Advancements and Prospects of Metal-Organic Framework-Based Fluorescent Sensors
Abstract
1. Introduction
2. Degradation Pathways and Stabilization Strategies for MOFs
2.1. Main Degradation Pathways of MOFs
2.1.1. Hydrolysis
2.1.2. Acid/Base Attack
2.1.3. Ligand Displacement by Coordinating Anions
2.1.4. Photodecarboxylation
2.1.5. Redox-Driven Degradation
2.1.6. Biofouling and Biomolecule Adsorption
2.2. Stabilization Strategies for MOFs
2.2.1. Constructing Strong Coordination Bonds
2.2.2. Optimizing Framework Structure
2.2.3. Introducing Hydrophobicity and Protective Layers
2.2.4. Defect Control and Post-Synthetic Repair
3. Detection Mechanism of MOF-Based Fluorescent Sensors
3.1. Fluorescence Quenching
3.2. Fluorescence Enhancement
3.3. Stokes Shift
3.4. Multiple Fluorescence Mechanisms Coupling
4. Strategies for Constructing MOF-Based Fluorescent Sensors
4.1. Individual MOFs
4.2. MOF Composites
4.2.1. MOF-Metal Nanomaterials
4.2.2. MOF-on-MOF
4.2.3. MOF-COF
4.2.4. MOF-QDs
4.2.5. MOF-Dye
4.2.6. MOF-Other Nanomaterials
5. Conclusions and Future Perspectives
5.1. Material Innovation: Stability, Intelligence, and Integration
5.2. Technology Fusion and Miniaturization: Towards Point-of-Care and High-Throughput Analysis
5.3. Application Expansion and Deepening: From Single-Target Detection to Complex System Analysis
5.4. The Data-Driven Intelligent Future: AI-Powered Sensing Paradigms
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MOFs | Metal-organic frameworks |
| IRMOFs | Isoreticular Metal-organic Frameworks |
| ZIFs | Zeolitic Imidazolate Frameworks |
| MILs | Materials of Institut Lavoisier |
| COFs | Covalent organic frameworks |
| QDs | Quantum dots |
| PCNs | Porous Coordination Networks |
| UiO | University of Oslo |
| CPLs | Coordination Pillared-Layer |
| BDC | Benzene-1,4-dicarboxylic acid |
| HPLC | High-performance liquid chromatography |
| GC | Gas chromatography |
| MS | Mass spectrometry |
| ALP | Alkaline phosphatase |
| ATP | Adenosine triphosphate |
| PPD | p-Phenylenediamine |
| IFE | Inner filter effect |
| PDI | Pentamethylene diisocyanate |
| PFAS | Per- and polyfluoroalkyl substances |
| PFOA | Perfluorooctanoic acid |
| AFB1 | Aflatoxin B1 |
| TMB | Tetramethylbenzidine |
| cDNA | Complementary DNA |
| PPi | Pyrophosphate |
| Pi | Phosphate |
| NCs | Nanocages |
| FRET | Fluorescence resonance energy transfer |
| N protein | Nucleocapsid protein |
| MNCs | Metal nanocluster |
| Au NCs | Gold nanoclusters |
| AgAu NCs | Gold-silver alloy nanoclusters |
| PDANSs | Polydopamine |
| SMZ | Sulfamethoxazole |
| AMC | 7-amino-4-methylcoumarin |
| CQP | Chloroquine phosphate |
| FA | Folic acid |
| scCHA | Self-circulating catalytic hairpin assembly |
| SQDs | Sulfur quantum dots |
| PAT | Patulin |
| PVP | Polyvinyl pyrrolidone |
| APTES | (3-Aminopropyl)triethoxysilane |
| CDs | Carbon dots |
| BNCDs | Boron-nitrogen-doped carbon dots |
| Mal | Malathion |
| RhB | Rhodamine B |
| NFT | Nitrofurantoin |
| OTC | Oxytetracycline |
| FA | Formaldehyde |
| ACP | Acidic phosphatase |
| TPE | Tetraphenylethene |
| OPD | O-phenylenediamine |
| DOX | Doxycycline |
| Arg | L-arginine |
| PEI | Polyethyleneimine |
| DAP | 2,3-diaminophenazine |
| AAP | Ascorbic acid 2-phosphate |
| MIP | Molecularly imprinted polymer |
| TEA | Triethylamine |
| BTC | 1,3,5-Benzene tricarboxylic acid |
| TCPP | 5,10,15,20-Tetrakis(4-carboxyphenyl)porphyrin |
| TCPB | 1,2,4,5-Tetrakis(4-carboxyphenyl)benzene |
| MMM | Mixed-membrane matrix |
| PET | Photoinduced electron transfer |
| AGs | Aminoglycoside antibiotics |
| ACQ | Aggregation-caused quenching |
References
- Ye, Y.; Gong, L.; Xiang, S.; Zhang, Z.; Chen, B. Metal-Organic Frameworks as a Versatile Platform for Proton Conductors. Adv. Mater. 2020, 32, 1907090. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Chen, L.; Lin, Q.; Wang, L.; Zhang, Z.; Ye, Y.; Chen, B. Nanoscale Metal–Organic Frameworks as a Photoluminescent Platform for Bioimaging and Biosensing Applications. Small 2024, 20, 2402641. [Google Scholar] [CrossRef]
- He, X.; Shao, B.; Huang, R.; Dong, M.; Tong, Y.; Luo, Y.; Meng, T.; Yang, F.; Zhang, Z.; Huang, J. A Mixed Protonic-Electronic Conductor Base on the Host-Guest Architecture of 2D Metal-Organic Layers and Inorganic Layers. Adv. Sci. 2023, 10, 2205944. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Wang, C.; Liu, X.; El-Seedi, H.; Gomez, P.; Alzamora, S.; Zou, X.; Guo, Z. Enhanced composite Co-MOF-derived sodium carboxymethyl cellulose visual films for real-time and in situ monitoring fresh-cut apple freshness. Food Hydrocoll. 2024, 157, 110475. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Zhang, W.; Li, Y.; Zhang, X.; Huang, X.; Shi, Y.; Zou, Y.; Li, Z.; Shi, J.; et al. Highly catalytic Ce-based MOF for powering electrochemical aptasensing toward evaluating dissolution rate of microelement copper from tea-leaves. J. Food Compos. Anal. 2025, 140, 107266. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, R.; Ke, L.; Li, J.; Jayan, H.; El-Seedi, H.; Zou, X.; Guo, Z. Development of multifunctional metal-organic frameworks (MOFs)-based nanofiller materials in food packaging: A comprehensive review. Trends Food Sci. Technol. 2024, 154, 104771. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, Y.; Sun, X.; Wei, X.; Lin, Z.; Zhang, X.; Shi, J.; Battino, M.; Gong, Y.; Shi, B.; et al. SERS determination of hydroxy-α-sanshool in spicy hotpot seasoning: The strategy to restrain the interference of capsaicin and its mechanism. Food Chem. 2023, 413, 135644. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Q.; Wu, Z.; Yang, Y. Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment. Acs Nano 2025, 19, 3037–3053. [Google Scholar] [CrossRef]
- Li, H.; Murugesan, A.; Shoaib, M.; Sheng, W.; Chen, Q. Functionalized metal-organic frameworks with biomolecules for sensing and detection applications of food contaminants. Crit. Rev. Food. Sci. Nutr. 2025, 65, 5218–5250. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Qiu, C.X.; Huang, P.C.; Wu, F.Y. An integrated ratiometric fluorescent probe based on the MOF-on-MOF heterostructure for sensitive detection of nerve agent simulant. Talanta 2025, 296, 128528. [Google Scholar] [CrossRef]
- Yue, L.; Tao, M.; Xu, L.; Wang, C.; Xu, Y.; Liu, Y.; Cao, X.; White, J.C.; Wang, Z. Size-dependent photocatalytic inactivation of Microcystis aeruginosa and degradation of microcystin by a copper metal organic framework. J. Hazard. Mater. 2024, 462, 132799. [Google Scholar] [CrossRef]
- Qin, Y.; Yu, H.; Chen, K.; Cui, R.; Cao, J.; Wang, Z.; Zhang, Z.; Soteyome, T. Effects of chitosan/eugenol-loaded IRMOF-3 nanoparticles composite films on reactive oxygen species metabolism and microbial community dynamics in postharvest strawberries. Food Biosci. 2025, 63, 105652. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Tang, Q.; Guo, Y.; Zhang, Z.; Zhang, W.; Zou, X.; Sun, Z. Molecularly imprinted electrochemical sensor for ethyl carbamate detection in Baijiu based on “on-off” nanozyme-catalyzing process. Food Chem. 2024, 453, 139626. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Li, Y.; Zhang, L.; Bi, N.; Gou, J.; Zhu, T.; Jia, L. A novel intelligently integrated MOF-based ratio fluorescence sensor for ultra-sensitive monitoring of TC in water and food samples. Food Chem. 2023, 405, 134899. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, Y.; Tang, Y.; Xu, W.; Chen, Y.; Su, R.; Fan, Y.; Jiang, W.; Wen, Y.; Gu, W.; et al. In Situ Defect Engineering of Fe-MIL for Self-Enhanced Peroxidase-Like Activity. Small 2024, 20, 2403354. [Google Scholar] [CrossRef]
- Meng, X.; Sun, S.; Gong, C.; Yang, J.; Yang, Z.; Zhang, X.; Dong, H. Ag-Doped Metal–Organic Frameworks’ Heterostructure for Sonodynamic Therapy of Deep-Seated Cancer and Bacterial Infection. Acs Nano 2023, 17, 1174–1186. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, T.; Guo, X.; Hou, M.; Yuan, Y.; Shi, S.; Wang, H.; Zhang, R.; Galiotis, C.; Wang, N. Porphyrinic Metal-Organic Framework Quantum Dots for Stable n-i-p Perovskite Solar Cells. Adv. Funct. Mater. 2023, 33, 2210028. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Sun, Q.; Li, H.; Shen, J.; Liu, H.; Chen, W.; Zhang, Y.; Chen, Y. Metalloporphyrin-Based Metal–Organic Frameworks for the Ultrasensitive Chemiresistive Detection of NO2: Effect of the Central Metal on Tuning the Sensing Performance. Acs Sens. 2023, 8, 4353–4363. [Google Scholar] [CrossRef] [PubMed]
- Merhi, N.; Hakeem, A.; Hmadeh, M.; Karam, P. Luminescence Nanothermometry: Investigating Thermal Memory in UiO-66-NH2 Nanocrystals. Acs Appl. Mater. Interfaces 2024, 16, 38702–38710. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Li, Y.; Li, Y.; Li, Z.; Zhang, W.; Zou, X.; Shi, J.; Huang, X.; Liu, C.; et al. Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem. 2021, 357, 129762. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ren, Y.; Zhou, G.; Feng, S.; Yang, Z.; Dai, S.; Lu, Z.; Zhou, T. Amide-Engineered Metal-Organic Porous Liquids Toward Enhanced CO2 Photoreduction Performance. Adv. Funct. Mater. 2024, 34, 2313695. [Google Scholar] [CrossRef]
- Liang, N.; Hu, X.; Zhang, X.; Li, W.; Guo, Z.; Huang, X.; Li, Z.; Zhang, R.; Shen, T.; Zou, X.; et al. Ratiometric Sensing for Ultratrace Tetracycline Using Electrochemically Active Metal–Organic Frameworks as Response Signals. J. Agric. Food Chem. 2023, 71, 7584–7592. [Google Scholar] [CrossRef]
- Marimuthu, M.; Arumugam, S.S.; Sabarinathan, D.; Li, H.; Chen, Q. Metal organic framework based fluorescence sensor for detection of antibiotics. Trends Food Sci. Technol. 2021, 116, 1002–1028. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Jayan, H.; Gao, S.; Zhou, R.; Yosri, N.; Zou, X.; Guo, Z. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem. 2024, 448, 139051. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, Z.; Solomon Adade, S.Y.; Yang, W.; Chen, Q. Detection of Maize Mold Based on a Nanocomposite Colorimetric Sensor Array under Different Substrates. J. Agric. Food Chem. 2024, 72, 11164–11173. [Google Scholar] [CrossRef]
- Wang, W.; Liang, J.; Wu, Y.; Li, W.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. Fish freshness monitoring based on bilayer cellulose acetate/polyvinylidene fluoride membranes containing ZIF-8 loaded curcumin. Food Chem. 2025, 463, 141054. [Google Scholar] [CrossRef]
- Wang, Y.; Shoaib, M.; Wang, J.; Lin, H.; Chen, Q.; Ouyang, Q. A novel ZIF-8 mediated nanocomposite colorimetric sensor array for rapid identification of matcha grades, validated by density functional theory. J. Food Compos. Anal. 2025, 137, 106864. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Zhai, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J. A simple and sensitive electrochemical sensing based on amine-functionalized metal-organic framework and polypyrrole composite for detection of lead ions in meat samples. J. Food Meas. Charact. 2024, 18, 5813–5825. [Google Scholar] [CrossRef]
- Wang, W.; Jayan, H.; Majeed, U.; Zou, X.; Hu, Q.; Guo, Z. Visual detection of Auramine O using dual-signal ratiometric fluorescent nanopaper sensor combined portable smartphone. Food Biosci. 2025, 65, 106135. [Google Scholar] [CrossRef]
- Li, H.; Sheng, W.; Adade, S.Y.S.; Nunekpeku, X.; Chen, Q. Investigation of heat-induced pork batter quality detection and change mechanisms using Raman spectroscopy coupled with deep learning algorithms. Food Chem. 2024, 461, 140798. [Google Scholar] [CrossRef]
- Sapchenko, S.; Belosludov, R.; Vitoria-Irezabal, I.; Da Silva, I.; Chen, X.; Whitehead, G.; Maddock, J.; Natrajan, L.; Kippax-Jones, M.; Jayasinghe, D.; et al. Direct synthesis of a semiconductive double-helical phosphorus allotrope in a metal-organic framework. Nat. Commun. 2025, 16, 1578. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Liang, Q.; Abdul, Q.; Rashid, A.; Ren, X.; Ma, H. Preparation technology and preservation mechanism of γ-CD-MOFs biaological packaging film loaded with curcumin. Food Chem. 2023, 420, 136142. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, F.; Lin, J.; Yang, W.; Kang, W.; Jiang, H.; Adade, S.Y.S.; Cai, J.; Xue, Z.; Chen, Q. Detection of wheat toxigenic Aspergillus flavus based on nano-composite colorimetric sensing technology. Food Chem. 2023, 405, 134803. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.; O’Keeffe, M.; Yaghi, O. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Li, X.; Chen, D.; Wang, Z.; Cai, X.; Chen, D.; Li, Y.; Liu, K.; Cao, Y.; Su, S. Evaporation- and Solution-Process-Feasible Highly Efficient Thianthrene-9,9′, 10,10′-Tetraoxide-Based Thermally Activated Delayed Fluorescence Emitters with Reduced Efficiency Roll-Off. Adv. Mater. 2016, 28, 181–187. [Google Scholar] [CrossRef]
- Shi, L.; Zhong, Y.; Cao, H.; Wang, H.; Xiong, Z.; Wang, K.; Shen, H.; Chen, Z. A hetero-supermolecular-building-block strategy for the assembly of porous (3,12,24)-connected uru metal-organic frameworks. Nat. Synth. 2024, 3, 1560–1566. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, Y.; Zhang, X.; Chen, L.; Dong, Z.; Jiang, H.; Xu, H.; Zhou, H. Controlled Intercalation and Chemical Exfoliation of Layered Metal–Organic Frameworks Using a Chemically Labile Intercalating Agent. J. Am. Chem. Soc. 2017, 139, 9136–9139. [Google Scholar] [CrossRef]
- Lu, W.; Dai, X.; Yang, R.; Liu, Z.; Chen, H.; Zhang, Y.; Zhang, X. Fenton-like catalytic MOFs driving electrochemical aptasensing toward tracking lead pollution in pomegranate fruit. Food Control 2025, 169, 111006. [Google Scholar] [CrossRef]
- Xu, S.; Shao, D.; Wang, J.; Zheng, X.; Yang, Z.; Wang, A.; Chen, Z.; Gao, Y. Pre-ligand-induced porous MOF as a peroxidase mimic for electrochemical analysis of deoxynivalenol (DON). Food Chem. 2025, 480, 143860. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Huang, X.; Hu, X.; Huang, X.; Yin, L.; Huang, Q.; Wen, Y.; Li, B.; Shi, J.; et al. Switchable aptamer-fueled colorimetric sensing toward agricultural fipronil exposure sensitized with affiliative metal-organic framework. Food Chem. 2023, 407, 135115. [Google Scholar] [CrossRef]
- Kong, L.; Yu, C.; Chen, Y.; Zhu, Z.; Jiang, L. Rational MOF Membrane Design for Gas Detection in Complex Environments. Small 2024, 20, 2407021. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, R.; Chen, H.; Zhang, X. Recent Advances in Food Safety: Nanostructure-Sensitized Surface-Enhanced Raman Sensing. Foods 2025, 14, 1115. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.D.; Tuo, A.; Chen, S.F.; Zhang, Q.F.; Zhang, X.; Xiong, K.C.; Gai, Y.L. A stable viologen-based metal-organic framework for fluorescence detection of nitroaromatics and nitrofuran antibiotics in water. Cryst. Growth Des. 2025, 25, 494–501. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Chen, Q.; Ouyang, Q. Multifunctional Metal-Organic Frameworks Driven Three-Dimensional Folded Paper-Based Microfluidic Analysis Device for Chlorpyrifos Detection. J. Agric. Food Chem. 2024, 72, 14375–14385. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, Y.; Liu, H.; Sun, B. A Ratiometric Molecularly Imprinted Sensor for Visual Detection and Removal of α-Dicarbonyl Compounds Based on Biomass Carbon Dot-Embedded Fluorescent Covalent Organic Frameworks. Acs Sens. 2024, 9, 3338–3345. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lin, H.; Wang, F.; Adade, S.Y.S.; Peng, T.; Chen, Q. Discrimination of toxigenic and non-toxigenic Aspergillus flavus in wheat based on nanocomposite colorimetric sensor array. Food Chem. 2024, 430, 137048. [Google Scholar] [CrossRef] [PubMed]
- Derichsweiler, C.; Herbertz, S.; Kruss, S. Optical Bionanosensors for Sepsis Diagnostics. Small 2025, 21, 2409042. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, H.; Wu, Y.; Luo, S.; Hong, Q.; Zhang, X.; Zou, X.; Sun, Z. Conductive MoS2-Au nanocomposite-based electrochemical biosensor for CRISPR/Cas12a-driven Staphylococcus aureus detection. Sens. Actuators B 2025, 442, 138078. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Guo, W.; Zhang, X.; Wang, L.; Zhang, W.; Zou, X.; Sun, Z. Advanced Electrochemical Biosensing toward Staphylococcus aureus Based on the RPA-CRISPR/Cas12a System and Conductive Nanocomposite. J. Agric. Food Chem. 2024, 72, 22918–22925. [Google Scholar] [CrossRef]
- Guo, A.; Wu, Y.; Xie, Y.; Guo, W.; Guo, Y.; Zhang, X.; Zhang, W.; Zou, X.; Sun, Z. CRISPR-based fluorescent aptasensor combined with smartphone for on-site visual detection of DEHP in packaged foods. Spectrochim. Acta Part A 2026, 344, 126649. [Google Scholar] [CrossRef]
- Sun, Z.; Li, C.; Wu, Z.; Jiang, X.; Zhao, F.; Guo, W.; Guo, Y.; Yu, Q.; Zou, X.; Yang, N. High-Precision Microfluidic Impedance Sensing for Pretreatment and Detection of Multiple Mycotoxins. Anal. Chem. 2025, 97, 10646–10654. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Zheng, Z.; Haruna, S.A.; Chen, Q. Flexible SERS sensor using AuNTs-assembled PDMS film coupled chemometric algorithms for rapid detection of chloramphenicol in food. Food Chem. 2023, 418, 135998. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.V.; Rhim, J.W. Amine-functionalized sulfur quantum dots (NH2-SQDs) for detection of tetracycline in food samples. Mater. Res. Bull. 2025, 190, 113506. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Huang, X.; Zhai, X.; Li, Z.; Shi, J.; Sobhy, R.; Khalifa, I.; Zou, X. Lemon-derived carbon quantum dots incorporated guar gum/sodium alginate films with enhanced the preservability for blanched asparagus active packaging. Food Res. Int. 2025, 202, 115736. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, M.; Xu, K.; Song, W.; Chen, Q.; Wen, H. Safeguarding food safety: Nanomaterials-based fluorescent sensors for pesticide tracing. Food Chem. 2025, 463, 141288. [Google Scholar] [CrossRef]
- Guo, W.; Guo, Y.; Xu, H.; Li, C.; Zhang, X.; Zou, X.; Sun, Z. Ultrasensitive “On–Off” Ratiometric Fluorescence Biosensor Based on RPA-CRISPR/Cas12a for Detection of Staphylococcus aureus. J. Agric. Food Chem. 2025, 73, 2167–2173. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Z.; Dong, Y.; Yu, D.; Jiang, F.; Han, Y.; Chen, Y. Magnetic Fe3O4@MOF@aptamer-mediated entropy-driven fluorescence biosensor for multiplexed and DNA extraction- and amplification-free detection of pathogenic bacteria. Chem. Eng. J. 2024, 499, 155978. [Google Scholar] [CrossRef]
- Li, R.; Yan, J.; Feng, B.; Sun, M.; Ding, C.; Shen, H.; Zhu, J.; Yu, S. Ultrasensitive Detection of Multidrug-Resistant Bacteria Based on Boric Acid-Functionalized Fluorescent MOF@COF. Acs Appl. Mater. Interfaces 2023, 15, 18663–18671. [Google Scholar] [CrossRef]
- Kabak, B.; Kendüzler, E. Europium metal-organic frameworks: Synthesis, characterization, and application as fluorescence sensors for the detection of Cu2+, Ni2+ cations and T3, T4 hormones. Talanta 2024, 266, 124944. [Google Scholar] [CrossRef]
- Lv, S.; Liu, J.; Li, C.; Zhao, N.; Wang, Z.; Wang, S. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chem. Eng. J. 2019, 375, 122111. [Google Scholar] [CrossRef]
- Yan, D.; Yuan, F.; Chen, Z.; Zhang, J.; Song, S. Eu-doped carbon dots-MOF based turn-on fluorescent probe for trace Hg2+ and Pb2+ and construction of the simultaneous detection model. Chem. Eng. J. 2024, 499, 156102. [Google Scholar] [CrossRef]
- Jain, S.; Dilbaghi, N.; Kumar Singhal, N.; Kaushik, A.; Kim, K.; Kumar, S. Carbon quantum dots@metal–organic framework based catalytic nucleic acid fluorescent system for highly sensitive and selective detection of Pb2+ in aqueous solutions. Chem. Eng. J. 2023, 457, 141375. [Google Scholar] [CrossRef]
- Yuan, L.; Gan, Z.; Fan, Y.; Ding, F.; Xu, X.; Chen, X.; Zou, X.; Zhang, W. Thermal-controlled active sensor module using enzyme-regulated UiO-66-NH2/MnO2 fluorescence probe for total organophosphorus pesticide determination. J. Hazard. Mater. 2022, 436, 129111. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, H.; Zhou, W.; Qiu, Z.; Chen, C.; Qileng, A.; Li, K.; Liu, Y. Capsulation of AuNCs with AIE Effect into Metal–Organic Framework for the Marriage of a Fluorescence and Colorimetric Biosensor to Detect Organophosphorus Pesticides. Anal. Chem. 2021, 93, 7275–7282. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, B.; Pan, J.; Xu, L.; Liu, J.; Hu, P.; Du, D.; Lin, Y.; Niu, X. Redox interference-free bimodal paraoxon sensing enabled by an aggregation-induced emission nanozyme catalytically hydrolyzing phosphoesters specifically. Biosens. Bioelectron. 2025, 267, 116756. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiong, W.H.; Ye, L.Y.; Zhang, W.S.; Yang, H. Developing a Novel Nanoscale Porphyrinic Metal–Organic Framework: A Bifunctional Platform with Sensitive Fluorescent Detection and Elimination of Nitenpyram in Agricultural Environment. J. Agric. Food Chem. 2020, 68, 5572–5578. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Zhang, J.; Fan, R.; Zhu, K.; Gai, S.; Tao, H.; Ji, C.; Nai, H.; Yang, Y. A Pitaya-Inspired Modular Cylindrical MOF-Based Capsule Design for Pesticide Signal Probes. Acs Appl. Mater. Interfaces 2023, 15, 11163–11174. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wen, M.; Zhang, Y.; Guo, Z.; Bai, X.; Song, J.; Liu, P.; Wang, Y.; Li, J. Multiple fluorescence response behaviors towards antibiotics and bacteria based on a highly stable Cd-MOF. J. Hazard. Mater. 2022, 423, 127132. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhang, X.; Xu, J.; Zhou, L.; Zhou, Q.; Zhai, H. A highly sensitive luminescent aptasensor utilizing MOF-74-co encapsulation of luminol in a ‘turn-on’ mode for streptomycin detection. Food Chem. 2024, 458, 140306. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Shi, W.; Zhang, B.; Hou, L.; Wang, Y. A robust cluster-based Eu-MOF as multi-functional fluorescence sensor for detection of antibiotics and pesticides in water. Sens. Actuators B 2021, 331, 129377. [Google Scholar] [CrossRef]
- Liang, N.; Shi, B.; Hu, X.; Shi, Y.; Wang, T.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. Simultaneous adsorption and fluorescent sensing of ampicillin based on a trimetallic metal-organic framework. Food Chem. 2025, 472, 142891. [Google Scholar] [CrossRef]
- Gan, Z.; Hu, X.; Xu, X.; Zhang, W.; Zou, X.; Shi, J.; Zheng, K.; Arslan, M. A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples. Food Chem. 2021, 354, 129501. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, Q.; Yuan, L.; Li, Z.; Zhang, L.; Zhang, J.; Yan, S.; Xu, X.; Ying, Y.; Fu, Y. Microwave-Enabled Fast Preparation of a Metal–Organic Framework Hybrid Membrane for Filtration-Enhanced Simultaneous Separation and Detection of Aflatoxin B1. Acs Appl. Mater. Interfaces 2024, 16, 25333–25342. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, Y.; Du, G.; Guo, Q.; Chen, H.; He, Q.; Zhao, Q.; Ye, H.; Wang, J.; Yuan, Y.; et al. Magnetic capture of sulfur quantum dots encapsulated in MOF-5-NH2 via a target-driven self-cycling catalyzed hairpin assembly for the sensitive detection of patulin. Chem. Eng. J. 2022, 433, 133624. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Zhong, J.; Zhong, L.; Mai, Z.; Sun, D.; Zhai, H. A novel fluorescence sensor for sensitive detection of zearalenone using a polyvinylpyrrolidone-modified Zr (IV)-based metal-organic framework. Sens. Actuators B 2023, 395, 134516. [Google Scholar] [CrossRef]
- Yan, X.; Du, G.; Chen, H.; Zhao, Q.; Guo, Q.; Wang, J.; Wang, Z.; Song, W.; Sheng, Q.; Luo, Y.; et al. Label-free fluorescence aptasensor for the detection of patulin using target-induced DNA gates and TCPP/BDC-NH2 mixed ligands functionalized Zr-MOF systems. Biosens. Bioelectron. 2022, 217, 114723. [Google Scholar] [CrossRef]
- Sun, B.; Panferov, V.; Guo, X.; Xiong, J.; Zhang, S.; Qin, L.; Yin, C.; Wang, X.; Liu, C.; Han, K.; et al. A novel triple-signal biosensor based on ZrFe-MOF@PtNPs for ultrasensitive aflatoxins detection. Biosens. Bioelectron. 2025, 267, 116797. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.A.N.; Adade, S.Y.S.; Ekumah, J.; Kwadzokpui, B.A.; Yi, X.; Chen, Q. Advances in mechanisms, designs, and applications of colorimetric sensor arrays for food quality control and authenticity verification. Trends Food Sci. Technol. 2025, 160, 104999. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Zeng, H.; Zhu, X.W.; Lu, W.G.; Li, D. Metal-organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications. Chem. Soc. Rev. 2021, 50, 4484–4513. [Google Scholar] [CrossRef] [PubMed]
- Du, L.P.; Chen, W.; Zhu, P.; Tian, Y.L.; Chen, Y.T.; Wu, C.S. Applications of functional metal-organic frameworks in biosensors. Biotechnol. J. 2020, 16, 1900424. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, D.; Lu, Y.; Sun, W.Y. Photoluminescent metal–organic frameworks and their application for sensing biomolecules. J. Mater. Chem. A 2019, 7, 22744–22767. [Google Scholar] [CrossRef]
- Yuan, S.; Feng, L.; Wang, K.C.; Pang, J.D.; Bosch, M.; Lollar, C.; Sun, Y.J.; Qin, J.S.; Yang, X.Y.; Zhang, P.; et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303. [Google Scholar] [CrossRef]
- Ding, M.L.; Jiang, H.L. Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization. CCS Chem. 2022, 3, 2740–2748. [Google Scholar] [CrossRef]
- Song, D.; Bae, J.; Ji, H.; Kim, M.B.; Bae, Y.S.; Park, K.S.; Moon, D.; Jeong, N.C. Coordinative reduction of metal nodes enhances the hydrolytic stability of a paddlewheel metal-organic framework. J. Am. Chem. Soc. 2019, 141, 7853–7864. [Google Scholar] [CrossRef] [PubMed]
- DeCoste, J.B.; Peterson, G.W.; Jasuja, H.; Glover, T.G.; Huang, Y.G.; Walton, K.S. Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A 2013, 1, 5642–5650. [Google Scholar] [CrossRef]
- Feng, D.W.; Gu, Z.Y.; Li, J.R.; Jiang, H.L.; Wei, Z.W.; Zhou, H.C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomi-metic catalysts. Angew. Chem. Int. Ed. 2012, 51, 10307–10310. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Cote, A.P.; Choi, J.Y.; Huang, R.D.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
- Mottillo, C.; Friscic, T. Carbon dioxide sensitivity of zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 2014, 53, 7471–7474. [Google Scholar] [CrossRef]
- Feng, D.W.; Chung, W.C.; Wei, Z.W.; Gu, Z.Y.; Jiang, H.L.; Chen, Y.P.; Darensbourg, D.J.; Zhou, H.C. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 2013, 135, 17105–17110. [Google Scholar] [CrossRef]
- Mateo, D.; Santiago-Portillo, A.; Albero, J.; Navalón, S.; Alvaro, M.; García, H. Long-term photostability in terephthalate metal-organic frameworks. Angew. Chem. Int. Ed. 2019, 58, 17843–17848. [Google Scholar] [CrossRef]
- Li, L.J.; Liao, P.Q.; He, C.T.; Wei, Y.S.; Zhou, H.L.; Lin, J.M.; Li, X.Y.; Zhang, J.P. Grafting alkylamine in UiO-66 by charge-assisted coordination bonds for carbon dioxide capture from high-humidity flue gas. J. Mater. Chem. A 2015, 3, 21849–21855. [Google Scholar] [CrossRef]
- Chiericatti, C.; Basilico, J.C.; Basilico, M.L.Z.; Zamaro, J.M. Novel application of HKUST-1 metal-organic framework as antifungal: Biological tests and physicochemical characterizations. Microporous Mesoporous Mater. 2012, 162, 60–63. [Google Scholar] [CrossRef]
- Zheng, W.R.; Liu, M.J.; Lee, L.Y.S. Electrochemical instability of metal-organic frameworks: In situ spectroelectrochemical investigation of the real active sites. ACS Catal. 2020, 1, 81. [Google Scholar] [CrossRef]
- Wang, H.S.; Wang, J.L.; Zhao, J.; Zhang, H.; Liu, L.M.; Sun, X.Y.; Li, G.B.; Liang, H. Interaction between MIL-101(Cr) and natural organic matter in an integrated MOF-UF system. Sep. Purif. Technol. 2023, 314, 123476. [Google Scholar] [CrossRef]
- Kim, S.; Muñoz-Senmache, J.C.; Jun, B.M.; Park, C.M.; Jang, A.; Yu, M.; Hernández-Maldonado, A.J.; Yoon, Y. A metal organic framework-ultrafiltration hybrid system for removing selected pharmaceuticals and natural organic matter. Chem. Eng. J. 2020, 382, 122920. [Google Scholar] [CrossRef]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water stability and adsorption in metalorganic frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef] [PubMed]
- Devic, T.; Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 2014, 43, 6097–6115. [Google Scholar] [CrossRef]
- Kirchon, A.; Feng, L.; Drake, H.F.; Joseph, E.A.; Zhou, H.C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638. [Google Scholar] [CrossRef]
- Liu, T.F.; Feng, D.W.; Chen, Y.P.; Zou, L.F.; Bosch, M.; Yuan, S.; Wei, Z.W.; Fordham, S.; Wang, K.C.; Zhou, H.C. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frame-works with high surface area. J. Am. Chem. Soc. 2015, 137, 413–419. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Lv, X.L.; Feng, D.W.; Li, J.; Chen, S.M.; Sun, J.L.; Song, L.; Xie, Y.B.; Li, J.R.; Zhou, H.C. Pyrazolate-based porphyrinic metal-organic framework with extraordinary base-resistance. J. Am. Chem. Soc. 2016, 138, 914–919. [Google Scholar] [CrossRef]
- Cheng, C.; Guo, X.L.; Feng, Y.; Yu, J.; Huang, S.; Zhang, L.X.; Wu, Y.; Shao, L.N.; Xu, X.H.; Feng, L.L. Enhanced activity of enzymes encapsulated in spheres metal azolate framework-7 with defects. Int. J. Biol. Macromol. 2024, 283, 137689. [Google Scholar] [CrossRef] [PubMed]
- Ryu, U.; Jee, S.; Rao, P.C.; Shin, J.; Ko, C.; Yoon, M.; Park, K.S.; Choi, K.M. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord. Chem. Rev. 2020, 426, 213544. [Google Scholar] [CrossRef] [PubMed]
- Farzin, M.A.; Naghib, S.M.; Rabiee, N. Emerging metal-organic framework (MOF)-based biosensors with high potential for point-of-care determination of biomarkers: Mechanisms and applications. TrAC Trends Anal. Chem. 2025, 191, 118345. [Google Scholar] [CrossRef]
- Bi, X.; Li, L.; Liu, X.; Luo, L.; Cheng, Z.; Sun, J.; Cai, Z.; Liu, J.; You, T. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. Food Chem. 2021, 349, 129171. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Hu, X.; Zhang, X.; Huang, X.; Li, Z.; Li, M.; Zou, X.; Shi, J. Efficient preparation of dual-emission ratiometric fluorescence sensor system based on aptamer-composite and detection of bis (2-ethylhexyl) phthalate in pork. Food Chem. 2021, 352, 129352. [Google Scholar] [CrossRef]
- Wu, W.; Ahmad, W.; Hassan, M.; Wu, J.; Ouyang, Q.; Chen, Q. An upconversion biosensor based on inner filter effect for dual-role recognition of sulfadimethoxine in aquatic samples. Food Chem. 2024, 437, 137832. [Google Scholar] [CrossRef]
- Gan, Z.; Zhang, W.; Arslan, M.; Hu, X.; Zhang, X.; Li, Z.; Shi, J.; Zou, X. Ratiometric Fluorescent Metal-Organic Framework Biosensor for Ultrasensitive Detection of Acrylamide. J. Agric. Food Chem. 2022, 70, 10065–10074. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, S.; Sun, L.; Kong, D.; Sheng, J.; Wang, K.; Dong, C. A Green, Simple, and Rapid Detection for Amaranth in Candy Samples Based on the Fluorescence Quenching of Nitrogen-Doped Graphene Quantum Dots. Food Anal. Methods 2019, 12, 1658–1665. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, D.; Tan, W.; Shi, J.; Li, Z.; Liu, H.; Yu, Y.; Yang, L.; Wang, X.; et al. A fluorescence resonance energy transfer probe based on functionalized graphene oxide and upconversion nanoparticles for sensitive and rapid detection of zearalenone. Lwt-Food Sci. Technol. 2021, 147, 111541. [Google Scholar] [CrossRef]
- Fan, J.; Li, J.; Liu, C.; Lu, M.; Jia, X.; Zhao, W.; Yu, A.; Zhang, S. Michael and Schiff-Base Reactions-Assisted Fluorescence Sensor Based on the MOF Nanosheet Microspheres for the Effective Discrimination and Detection of Hydroquinone and Catechol. Anal. Chem. 2025, 97, 1925–1932. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, W.; Cao, J.; Wu, Y. On-site, rapid and visual determination of Hg2+ and Cu2+ in red wine by ratiometric fluorescence sensor of metal-organic frameworks and CdTe QDs. Food Chem. 2020, 328, 127119. [Google Scholar] [CrossRef]
- He, Y.; Zou, H.; Zhou, S.; Liu, D.; Jiang, X.; Zhang, Z.; Li, S. Smartphone-assisted fluorescent sensor for the visualization and quantitative detection of doxycycline and L-arginine. Food Chem. 2024, 459, 140365. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Wei, W.; Zhang, X.; Zeng, L.; Jiang, T.; Li, J.; Chen, S.; Gao, Z. A review of fluorescent covalent organic frameworks for heavy metal ion sensors. Chem. Eng. J. 2025, 505, 159249. [Google Scholar] [CrossRef]
- Deng, T.; He, H.; Chen, H.; Peng, X.; Li, H.; Yan, X.; Lei, Y.; Luo, L. Dual-ligand lanthanide metal-organic framework based ratiometric fluorescent platform for visual monitoring of aminoglycoside residues in food samples. Talanta 2024, 276, 126200. [Google Scholar] [CrossRef]
- Miao, Y.; Ren, H.; Zhong, Q.; Song, F. Tailoring a luminescent metal−organic framework precise inclusion of Pt-Aptamer nanoparticle for noninvasive monitoring Parkinson’s disease. Chem. Eng. J. 2022, 441, 136009. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, G.; Chai, H.; Qu, L.; Shan, D.; Zhang, X. Two-stage ligand exchange in Mn (III)-based porphyrinic metal−organic frameworks for fluorescence water sensing. Sens. Actuators B 2022, 362, 131808. [Google Scholar] [CrossRef]
- Chen, W.; Shao, J.; Wang, F. A ratiometric fluorescent probe quickly responding for Pb2+ with the biggest red-shift stokes based on a new bimetallic MOF. Microchem. J. 2025, 208, 112333. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, X.; Liu, C.; Liu, Y.; Tian, N.; Wu, F.; Li, W.; Lei, J.; Dai, Z. Lanthanide-bimetallic organic frameworks: From mechanism and sensors design to ratiometric fluorescent applications. Coord. Chem. Rev. 2025, 534, 216574. [Google Scholar] [CrossRef]
- Zhang, W.; You, S.; Sun, J.; Lv, Y.; Wang, X.; Li, X.; Su, Z. Multi-emission fluorescent array sensors based on metal-organic frameworks: Recent research progress in synthesis strategies and applications. Coord. Chem. Rev. 2025, 542, 216894. [Google Scholar] [CrossRef]
- Lu, Z.; Li, M.; Chen, M.; Wang, Q.; Wu, C.; Sun, M.; Su, G.; Wang, X.; Wang, Y.; Zhou, X.; et al. Deep learning-assisted smartphone-based portable and visual ratiometric fluorescence device integrated intelligent gel label for agro-food freshness detection. Food Chem. 2023, 413, 135640. [Google Scholar] [CrossRef]
- Kong, X.; Tian, J.; Fang, Y.; Chen, T.; Yu, R.; He, J.; Zhang, Z.; Xiao, Q. Terbium metal-organic framework/bovine serum albumin capped gold nanoclusters-based dual-emission reverse change ratio fluorescence nanoplatform for fluorimetric and colorimetric sensing of heparin and chondroitin sulfate. Sens. Actuators B 2022, 356, 131331. [Google Scholar] [CrossRef]
- Chen, B.; Mo, X.; Qu, X.; Xu, Z.; Zheng, S.; Fu, H. Multiple-Emitting Luminescent Metal–Organic Framework as an Array-on-a-MOF for Rapid Screening and Discrimination of Nitroaromatics. Anal. Chem. 2024, 96, 6228–6235. [Google Scholar] [CrossRef]
- Wang, N.; Xie, M.; Wang, M.; Li, Z.; Su, X. UiO-66-NH2 MOF-based ratiometric fluorescent probe for the detection of dopamine and reduced glutathione. Talanta 2020, 220, 121352. [Google Scholar] [CrossRef]
- Xu, X.; Luo, Z.; Ye, K.; Zou, X.; Niu, X.; Pan, J. One-pot construction of acid phosphatase and hemin loaded multifunctional metal–organic framework nanosheets for ratiometric fluorescent arsenate sensing. J. Hazard. Mater. 2021, 412, 124407. [Google Scholar] [CrossRef]
- Li, H.; Jiang, C.; Jiang, W.; Zhang, Y.; Liang, X.; Feng, Y.; Liu, Y. Visual and rapid detection of glyphosate in tea using a MOF-driven fluorescent paper sensor. Biosens. Bioelectron. 2025, 289, 117919. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yu, L.; Yuan, Z.; He, H.; Wu, K.; Wen, Z.; Liu, Z.; Chen, J.; Hao, X.; Sun, J.; et al. Photoinduced electron transfer-driven dual-ligand MOF fluorescence sensor for highly selective and sensitive detection of periodate in complex water samples. Sens. Actuators B 2025, 444, 138416. [Google Scholar] [CrossRef]
- Ma, T.; Huang, Q.; Yuan, L.; Yan, S.; Mo, Y.; Ying, Y.; Fu, Y.; Pan, J. Tailored Fluorescent Metal-Organic Frameworks Hybrid Membrane Sensor Arrays: Simultaneous and Selective Quantification of Multiple Antibiotics. Adv. Sci. 2025, 12, 2502452. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Deep, A.; Puri, S.; Khatri, M.; Bhardwaj, N. UiO-66-NH2 MOF-based fluorescent aptasensor for detection of zearalenone in cereals. Food Control 2024, 163, 110497. [Google Scholar] [CrossRef]
- Wang, X.; Gao, D.; Liu, X.; He, X.; Ma, J.; Cheng, P. Dual-mode Ce-MOF-based sensors for the fluorescent/electrochemical detection of 4-nitrophenol. J. Mater. Chem. A 2025, 13, 17679–17688. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, X.; Li, W.; Liang, N.; Hu, X.; Xiao, J.; Wang, D.; Zou, X.; Shi, J. An intrinsic dual-emitting fluorescence sensing toward tetracycline with self-calibration model based on luminescent lanthanide-functionalized metal-organic frameworks. Food Chem. 2023, 400, 133995. [Google Scholar] [CrossRef]
- Ma, J.; Lu, X.; Liu, S.; Shi, Y.; Cui, L.; Wang, Z.; Wang, H.; Wang, Z. Fabrication of fluorescence sensor array for discrimination subtypes of aminoglycosides leveraging MOF-based inhibition reactions and thiol-response metal nanoclusters. Biosens. Bioelectron. 2025, 287, 117652. [Google Scholar] [CrossRef]
- Li, F.; Zhou, J.; Li, K.; Wang, M.; Yang, M.; Gong, P.; Li, L. Ln-MOF based magnetic composite nanosensor for sensitive dual-mode fluorescence/colorimetric detection of fluoroquinolones. Food Chem. 2025, 495, 146313. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Li, Q.; Xiong, C.; Miao, C.; Zhu, B.; Zhang, S. Dual-centered MOF-on-MOF sensor assisted by molecularly imprinted polymer for rapid and sensitive detection of aflatoxin B1 with dual selectivity mechanism. Biosens. Bioelectron. 2025, 290, 117933. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, X.; Zhang, Y.; Wu, Z.; Luan, G.; Bao, L.; Ji, Y.; Cui, M.; Li, C. A MOF-on-MOF heterostructure ratiometric/colorimetric dual-mode fluorescence sensor based on support vector machine for detecting tetracyclines in animal-derived foods. Food Chem. 2024, 460, 140690. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, X.; Yu, J.; Xue, Z.; Chai, J.; Liu, X.; Wu, M. Tale of COF-on-MOF Composites with Structural Regulation and Stepwise Luminescence Enhancement. Acs Appl. Mater. Interfaces 2022, 14, 45669–45678. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, X.; Ji, Y.; Wang, F.; Shi, Y.; Zhao, X.; Liu, J.; Yang, Y.; Zhao, Z. Amino-functionalized Al-MOF modulated TpTt-COF with dual-emission for fluorescent and optosmart detecting tetracycline in food samples. Food Chem. 2023, 425, 136476. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.; Guo, H.; Wang, M.; Peng, L.; Ren, B.; Ma, Y.; Yang, W. Deep machine learning-assisted MOF@COF fluorescence/colorimetric dual-mode intelligent ratiometric sensing platform for sensitive glutathione detection. Talanta 2025, 292, 127990. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Pei, F.; Wu, Y.; Lv, J.; Hao, Q.; Yang, T.; Tong, Z.; Lei, W. A ratiometric fluorescent sensor based on g-CNQDs@Zn-MOF for the sensitive detection of riboflavin via FRET. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 119004. [Google Scholar] [CrossRef]
- Sun, Y.; Bai, X.; Luo, A.; Sun, Y.; Deng, Z.; Sun, W.; Han, W. Ratiometric fluorescent sensor CQDx@Co/Mn-MOF for rapid and sensitive detection of quinolone antibiotics. Talanta 2025, 293, 128034. [Google Scholar] [CrossRef]
- Peng, L.; Guo, H.; Ren, B.; Hui, Y.; Zhuang, D.; Liu, Y.; Yan, R.; Niu, W.; Yang, W. A novel dual-function fluorescence sensor Eu/CDs@MOF-808 for the sensitive detection of adenosine triphosphate and uric acid. Chem. Eng. J. 2024, 500, 156811. [Google Scholar] [CrossRef]
- Yang, X.; Fu, S.; Li, Q.; Jiao, Z.; Zhao, J.; Guo, Y.; Zhang, Z.; Gao, S.; Cheng, L. Superior triethylamine sensing platform based on MOF activated by carbon dots for photoelectric dual-mode in biphasic system. Chem. Eng. J. 2023, 465, 142869. [Google Scholar] [CrossRef]
- Akimana, S.; Xia, Y.; Dou, Z.; Wei, X.; Cui, S.; Yuan, H.; Cai, Z.; Zheng, M.; Chen, J.; Bao, G. A high-specificity, ultra-sensitivity ratiometric fluorescence sensor based on dye@MOF for smartphone-assisted quantification of tobramycin in milk and wastewater. Sens. Actuators B 2025, 444, 138502. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Pang, M.; Li, Y.; Ruan, W. Fluorescent sensor array for tetracyclines discrimination using a single Dye@MOF composite sensor. Sens. Actuators B 2023, 381, 133375. [Google Scholar] [CrossRef]
- Kanwal, T.; Rasheed, S.; Hassan, M.; Fatima, B.; Xiao, H.; Musharraf, S.G.; Najam-Ul-Haq, M.; Hussain, D. Smartphone-Assisted EY@MOF-5-Based Dual-Emission Fluorescent Sensor for Rapid On-Site Detection of Daclatasvir and Nitenpyram. Acs Appl. Mater. Interfaces 2024, 16, 1688–1704. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Xu, J.; Li, M.; Liu, X.; Yang, L.; Wang, D. Dual-mode fluorescent/electrochemical sensors based on Eu-MOF@carbon fiber for Al3+ and pH detection. Chem. Eng. J. 2025, 522, 167676. [Google Scholar] [CrossRef]
- Ji, Y.; Xue, L.; Luan, G.; Li, C. One-pot synthesized multifunctional Zn-MOF/HOF heterostructure sensor array assisted by machine learning for efficient capture, target discrimination and optosmart sensing of doxycycline analogs. J. Hazard. Mater. 2025, 494, 138512. [Google Scholar] [CrossRef]
- Li, B.; Liao, X.; Wang, L.; Chen, Y. Molecularly imprinted polymer coated Eu-BCA MOF for highly selective detection of Zearalenone in corn oil. Food Chem. 2025, 489, 144872. [Google Scholar] [CrossRef] [PubMed]
- Ashrafzadeh Afshar, E.; Taher, M.A.; Karimi-Maleh, H.; Karaman, C.; Joo, S.; Vasseghian, Y. Magnetic nanoparticles based on cerium MOF supported on the MWCNT as a fluorescence quenching sensor for determination of 6-mercaptopurine. Environ. Pollut. 2022, 305, 119230. [Google Scholar] [CrossRef]
- Hui, Y.; Wei, Y.; Guo, H.; Wang, M.; Peng, L.; Ren, B.; Ma, Y.; Yang, W. An artificial neural network model based on CDs@MOF/COF composites for the ultra-sensitive fluorescence detection of glyphosate. Food Chem. 2025, 492, 145361. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, R.; Tang, J.; Liu, M.; Zhang, B.; Chen, J.; Ren, S.; Ma, Q.; Sun, Z.; Weng, H. MOF-enabled magnetic-fluorescent sensors for on-site organophosphorus/carbamate pesticide detection in fruits and vegetables. Food Chem. 2025, 493, 145935. [Google Scholar] [CrossRef]
- Cao, Q.; Xiao, Y.; Liu, N.; Huang, R.; Ye, C.; Huang, C.; Liu, H.; Han, G.; Wu, L. Synthesis of Yolk/Shell heterostructures MOF@MOF as biomimetic sensing platform for catechol detection. Sens. Actuators B 2021, 329, 129133. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, N.; Lv, Y.; Zhou, C.; Liang, Q.; Su, X. Construction of the fluorescence sensing platform with a bifunctional Cu@MOF nanozyme for determination of alkaline phosphatase and its inhibitor. Talanta 2024, 278, 126564. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Liu, H.; Zhan, M.; Chen, J.; Liu, Z.; Chen, H. Simultaneous Detection and Decontamination of Dichromate Ions: The Fluorescence Response and Photocatalysis of Thiadiazole-Modified Zr-Metal–Organic Frameworks. J. Agric. Food Chem. 2023, 71, 20575–20584. [Google Scholar] [CrossRef] [PubMed]
- Dalapati, R.; Hunter, M.; Sk, M.; Yang, X.; Zang, L. Fluorescence Turn-on Detection of Perfluorooctanoic Acid (PFOA) by Perylene Diimide-Based Metal–Organic Framework. Acs Appl. Mater. Interfaces 2024, 16, 32344–32356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, Q.; Liu, X.; Niu, H.; Luo, L.; Li, R.; Feng, X. A turn-off Eu-MOF@Fe2+ sensor for the selective and sensitive fluorescence detection of bromate in wheat flour. Food Chem. 2022, 382, 132379. [Google Scholar] [CrossRef]
- Liang, N.; Shi, B.; Hu, X.; Li, W.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. A ternary heterostructure aptasensor based on metal-organic framework and polydopamine nanoparticles for fluorescent detection of sulfamethazine. Food Chem. 2024, 460, 140570. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Hu, X.; Li, Z.; Huang, X.; Holmes, M.; Gong, Y.; Shi, J.; Zou, X. Visual detection of nitrite in sausage based on a ratiometric fluorescent system. Food Control 2019, 106, 106704. [Google Scholar] [CrossRef]
- Hu, X.; Shi, J.; Shi, Y.; Zou, X.; Arslan, M.; Zhang, W.; Huang, X.; Li, Z.; Xu, Y. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites. Food Chem. 2019, 272, 58–65. [Google Scholar] [CrossRef]
- Wu, H.; Xie, R.; Hao, Y.; Pang, J.; Gao, H.; Qu, F.; Tian, M.; Guo, C.; Mao, B.; Chai, F. Portable smartphone-integrated AuAg nanoclusters electrospun membranes for multivariate fluorescent sensing of Hg2+, Cu2+ and l-histidine in water and food samples. Food Chem. 2023, 418, 135961. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Ming, L.; Chen, L.; Xue, M.; Zhang, J.; Zhang, H. Dual-mode strategy for the determination of vanillin in milk-based products based on molecular-imprinted nanozymes. Food Chem. 2025, 469, 142615. [Google Scholar] [CrossRef]
- Yin, M.; Wang, W.; Wei, J.; Chen, X.; Chen, Q.; Chen, X.; Oyama, M. Novel dual-emissive fluorescent immunoassay for synchronous monitoring of okadaic acid and saxitoxin in shellfish. Food Chem. 2022, 368, 130856. [Google Scholar] [CrossRef]
- Shi, Y.; Li, W.; Feng, X.; Lin, L.; Nie, P.; Shi, J.; Zou, X.; He, Y. Sensing of mercury ions in Porphyra by Copper @ Gold nanoclusters based ratiometric fluorescent aptasensor. Food Chem. 2021, 344, 128694. [Google Scholar] [CrossRef]
- Huang, X.; Sun, W.; Li, Z.; Shi, J.; Zhang, N.; Zhang, Y.; Zhai, X.; Hu, X.; Zou, X. Hydrogen sulfide gas sensing toward on-site monitoring of chilled meat spoilage based on ratio-type fluorescent probe. Food Chem. 2022, 396, 133654. [Google Scholar] [CrossRef]
- Liao, S.; Gui, L.; Yang, Y.; Liu, Y.; Hu, X. Fluorescence/visual aptasensor based on Au/MOF nanocomposite for accurate and convenient aflatoxin B1 detection. Mikrochim. Acta 2024, 191, 497. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Li, T.; Chu, N.; Liu, X.; He, M.; Bui, B.; Chen, M.; Chen, W. Nano-octahedral bimetallic Fe/Eu-MOF preparation and dual model sensing of serum alkaline phosphatase (ALP) based on its peroxidase-like property and fluorescence. Mater. Sci. Eng. C 2021, 129, 112404. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Hu, J.; Li, Y.; Huang, H. A fluorescent nanozyme ZIF-8@CuNCs with hydrolase-like activity for the dual-mode sensing of fenitrothion. Sens. Actuators B Chem. 2025, 442, 138163. [Google Scholar] [CrossRef]
- Wei, F.; Xin, M.; Kang, Z.; Chen, X.; He, H.; Ren, K.; Song, R.; Wang, H.; Zeng, G. Highly efficient and stable Photo-Fenton-Like catalytic membrane based on Yolk-Shell MOF-on-MOF Nanostructures for Broad-Spectrum antibiotic removal. Sep. Purif. Technol. 2025, 378, 134743. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, X.; Du, L.; Wang, B.; Huang, Y.; Gu, Y.; Lu, Z. One-Pot Synthesis of MOF@MOF: Structural Incompatibility Leads to Core–Shell Structure and Adaptability Control Makes the Sequence. Small 2024, 20, 2305881. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, L.; Zhang, M.; Xu, S.; Jiang, C. A Self-Assembly MOF-on-MOF Heterostructure-Driven Fluorescence Sensor for Aerogel-Based Visualization Detection of Flavomycin. Small 2025, 21, 2410911. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Wang, N.; Huang, F.; Nie, B.; Lei, Y.; Qin, W.; Tiwari, S.K.; Ola, O.; Wang, X.; Zhu, Y. Rational design of heterostructured MOF-on-MOF (NH2-MIL-125(Ti)@ZIF-8) nanocomposites with synergistic ion-exchange for efficient cesium sequestration in wastewater treatment. Chem. Eng. J. 2025, 522, 166789. [Google Scholar] [CrossRef]
- Li, J.; Liu, M.; Li, J.; Liu, X. A MOF-on-MOF composite encapsulating sensitized Tb (III) as a built-in self-calibrating fluorescent platform for selective sensing of F ions. Talanta 2023, 259, 124521. [Google Scholar] [CrossRef] [PubMed]
- Hang, T.; Zhang, C.; Pei, F.; Yang, M.; Wang, F.; Xia, M.; Hao, Q.; Lei, W. Magnetism-Functionalized Lanthanide MOF-on-MOF with Plasmonic Differential Signal Amplification for Ultrasensitive Fluorescence Immunoassays. Acs Sens. 2024, 9, 6779–6788. [Google Scholar] [CrossRef]
- Wang, M.; Han, Y.; Sun, G.; Chen, J.; Zhao, X.; Qiu, K.; Lu, S.; Liu, D.; Wang, S.; Wang, H. Polyfluoroalkyl Substance-Induced Nanoclusters Immobilized MOF-on-MOF Architecture Dissociation-Driven Machine Learning-Assisted Ratio Fluorescence Sensor Array. Anal. Chem. 2025, 97, 18010–18019. [Google Scholar] [CrossRef]
- Mohan, B.; Gupta, R.K.; Garazade, I.M.; Singh, G.; Pombeiro, A.J.L.; Najafov, B.; Sun, W. Understanding the working of magnetic COFs in the extraction and determination of target contaminants for food safety. Food Chem. 2025, 492, 145366. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liang, N.; Hu, X.; Li, W.; Guo, Z.; Zhang, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Dong, X.; Tan, S.; Chen, K.; Zhang, M.; Li, B.; Deng, H.; He, F.; Ni, H.; Wang, H.; et al. A covalent organic framework-derived pretreatment for pesticides in vegetables and fruits. Front. Sustain. Food Syst. 2024, 8, 106588. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, X.; Lin, Z.; Suo, H.; Xia, J.; Zou, B. In-situ aqueous phase encapsulation immobilized lipase assisted by acidic ionic liquids for the synthesis of isoamyl acetate. Food Biosci. 2025, 63, 105607. [Google Scholar] [CrossRef]
- Borah, P.; Roy, S.; Ahmaruzzaman, M. The fusion of metal-organic framework (MOF) and covalent organic framework (COF): A synergistic leap toward bridging boundaries in catalytic, sensing, and biomedical frontiers. Adv. Colloid Interface Sci. 2025, 344, 103613. [Google Scholar] [CrossRef]
- Quan, X.; Yan, B. In Situ Generated Dye@MOF/COF Heterostructure for Fluorescence Detection of Chloroquine Phosphate and Folic Acid via Different Luminescent Channels. Acs Appl. Mater. Interfaces 2023, 15, 54634–54642. [Google Scholar] [CrossRef]
- Hu, W.; Pei, F.; Du, B.; Wang, J.; Liang, M.; Yang, L.; Liu, B.; Mu, X.; Tong, Z. A fluorescence-electrochemistry dual-mode imprinted sensing platform constructed by boric acid-functionalized MOF@COF core-shell composite for sensitive detection of glycoprotein. Sens. Actuators B 2024, 407, 135494. [Google Scholar] [CrossRef]
- Feng, J.; Shi, L.; Chang, D.; Dong, C.; Shuang, S. Sub-30-Seconds ultrafast intelligent detection of glutathione using machine learning-guided handheld sensing platform based on mercury ion-mediated ratiometric fluorescence carbon dots. Chem. Eng. J. 2024, 490, 151839. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Xu, Y.; Gan, Z.; Zou, X.; Shi, J.; Huang, X.; Li, Z.; Li, Y. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem. 2021, 339, 127775. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Hu, X.; Li, W.; Mwakosya, A.; Guo, Z.; Xu, Y.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; et al. Fluorescence and colorimetric dual-mode sensor for visual detection of malathion in cabbage based on carbon quantum dots and gold nanoparticles. Food Chem. 2021, 343, 128494. [Google Scholar] [CrossRef]
- Song, W.; Zhai, X.; Shi, J.; Zou, X.; Xue, Y.; Sun, Y.; Sun, W.; Zhang, J.; Huang, X.; Li, Z.; et al. A ratiometric fluorescence amine sensor based on carbon quantum dot-loaded electrospun polyvinylidene fluoride film for visual monitoring of food freshness. Food Chem. 2024, 434, 137423. [Google Scholar] [CrossRef]
- Yosri, N.; Gao, S.; Zhou, R.; Wang, C.; Zou, X.; El-Seedi, H.R.; Guo, Z. Innovative quantum dots-based SERS for ultrasensitive reporting of contaminants in food: Fundamental concepts and practical implementations. Food Chem. 2025, 467, 142395. [Google Scholar] [CrossRef]
- Bi, X.; Li, L.; Luo, L.; Liu, X.; Li, J.; You, T. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem. 2022, 385, 132657. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, T.; Wang, S.; Yan, Y. Mesoporous silica-based molecularly imprinted fluorescence sensor for the ultrafast and sensitive recognition of oxytetracycline. J. Food Compos. Anal. 2022, 108, 104427. [Google Scholar] [CrossRef]
- Shi, Y.; Li, W.; Hu, X.; Zhang, X.; Huang, X.; Li, Z.; Zhai, X.; Shen, T.; Shi, J.; He, Y.; et al. A novel sustainable biomass-based fluorescent probe for sensitive detection of salicylic acid in rice. Food Chem. 2024, 434, 137260. [Google Scholar] [CrossRef]
- Murugesan, A.; Li, H.; Shoaib, M. Recent Advances in Functionalized Carbon Quantum Dots Integrated with Metal-Organic Frameworks: Emerging Platforms for Sensing and Food Safety Applications. Foods 2025, 14, 2060. [Google Scholar] [CrossRef]
- Meng, S.; Liu, D.; Li, Y.; Dong, N.; Chen, T.; You, T. Engineering the Signal Transduction between CdTe and CdSe Quantum Dots for in Situ Ratiometric Photoelectrochemical Immunoassay of Cry1Ab Protein. J. Agric. Food Chem. 2022, 70, 13583–13591. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, Y.; Wang, T.; Ji, S.; Zhang, X.; Shen, T.; Huang, X.; Xiao, J.; Farag, M.; Shi, J.; et al. Quantum dots as advanced nanomaterials for food quality and safety applications: A comprehensive review and future perspectives. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13339. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Hu, W.; Pei, F.; Liu, Z.; Wang, J.; Tong, Z.; Mu, X.; Du, B.; Xia, M.; Wang, F.; et al. A ratiometric fluorescence imprinted sensor based on N-CDs and metal–organic frameworks for visual smart detection of malathion. Food Chem. 2024, 438, 138068. [Google Scholar] [CrossRef]
- Huang, X.; Zou, X.; Shi, J.; Li, Z.; Zhao, J. Colorimetric sensor arrays based on chemo-responsive dyes for food odor visualization. Trends Food Sci. Technol. 2018, 81, 90–107. [Google Scholar] [CrossRef]
- Adade, S.; Lin, H.; Haruna, S.; Barimah, A.; Jiang, H.; Agyekum, A.; Johnson, N.; Zhu, A.; Ekumah, J.; Li, H.; et al. SERS-based sensor coupled with multivariate models for rapid detection of palm oil adulteration with Sudan II and IV dyes. J. Food Compos. Anal. 2022, 114, 104834. [Google Scholar] [CrossRef]
- Lin, H.; Kang, W.; Han, E.; Chen, Q. Quantitative analysis of colony number in mouldy wheat based on near infrared spectroscopy combined with colorimetric sensor. Food Chem. 2021, 354, 129545. [Google Scholar] [CrossRef]
- Jiang, H.; Lin, H.; Lin, J.; Yao-Say Solomon Adade, S.; Chen, Q.; Xue, Z.; Chan, C. Non-destructive detection of multi-component heavy metals in corn oil using nano-modified colorimetric sensor combined with near-infrared spectroscopy. Food Control 2022, 133, 108640. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, R.; Huang, X.; Li, Z.; Zhai, X.; Shen, T.; Shi, J.; Zou, X. Preparation of photodynamic-controlled release packaging for pork preservation and its visualization. Food Chem. 2025, 473, 143005. [Google Scholar] [CrossRef]
- Okeke, E.; Ezeorba, T.; Okoye, C.; Chen, Y.; Mao, G.; Feng, W.; Wu, X. Analytical detection methods for azo dyes: A focus on comparative limitations and prospects of bio-sensing and electrochemical nano-detection. J. Food Compos. Anal. 2022, 114, 104778. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, X.; Huang, X.; Shi, J.; Sobhy, R.; Khalifa, I.; Zou, X. Ammonia-Responsive Colorimetric Film of Phytochemical Formulation (Alizarin) Grafted onto ZIF-8 Carrier with Poly(vinyl alcohol) and Sodium Alginate for Beef Freshness Monitoring. J. Agric. Food Chem. 2024, 72, 11706–11715. [Google Scholar] [CrossRef]
- Liu, X.; Huang, A.; Ni, W.; Fang, Y.; Wei, F.; Huang, S.; Xiao, Q. Efficient and accessible detection of organophosphorus pesticides in food using Pr6O11/Zr-MOF nanozyme: Advancing food safety. Nano Res. 2025, 18, 52993–53002. [Google Scholar]
- Xu, N.; Tang, Z.; Jiang, Y.; Fang, J.; Zhang, L.; Lai, X.; Sun, Q.; Fan, J.; Tang, X.; Liu, Q.; et al. Highly Sensitive Ratiometric Fluorescent Flexible Sensor Based on the RhB@ZIF-8@PVDF Mixed-Matrix Membrane for Broad-Spectrum Antibiotic Detection. Acs Appl. Mater. Interfaces 2023, 15, 52993–53002. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zhang, Q.; Zhang, J.; Zhang, N.; Fang, Y.; Yan, J.; Ke, Q. The multifunctional BODIPY@Eu-MOF nanosheets as bioimaging platform: A ratiometric fluorescencent sensor for highly efficient detection of F-, H2O2 and glucose. Sens. Actuators B 2022, 354, 131140. [Google Scholar] [CrossRef]
- Liu, J.; Ye, L.Y.; Mo, Y.Y.; Yang, H. Highly sensitive fluorescent quantification of acid phosphatase activity and its inhibitor pesticide Dufulin by a functional metal–organic framework nanosensor for environment assessment and food safety. Food Chem. 2022, 370, 131034. [Google Scholar] [CrossRef]
- Bagheri, M.; Masoomi, M.Y. Sensitive Ratiometric Fluorescent Metal-Organic Framework Sensor for Calcium Signaling in Human Blood Ionic Concentration Media. Acs Appl. Mater. Interfaces 2020, 12, 4625–4631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, C.; Jayan, H.; Gao, M.; El-Seedi, H.; Zou, X.; Guo, Z. Novel pH-sensitive organic ligand-based luminescent MOFs modified CMC-Na/SA films for real-time monitoring of fruit freshness. Food Packag. Shelf Life 2025, 49, 101521. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, X.; Xue, S.; Yin, L.; Gao, S.; Zhang, Y.; Wang, C.; Wang, Y.; El-Seedi, H.R.; Zou, X.; et al. Magnetic metal-organic frameworks-based ratiometric SERS aptasensor for sensitive detection of patulin in apples. Food Chem. 2025, 466, 142200. [Google Scholar] [CrossRef]
- Xia, J.; Liu, F.; Yan, L.; Suo, H.; Qian, J.; Zou, B. Simultaneous determination of tert-butylhydroquinone, butylated hydroxyanisole and phenol in plant oil by metalloporphyrin-based covalent organic framework electrochemical sensor. J. Food Compos. Anal. 2023, 122, 105486. [Google Scholar]
- Dai, Y.; Peng, W.; Ji, Y.; Wei, J.; Che, J.; Huang, Y.; Huang, W.; Yang, W.; Xu, W. A self-powered photoelectrochemical aptasensor using 3D-carbon nitride and carbon-based metal-organic frameworks for high-sensitivity detection of tetracycline in milk and water. J. Food Sci. 2024, 89, 8022–8035. [Google Scholar] [CrossRef]
- Shoaib, M.; Li, H.; Khan, I.M.; Hassan, M.M.; Zareef, M.; Niazi, S.; Chen, Q. Emerging MXenes-based aptasensors: A paradigm shift in food safety detection. Trends Food Sci. Technol. 2024, 151, 104635. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, W.; Li, C.; Xu, H.; Zhang, X.; Zou, X.; Sun, Z. Fe3O4@Au Nanoparticle-Enabled Magnetic Separation Coupled with CRISPR/Cas12a for Ultrasensitive Detection of Foodborne Pathogens. J. Agric. Food Chem. 2025, 73, 13949–13959. [Google Scholar] [CrossRef]
- Rong, J.; Zhou, Z.; Wang, Y.; Han, J.; Li, C.; Zhang, W.; Ni, L. Immobilization of Horseradish Peroxidase on Multi-Armed Magnetic Graphene Oxide Composite: Improvement of Loading Amount and Catalytic Activity. Food Technol. Biotechnol. 2019, 57, 260–271. [Google Scholar] [CrossRef]
- Lin, Z.; Xie, Y.; Kong, F.; Xia, J.; Suo, H.; Huang, R.; Zou, B. Biomimetic enzyme ratiometric electrochemical sensor based on graphene, calcined UIO-66 and thionine for rapid and sensitive detection of zearalenone in vegetable oil. Food Biosci. 2025, 68, 106548. [Google Scholar] [CrossRef]
- Wang, X.; Rehman, A.; Kong, R.; Cheng, Y.; Tian, X.; Liang, M.; Zhang, L.; Xia, L.; Qu, F. Naphthalimide Derivative-Functionalized Metal–Organic Framework for Highly Sensitive and Selective Determination of Aldehyde by Space Confinement-Induced Sensitivity Enhancement Effect. Anal. Chem. 2021, 93, 8219–8227. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Fan, S.; Xing, C.; Song, M.; Nie, Z.; Xu, L.; Zhang, S.; Wang, L.; Zhang, S.; Li, B. Facile Fabrication of an AIE-Active Metal–Organic Framework for Sensitive Detection of Explosives in Liquid and Solid Phases. Acs Appl. Mater. Interfaces 2020, 12, 55299–55307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mollick, S.; Tricarico, M.; Ye, J.; Sherman, D.A.; Tan, J. Turn-On Fluorescence Chemical Sensing through Transformation of Self-Trapped Exciton States at Room Temperature. Acs Sens. 2022, 7, 2338–2344. [Google Scholar] [CrossRef]
- Jia, P.; Wu, Q.; Sun, B.; Wang, L. Formic Acid-Regulated Defect Engineering in Zr-Based Metal-Organic Frameworks toward Fluorescence Sensor for Sensitive Detection of Chlortetracycline. Small 2023, 19, 2304096. [Google Scholar] [CrossRef]
- Mi, Z.; Xia, Y.; Dong, H.; Shen, Y.; Feng, Z.; Hong, Y.; Zhu, H.; Yin, B.; Ji, Z.; Xu, Q.; et al. Microfluidic Wearable Electrochemical Sensor Based on MOF-Derived Hexagonal Rod-Shaped Porous Carbon for Sweat Metabolite and Electrolyte Analysis. Anal. Chem. 2024, 96, 16676–16685. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Zeng, T.; Zhou, T.; Sun, Y.; Deng, Y.; Zhang, J.; Li, G.; Yin, Y. Enhanced the Trans-Cleavage Activity of CRISPR-Cas12a Using Metal-Organic Frameworks as Stimulants for Efficient Electrochemical Sensing of Circulating Tumor DNA. Adv. Sci. 2025, 12, 2417206. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Zheng, Q.; Yuan, J.; Hu, B.; Liu, R.; Cao, J. Electrochemical/photoelectrochemical dual-mode aptasensor with Bi2WO6/AuNPs/Ni-MOF heterostructure integrated with CRISPR/Cas12a for OTA detection. Sens. Actuators B 2025, 445, 138619. [Google Scholar] [CrossRef]
- Li, T.; Zhu, X.; Hai, X.; Bi, S.; Zhang, X. Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications. ACS Sens. 2023, 8, 994–1016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, L.; Xie, Y.; Fu, H. Theoretical insights into performance descriptors and their impact on activity optimization strategies for cobalt-based electrocatalysts. Coord. Chem. Rev. 2025, 533, 216560. [Google Scholar] [CrossRef]
- Song, Y.; Li, J.; Chi, D.; Xu, Z.; Liu, J.; Chen, M.; Wang, Z. AI-driven advances in metal–organic frameworks: From data to design and applications. Chem. Commun. 2025, 61, 15972–16001. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Guo, W.; Liu, S.; Tang, X.; Roy, V.A.; Zhao, X. Rise of Metal–Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. Acs Appl. Mater. Interfaces 2024, 16, 45830–45860. [Google Scholar] [CrossRef]








| MOF Series | Common Metal Centers | Common Organic Ligands | Representative Examples |
|---|---|---|---|
| IRMOF | Zn2+, Cd2+ | BDC and derivatives | IRMOF-1 (Zn4O-BDC), IRMOF-3 (BDC-NH2), IRMOF-16 |
| ZIF | Zn2+, Co2+ | Imidazolate ligands (e.g., 2-methylimidazole, 2-carboxyimidazole) | ZIF-8 (Zn-2-methylimidazole), ZIF-67 (Co-2-methylimidazole), ZIF-90 |
| MIL | Fe3+, Cr3+, Al3+, V3+ | Polycarboxylates (BDC, BTC, etc.) | MIL-53 (Al-BDC), MIL-88 (Fe-BDC), MIL-100 (Fe-BTC), MIL-101 (Cr-BDC) |
| PCN | Zr4+, Hf4+, Fe3+ | Large π-conjugated polycarboxylates (e.g., TCPP, TCPB) | PCN-222 (Zr-TCPP), PCN-224, PCN-600 |
| UiO | Zr4+, Hf4+ | BDC and derivatives (NH2-BDC, NO2-BDC, etc.) | UiO-66 (Zr-BDC), UiO-67 (Zr-BPDC), UiO-68 |
| HKUST | Cu2+ | BTC | HKUST-1 (Cu-BTC) |
| Types of MOF | Composite Materials | Detection Object | Detection Mechanism | Reference |
|---|---|---|---|---|
| Individual MOFs | PCN-224 | Acrylamide | Fluorescence enhancement | [108] |
| MnMOF | Glyphosate | Fluorescence quenching | [126] | |
| MOF-0.02TEA | Hydroquinone, Catechol | Fluorescence quenching | [111] | |
| In-MOF | Periodate | Fluorescence enhancement | [127] | |
| PCN-128 | Oxytetracycline | Multiple fluorescence mechanisms coupling | [128] | |
| Eu-MOF | Trimethoprim | |||
| Tb-MOF | Ciprofloxacin | |||
| UiO-66-NH2 | Zearalenone | Fluorescence quenching | [129] | |
| Ce-MOF | 4-Nitrophenol | Fluorescence quenching | [130] | |
| MOF-Metal Nanomaterials | Ag+/Eu3+@UiO-66(COOH)2 | Tetracycline | Fluorescence quenching | [131] |
| MOF-808-Al | Aminoglycosides | Multiple fluorescence mechanisms coupling | [132] | |
| Fe3O4@EuMOF | Fluoroquinolones | Fluorescence enhancement | [133] | |
| MOF-on-MOF | Al-MOF@Eu-MOF@MIP | Aflatoxin B1 | Multiple fluorescence mechanisms coupling | [134] |
| Zn-BTC/IRMOF-3 | Tetracyclines | Multiple fluorescence mechanisms coupling | [135] | |
| MOF-COF | UIO-66-NH2@COF-B(OH)2 | Transferrin | Fluorescence quenching | [136] |
| NH2-MIL-53(Al)@TpTt-COF | Tetracycline | Multiple fluorescence mechanisms coupling | [137] | |
| UIO-66-NH2@TFPB-TAPA COF | Glutathione | Fluorescence quenching | [138] | |
| UiO-66-NH2@COF-BA | Methicillin-Resistant Staphylococcus aureus, Acinetobacter baumannii | Fluorescence enhancement | [58] | |
| MOF-QDs | g-CNQDs@Zn-MOF | Riboflavin | Fluorescence quenching | [139] |
| CQDs@Co/Mn-MOF | Norfloxacin | Fluorescence quenching | [140] | |
| Eu/CDs@MOF-808 | Adenosine Triphosphate, Uric Acid | Multiple fluorescence mechanisms coupling | [141] | |
| CDs@ZIF-8(In) | Triethylamine | Fluorescence enhancement | [142] | |
| MOF-Dye | Nile Blue@UIO-66-DHTA | Tobramycin | Multiple fluorescence mechanisms coupling | [143] |
| RhB@PCN-222 | Tetracyclines | Multiple fluorescence mechanisms coupling | [144] | |
| EY@MOF-5 | Daclatasvir, Nitenpyram | Multiple fluorescence mechanisms coupling | [145] | |
| MOF-Other Nanomaterials | Eu-MOF/carbon fiber | Al3+, H+ | Fluorescence enhancement | [146] |
| Zn-MOF/HOF | Doxycycline analogs | Multiple fluorescence mechanisms coupling | [147] | |
| Eu-BCA@SiO2-MIP | Zearalenone | Fluorescence quenching | [148] | |
| Ce-MOF/MWCNT | 6-mercaptopurine | Fluorescence quenching | [149] | |
| CDs@Cu-MOF/TMTA-COF | Glyphosate | Multiple fluorescence mechanisms coupling | [150] | |
| Fe3O4@RhB@ZIF90@AChE | Organophosphorus, Carbamate Pesticides | Fluorescence enhancement | [151] |
| Types of MOF | Composite Materials | Detection Object | Limit of Detection | Linear Range | Real Samples | Recovery Rate | Ref. |
|---|---|---|---|---|---|---|---|
| Individual MOFs | Cu@MOF | Alkaline Phosphatase | 0.14 U/L | 0.5–60 U/L | Human serum | 101.19–107.90% | [153] |
| Zr-MOF | Cr(VI) | 1.4 µM | 5–100 µM | Tap water | 98.10–100.90% | [154] | |
| U-1 MOF | Perfluorooctanoic acid | 1.68 μM (in suspension) 3.1 nM (on paper) | 0–20 μM (suspension) 10–50 nM (paper) | Drinking water, Tap water | >91% | [155] | |
| Eu-MOF | Bromate (BrO3−) | 3.7 × 10−6 mol/L | 0–0.2 mM | Wheat flour | 95.30–104.38% | [156] | |
| MOF-Metal Nanomaterials | Au/MOF | Aflatoxin B1 | Fluorescence mode: 0.07 ng mL−1 Visual mode: 0.08 ng mL−1 | 0.1–30 ng/mL | Rice, Corn, Wheat | Fluorescence mode: 97.9–111.5% Visual mode: 96.2–109% | [165] |
| Fe/Eu-MOF | Alkaline Phosphatase | Colorimetric: 0.6 U/L Fluorescence: 0.9 U/L | 1–200 U/L | Bovine, Chicken, Human serum | 96.41–107.01% | [166] | |
| ZIF-8@CuNCs | Fenitrothion | Colorimetry: 2.00 μg/mL Fluorescence: 1.67 μg/mL | Colorimetry: 6–200 μg/mL Fluorescence: 5–40 μg/mL | Lake water, Tap water | Colorimetry: 97.90–104.17% Fluorescence: 98.17–101.35% | [167] | |
| MOF-on-MOF | Tb3+@UIO66/MOF801 | Fluoride ion | 4.029 μM | 0–0.6 mM | Tap water | / | [172] |
| Zn/Fe-MOF@PDANSs (Zn-TCPP-MOF, MIL-101(Fe), PDANSS) | Sulfamethazine | 0.025 ng/mL | 0.5–100 ng/mL | Chicken, Pork | 92.69–108.48% | [157] | |
| Fe3O4@SiO2@MOF-on-MOF | SARS-CoV-2 N protein | 0.13 pg/mL | 10−12–10−6 g/mL (1 pg/mL–1 µg/mL) | Simulated saliva | 98.79–102.53% | [173] | |
| MOF-COF | AMC@ZIF-90/3D-COF | Chloroquine Phosphate | 7.4 × 10−6 M | 4 × 10−5–4 × 10−4 M | Urine | / | [180] |
| 5.2 × 10−7 M | 3 × 10−6–4 × 10−5 M | Serum | / | ||||
| Folic Acid | 3.5 × 10−6 M | 1 × 10−5–1 × 10−3 M | Milk | / | |||
| MOF@COF–B(OH)2@MIP | Transferrin | 57.6 nM (Fluorescence) 2.7 nM (Electrochemical) | 0.1–40 μM (Fluorescence) 0.05–30 μM (Electrochemical) | Human serum, Human urine | 84.3–103.9% | [181] | |
| UiO-66-NH2@COF | Fluoride ion | / | 1–500 μM | / | / | [136] | |
| MOF-QDs | SQDs@MOF-5-NH2 | Patulin | 0.753 pg/mL | 1 pg/mL–100 ng/mL | Apple juice | 89.03–107.67% | [74] |
| BNCDs/Tb-MOF@GR5 DNAzyme | Pb2+ | 0.96 ppb (2.89 nM) | 2–1000 nM | Water | 92.76–119% | [62] | |
| N-CDs@Eu-MOF@MIP (BR@MIP) | Malathion | 0.05 μM | 1–10 μM | Lettuce, Tap water, Soil | 93.0–99.3% | [193] | |
| MOF-Dye | RhB@ZIF-8 | Nitrofurantoin | 0.012 µM | 10−6–10−10 M | Rainwater, Lake water, Tap water | 88.45–129.25% | [202] |
| Oxytetracycline | 8.9 nM | ||||||
| BODIPY@Eu-MOF | Fluoride ion | 0.1737 µM | 0–30 µM | / | / | [203] | |
| Hydrogen peroxide | 6.22 nM | 0–6 µM | / | / | |||
| Glucose | 6.92 nM | 0–6 µM | Serum | 96.5–103.2% | |||
| Zr-AzoMOF | Dufulin | 2.96 ng/mL | 0–5 µg/mL | Paddy water, Paddy soil, Cucumber, Polished rice | 90.35–109.84% | [204] | |
| TMU-5S | Calcium ion | 17 nM | 1 × 10−6 M–5 × 10−5 M | Water | / | [205] | |
| MOF-Other Nanomaterials | TPE@γ-CD-MOF-K | Nitroaromatics | ~3 ppm | 0–30 ppm | / | / | [215] |
| PHN@MOF | Formaldehyde | 0.173 µM | 1–4 µM | Indoor Air, Liquor | 93.33–105.00% | [214] | |
| Perylene@MIL-68(In) | Xylene | 1300 ppm | 0–8000 ppm | Simulated Contaminated Air | / | [216] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, C.; Jiang, M.; Liu, Y.; Sun, Z. Advancements and Prospects of Metal-Organic Framework-Based Fluorescent Sensors. Biosensors 2025, 15, 709. https://doi.org/10.3390/bios15110709
Zhang Y, Li C, Jiang M, Liu Y, Sun Z. Advancements and Prospects of Metal-Organic Framework-Based Fluorescent Sensors. Biosensors. 2025; 15(11):709. https://doi.org/10.3390/bios15110709
Chicago/Turabian StyleZhang, Yuan, Chen Li, Meifeng Jiang, Yuan Liu, and Zongbao Sun. 2025. "Advancements and Prospects of Metal-Organic Framework-Based Fluorescent Sensors" Biosensors 15, no. 11: 709. https://doi.org/10.3390/bios15110709
APA StyleZhang, Y., Li, C., Jiang, M., Liu, Y., & Sun, Z. (2025). Advancements and Prospects of Metal-Organic Framework-Based Fluorescent Sensors. Biosensors, 15(11), 709. https://doi.org/10.3390/bios15110709

