Mater. Res. B 2010, 93, 266–274. [Google Scholar] [CrossRef]
- Khodagholy, D.; Gelinas, J.N.; Zhao, Z.; Yeh, M.; Long, M.; Greenlee, J.D.; Doyle, W.; Devinsky, O.; Buzsáki, G. Organic electronics for high-resolution electrocorticography of the human brain. Sci. Adv. 2016, 2, e1601027. [Google Scholar] [CrossRef]
- Ludwig, K.A.; Uram, J.D.; Yang, J.; Martin, D.C.; Kipke, D.R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 2006, 3, 59. [Google Scholar] [CrossRef]
- Cui, X.; Lee, V.A.; Raphael, Y.; Wiler, J.A.; Hetke, J.F.; Anderson, D.J.; Martin, D.C. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 2001, 56, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wiler, J.; Dzaman, M.; Altschuler, R.A.; Martin, D.C. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 2003, 24, 777–787. [Google Scholar] [CrossRef] [PubMed]







| Technology Type | Representative Devices or Methods | Core Advantages |
|---|---|---|
| Flexible Neural Interfaces | CMOS flexible probes, cIGT transistors | Soft, conformal, high-density recording |
| Wireless & Bioresorbable Systems | Backscatter sensors, transient neurostimulators | Minimized surgical burden, auto-degradation |
| Multimodal & Neurochemical Sensing | Carbon-coated microelectrodes, MoS2 neuromorphic memory | Dual-mode recording: chemical + electrical |
| Brain–Machine Interfaces (BMIs) | ECoG decoding + spinal stimulation loop | Restores motor function, intention-driven control |
| Neuromorphic & Edge Computing | Synapse-inspired sensing units | Learning-capable, on-device intelligence |
| Material Type | Primary Function | Application Features |
|---|---|---|
| Polyimide (PI) Parylene C | Flexible substrate matching brain tissue | Micron-scale flexibility, microfabrication compatible |
| Au/Pt/IrOx | Conductive layer for stable neural signals | Low impedance, widely used in interfaces |
| PEDOT:PSS/MXene/Graphene | Enhanced sensitivity and mechanical flexibility | Conductive and optically transparent |
| Al2O3/SiO2 encapsulation films | Protect circuitry and block biofluid | Barrier quality still under long-term evaluation |
| Magnesium/Silk/Liquid Crystal Polymers | Enable biodegradability or tunable mechanics | Ideal for short-term implants or post-op therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Wang, Y.; Liang, X. Emerging Implantable Sensor Technologies at the Intersection of Engineering and Brain Science. Biosensors 2025, 15, 762. https://doi.org/10.3390/bios15110762
Qi L, Wang Y, Liang X. Emerging Implantable Sensor Technologies at the Intersection of Engineering and Brain Science. Biosensors. 2025; 15(11):762. https://doi.org/10.3390/bios15110762
Chicago/Turabian StyleQi, Lihong, Yuheng Wang, and Xuemei Liang. 2025. "Emerging Implantable Sensor Technologies at the Intersection of Engineering and Brain Science" Biosensors 15, no. 11: 762. https://doi.org/10.3390/bios15110762
APA StyleQi, L., Wang, Y., & Liang, X. (2025). Emerging Implantable Sensor Technologies at the Intersection of Engineering and Brain Science. Biosensors, 15(11), 762. https://doi.org/10.3390/bios15110762

