Development of an Aptamer-Based Surface Plasmon Resonance Biosensor for Detecting Chloramphenicol in Milk
Abstract
1. Introduction
2. Materials and Methods
2.1. Drugs and Reagents
2.2. Sample Preparation and Aptamer Pretreatment
2.3. Strategy of Amino Coupling on CM5 Chip
2.3.1. Coupling of Apt1 on CM5 Chip
2.3.2. Activity of Apt1-Based SPR Biosensor
2.4. Strategy of Biotin-Avidin Coupling on SA Chip
2.4.1. Immobilization of Apt2 and Apt3 on SA Chip
2.4.2. Activity of SPR Biosensor with SA Chip
2.5. Strategy of Biotin-Avidin Coupling on CM5 Chip
2.5.1. Immobilization of SA on CM5 Chip
2.5.2. Immobilization of Apt2 on CM5 Chip
2.5.3. Activity of CM5 Chip with Apt2 and LOD
2.6. Effect of Dissociation Time
2.7. Specificity of the SPR Sensor
2.8. Preparation and Detection of Milk Samples
3. Results and Discussion
3.1. Design of Aptamer Immobilization Strategies
3.2. Strategy of Amino Coupling on CM5 Chip
3.3. Strategy of Biotin-Avidin Coupling on SA Chip
3.4. Strategy of Biotin-Avidin Coupling on CM5 Chip
3.4.1. Immobilization of SA on CM5 Chip
3.4.2. Immobilization of Apt2 on CM5 Chip and Activity of CM5 Chip
3.4.3. LOD and Detection Range
3.5. Effect of Dissociation Time
3.6. Specificity of the SPR Sensor
3.7. Robustness of the SPR Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Zhao, R.; Cao, L.; Lei, Y.; Liu, J.; Feng, J.; Fu, W.; Li, X.; Li, B. High-efficiency biodegradation of chloramphenicol by enriched bacterial consortia: Kinetics study and bacterial community characterization. J. Hazard. Mater. 2020, 384, 121344. [Google Scholar] [CrossRef]
- Mou, S.A.; Islam, R.; Shoeb, M.; Nahar, N. Determination of chloramphenicol in meat samples using liquid chromatography–tandem mass spectrometry. Food Sci. Nutr. 2021, 9, 5670–5675. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.M.; Nguyen, N.T.T.; Nguyen, T.T.T.; Nguyen, T.T.; Nguyen, D.T.C.; Tran, T.V. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: A review. Environ. Chem. Lett. 2022, 20, 1929–1963. [Google Scholar] [CrossRef]
- Sniegocki, T.; Gbylik-Sikorska, M.; Posyniak, A. Transfer of chloramphenicol from milk to commercial dairy products—Experimental proof. Food Control. 2015, 57, 411–418. [Google Scholar] [CrossRef]
- Zhao, M.; Li, X.; Zhang, Y.; Wang, Y.; Wang, B.; Zheng, L.; Zhang, D.; Zhuang, S. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chem. 2021, 339, 127857. [Google Scholar] [CrossRef]
- Mariani, S.; Minunni, M. Surface plasmon resonance applications in clinical analysis. Anal. Bioanal. Chem. 2014, 406, 2303–2323. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Dolatabadi, J.E.N.; Torbati, M.; Homayouni-Rad, A. Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions. Biosens. Bioelectron. 2019, 127, 72–84. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, Q.; Wang, C.; Qian, Y.; Liu, G.; Wang, Y.; Fu, L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron. 2019, 142, 111449. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Ross, G.; Nielen, M.W.; Eriksson, J.; Salentijn, G.I.; Mak, W.C. A portable smartphone-based imaging surface plasmon resonance biosensor for allergen detection in plant-based milks. Talanta 2023, 257, 124366. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Chen, Y.; Shen, D.; Cui, X.; Zhang, C.; Yang, H.; Zhong, W.; Eremin, S.A.; Fang, Y.; Zhao, S. Development of a surface plasmon resonance immunosensor and ELISA for 3-nitrotyrosine in human urine. Talanta 2019, 195, 655–661. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, R.; Liu, Y.; Xiang, D.; Liu, Y.; Gui, W.; Li, M.; Zhu, G. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples. Sci. Total. Environ. 2018, 613–614, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.G. Quality Issues of Research Antibodies. Anal. Chem. Insights 2016, 11, ACI.S31614. [Google Scholar] [CrossRef]
- Baker, M. Reproducibility crisis: Blame it on the antibodies. Nature 2015, 521, 274–276. [Google Scholar] [CrossRef]
- Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; et al. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl. Mater. Interfaces 2021, 13, 9500–9519. [Google Scholar] [CrossRef]
- Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 2019, 37, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zu, Y. A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules 2015, 20, 11959–11980. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Strom, M.; Hammond, D.S.; Shigdar, S. Anything You Can Do, I Can Do Better: Can Aptamers Replace Antibodies in Clinical Diagnostic Applications? Molecules 2019, 24, 4377. [Google Scholar] [CrossRef]
- Röthlisberger, P.; Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018, 134, 3–21. [Google Scholar] [CrossRef]
- Kumar, S.; Mohan, A.; Sharma, N.R.; Kumar, A.; Girdhar, M.; Malik, T.; Verma, A.K. Computational Frontiers in Aptamer-Based Nanomedicine for Precision Therapeutics: A Comprehensive Review. ACS Omega 2024, 9, 26838–26862. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, Z.; Li, B.; Liu, Z.; Jia, L.; Zuo, L.; Chen, L.; Zhu, Z.; Shan, G.; Luo, S.-Z. A direct determination of AFBs in vinegar by aptamer-based surface plasmon resonance biosensor. Toxicon 2018, 146, 24–30. [Google Scholar] [CrossRef]
- Lee, S.H.; Back, J.H.; Joo, H.J.; Lim, D.-S.; Lee, J.E.; Lee, H.J. Simultaneous detection method for two cardiac disease protein biomarkers on a single chip modified with mixed aptamers using surface plasmon resonance. Talanta 2024, 267, 125232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.G.; Chang, S.J.; Settu, K.; Chen, C.J.; Liu, J.T. High-sensitivity glycated hemoglobin (HbA1c) aptasensor in rapid-prototyping surface plasmon resonance. Sens. Actuators B Chem. 2019, 279, 267–273. [Google Scholar] [CrossRef]
- Simon, L.; Bognár, Z.; Gyurcsányi, R.E. Finding the Optimal Surface Density of Aptamer Monolayers by SPR Imaging Detection-Based Aptamer Microarrays. Electroanalysis 2020, 32, 851–858. [Google Scholar] [CrossRef]
- Blidar, A.; Feier, B.; Tertis, M.; Galatus, R.; Cristea, C. Electrochemical surface plasmon resonance (EC-SPR) aptasensor for ampicillin detection. Anal. Bioanal. Chem. 2019, 411, 1053–1065. [Google Scholar] [CrossRef]
- Kang, M.; Wu, L.; Zhao, Q. Surface plasmon resonance sensor for direct oxytetracycline detection with a newly selected aptamer. Anal. Bioanal. Chem. 2025, 417, 5315–5322. [Google Scholar] [CrossRef]
- Mehta, J.; Van Dorst, B.; Rouah-Martin, E.; Herrebout, W.; Scippo, M.-L.; Blust, R.; Robbens, J. In vitro selection and characterization of DNA aptamers recognizing chloramphenicol. J. Biotechnol. 2011, 155, 361–369. [Google Scholar] [CrossRef]
- Ma, P.; Guo, H.; Duan, N.; Ma, X.; Yue, L.; Gu, Q.; Wang, Z. Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. Talanta 2021, 230, 122349. [Google Scholar] [CrossRef] [PubMed]






| I.D. | Sequences |
|---|---|
| Apt1 | 5′-NH2-(CH2)6-ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G-3′ |
| Apt2 | 5′-Biotin-ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G-3′ |
| Apt3 | 5′-Biotin-TEG-ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G-3′ |
| I.D. | Composition |
|---|---|
| PBS | 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 |
| Buf1 | 100 mM NaCl, 20 mM Tris-HCl, 2 mM MgCl2, 5 mM KCl, 1 mM CaCl2, pH 7.4 |
| Buf2 | 10 mM Tris-HCl, 40 mM MgCl2, pH 7.4 |
| Buf3 | 100 mM NaCl, 20 mM Tris-HCl, 2 mM MgCl2, 5 mM KCl, 1 mM CaCl2, 0.02% Tween 20, pH 7.4 |
| Nominal Concentration | Detected Concentration (mean ± SD, nM) | Precision (CV, %) | Accuracy (%) |
|---|---|---|---|
| 20 nM (6.46 ng/mL) | 18.59 ± 3.91 | 21 | 92 |
| 75 nM (24.23 ng/mL) | 57.77 ± 9.28 | 16 | 77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, M.; Xia, N.; Wang, X.; Wang, X.; Chen, H.; Lv, D.; Cao, Y. Development of an Aptamer-Based Surface Plasmon Resonance Biosensor for Detecting Chloramphenicol in Milk. Biosensors 2025, 15, 706. https://doi.org/10.3390/bios15110706
Qi M, Xia N, Wang X, Wang X, Chen H, Lv D, Cao Y. Development of an Aptamer-Based Surface Plasmon Resonance Biosensor for Detecting Chloramphenicol in Milk. Biosensors. 2025; 15(11):706. https://doi.org/10.3390/bios15110706
Chicago/Turabian StyleQi, Minyu, Ningqi Xia, Xiying Wang, Xiaofei Wang, Hao Chen, Diya Lv, and Yan Cao. 2025. "Development of an Aptamer-Based Surface Plasmon Resonance Biosensor for Detecting Chloramphenicol in Milk" Biosensors 15, no. 11: 706. https://doi.org/10.3390/bios15110706
APA StyleQi, M., Xia, N., Wang, X., Wang, X., Chen, H., Lv, D., & Cao, Y. (2025). Development of an Aptamer-Based Surface Plasmon Resonance Biosensor for Detecting Chloramphenicol in Milk. Biosensors, 15(11), 706. https://doi.org/10.3390/bios15110706

