Fluorogenic Biosensing with Tunable Polydiacetylene Vesicles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surfactant Preparation
2.2. Ethanolamine Functionalized Diacetylene Surfactants
2.3. Boronic Acid Functionalized Diacetylene Surfactants
2.4. Vesicle Synthesis, Preparation, and Polymerization
2.5. Vesicle Characterization
3. Results and Discussion
3.1. Vesicle Size and Size Distribution
3.2. Polydiacetylene Polymerization Characteristics
3.2.1. Dose Energies of Blue and Red Phase
3.2.2. UV-Induced Reaction Kinetics of PDAs
3.3. Thermochromic Transitions
3.4. Biosensing with Polydiacetylenes
3.5. PDA-Based Biosensors: Future Applications and Outlook
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wegner, G. Topochemische Reaktionen von Monomeren Mit Konjugierten Dreifachbindungen/Tochemical Reactions of Monomers with Conjugated Triple Bonds: I. Mitt.: Polymerisation von Derivaten Des 2.4-Hexadiin-1.6-Diols Im Kristallinen Zustand. Z. Für Naturforschung B 1969, 24, 824–832. [Google Scholar] [CrossRef]
- Baughman, R.H. Solid-State Polymerization of Diacetylenes. J. Appl. Phys. 1972, 43, 4362–4370. [Google Scholar] [CrossRef]
- Charych, D.H.; Nagy, J.O.; Spevak, W.; Bednarski, M.D. Direct Colorimetric Detection of a Receptor-Ligand Interaction by a Polymerized Bilayer Assembly. Science 1993, 261, 585–588. [Google Scholar] [CrossRef]
- Reichert, A.; Nagy, J.; Spevak, W.; Charych, D. Polydiacetylene Liposomes Functionalized with Sialic Acid Bind and Colorimetrically Detect Influenza Virus. J. Am. Chem. Soc. 1995, 117, 829–830. [Google Scholar] [CrossRef]
- Lebègue, E.; Farre, C.; Jose, C.; Saulnier, J.; Lagarde, F.; Chevalier, Y.; Chaix, C.; Jaffrezic-Renault, N. Responsive Polydiacetylene Vesicles for Biosensing Microorganisms. Sensors 2018, 18, 599. [Google Scholar] [CrossRef]
- Qian, X.; Städler, B. Polydiacetylene-Based Biosensors for the Detection of Viruses and Related Biomolecules. Adv. Funct. Mater. 2020, 30, 2004605. [Google Scholar] [CrossRef]
- Reppy, M.A.; Pindzola, B.A. Biosensing with Polydiacetylene Materials: Structures, Optical Properties and Applications. Chem. Commun. 2007, 42, 4317–4338. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Deb, R.; Suklabaidya, S.; Bhattacharjee, D.; Arshad Hussain, S. Polydiacetylene a Unique Material to Design Biosensors. Mater. Today Proc. 2022, 65, 2765–2772. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, G.; Peng, X.; Yoon, J. Biosensors and Chemosensors Based on the Optical Responses of Polydiacetylenes. Chem. Soc. Rev. 2012, 41, 4610. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Hong, C.; Lee, K. Structures and Strategies for Enhanced Sensitivity of Polydiacetylene(PDA) Based Biosensor Platforms. Biosens. Bioelectron. 2021, 181, 113120. [Google Scholar] [CrossRef]
- Pires, A.C.D.S.; Soares, N.D.F.F.; Da Silva, L.H.M.; De Andrade, N.J.; Silveira, M.F.A.; De Carvalho, A.F. Polydiacetylene as a Biosensor: Fundamentals and Applications in the Food Industry. Food Bioprocess Technol 2010, 3, 172–181. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, W.; Ai, K.; Liu, J. Highly Sensitive Polydiacetylene Ensembles for Biosensing and Bioimaging. Front. Chem. 2020, 8, 565782. [Google Scholar] [CrossRef] [PubMed]
- Ramakers, B.E.I.; Bode, S.A.; Killaars, A.R.; Van Hest, J.C.M.; Löwik, D.W.P.M. Sensing Cell Adhesion Using Polydiacetylene-Containing Peptide Amphiphile Fibres. J. Mater. Chem. B 2015, 3, 2954–2961. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-E.; Yan, J.; Jiang, J.; Liu, X.; Tian, C.; Xu, J.; Yuan, M.-S.; Han, X.; Wang, J. Polydiacetylene Liposomes with Phenylboronic Acid Tags: A Fluorescence Turn-on Sensor for Sialic Acid Detection and Cell-Surface Glycan Imaging. Nanoscale 2018, 10, 4570–4578. [Google Scholar] [CrossRef]
- Hu, B.; Wu, P. An Ultrathin Polydiacetylene Nanosheet as Dual Colorimetric and Fluorescent Indicator for Lysophosphatidic Acid, a Cancer Biomarker. Giant 2020, 3, 100025. [Google Scholar] [CrossRef]
- Kim, J.-M.; Lee, Y.B.; Yang, D.H.; Lee, J.-S.; Lee, G.S.; Ahn, D.J. A Polydiacetylene-Based Fluorescent Sensor Chip. J. Am. Chem. Soc. 2005, 127, 17580–17581. [Google Scholar] [CrossRef] [PubMed]
- Casimiro, L.; Métivier, R.; Le Pioufle, B.; Bensalem, S.; Allain, C. Revealing the Friction Stress of Microalgae in Microfluidic Devices through Mechanofluorochromism. Adv. Mater. Interfaces 2023, 10, 2300312. [Google Scholar] [CrossRef]
- Finney, T.J.; Frank, S.L.; Bull, M.R.; Guy, R.D.; Kuhl, T.L. Tracking Mechanical Stress and Cell Migration with Inexpensive Polymer Thin-Film Sensors. Adv. Mater. Interfaces 2023, 10, 2201808. [Google Scholar] [CrossRef]
- Perino, A.; Klymchenko, A.; Morere, A.; Contal, E.; Rameau, A.; Guenet, J.; Mély, Y.; Wagner, A. Structure and Behavior of Polydiacetylene-Based Micelles. Macro Chem. Phys. 2011, 212, 111–117. [Google Scholar] [CrossRef]
- Yao, D.; Li, S.; Zhu, X.; Wu, J.; Tian, H. Tumor-Cell Targeting Polydiacetylene Micelles Encapsulated with an Antitumor Drug for the Treatment of Ovarian Cancer. Chem. Commun. 2017, 53, 1233–1236. [Google Scholar] [CrossRef]
- Cheng, Q.; Yamamoto, M.; Stevens, R.C. Amino Acid Terminated Polydiacetylene Lipid Microstructures: Morphology and Chromatic Transition. Langmuir 2000, 16, 5333–5342. [Google Scholar] [CrossRef]
- Tang, J.; Weston, M.; Kuchel, R.P.; Lisi, F.; Liang, K.; Chandrawati, R. Fabrication of Polydiacetylene Particles Using a Solvent Injection Method. Mater. Adv. 2020, 1, 1745–1752. [Google Scholar] [CrossRef]
- Tjandra, A.D.; Weston, M.; Tang, J.; Kuchel, R.P.; Chandrawati, R. Solvent Injection for Polydiacetylene Particle Synthesis—Effects of Varying Solvent, Injection Rate, Monomers and Needle Size on Polydiacetylene Properties. Colloids Surf. A Physicochem. Eng. Asp. 2021, 619, 126497. [Google Scholar] [CrossRef]
- Ma, Z.; Ren, J. Fabrication of Stable Polydiacetylene Vesicles with 2,4-Akyl-Diacetylenic Acid. Colloids Surf. A Physicochem. Eng. Asp. 2007, 303, 179–183. [Google Scholar] [CrossRef]
- Charoenthai, N.; Pattanatornchai, T.; Wacharasindhu, S.; Sukwattanasinitt, M.; Traiphol, R. Roles of Head Group Architecture and Side Chain Length on Colorimetric Response of Polydiacetylene Vesicles to Temperature, Ethanol and pH. J. Colloid Interface Sci. 2011, 360, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Song, S.; Lee, J.; Kim, J.-M. Nanoscale Diameter Control of Sensory Polydiacetylene Nanoparticles on Microfluidic Chip for Enhanced Fluorescence Signal. Sens. Actuators B Chem. 2016, 230, 623–629. [Google Scholar] [CrossRef]
- Yoo, I.; Song, S.; Yoon, B.; Kim, J. Size-Controlled Fabrication of Polydiacetylene-Embedded Microfibers on a Microfluidic Chip. Macromol. Rapid Commun. 2012, 33, 1256–1261. [Google Scholar] [CrossRef]
- Lee, N.Y.; Jung, Y.K.; Park, H.G. On-Chip Colorimetric Biosensor Based on Polydiacetylene (PDA) Embedded in Photopolymerized Poly(Ethylene Glycol) Diacrylate (PEG-DA) Hydrogel. Biochem. Eng. J. 2006, 29, 103–108. [Google Scholar] [CrossRef]
- Song, S.; Jang, H.; Jeong, W.; Shim, J.; Kim, S.M.; Jeon, T.-J. Thermohypersensitive Polydiacetylene Vesicles Embedded in Calcium-Alginate Hydrogel Beads. Korean J. Chem. Eng. 2023, 40, 398–404. [Google Scholar] [CrossRef]
- Hassan, F.; Gentry-Weeks, C.; Reynolds, M.; Li, Y.V. Study on Microstructure and Mechanical Properties of Polydiacetylene Composite Biosensors. J Appl. Polym. Sci 2019, 136, 47877. [Google Scholar] [CrossRef]
- Liu, S.; Ding, Z.; Zhu, H.; Gree, S.; Xiao, P.; Xu, Y.; Lalevée, J. Near-Infrared Light/Thermal Dual-Responsive Epoxy-Based Polydiacetylene Composite for 3D Printing. Adv. Mater. Interfaces 2021, 8, 2101481. [Google Scholar] [CrossRef]
- Xu, Y.-Y.; Ding, Z.-F.; Liu, F.-Y.; Sun, K.; Dietlin, C.; Lalevée, J.; Xiao, P. 3D Printing of Polydiacetylene Photocomposite Materials: Two Wavelengths for Two Orthogonal Chemistries. ACS Appl. Mater. Interfaces 2020, 12, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, Y.; Sellinger, A.; Lu, M.; Huang, J.; Fan, H.; Haddad, R.; Lopez, G.; Burns, A.R.; Sasaki, D.Y.; et al. Self-Assembly of Mesoscopically Ordered Chromatic Polydiacetylene/Silica Nanocomposites. Nature 2001, 410, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Kolusheva, S.; Shahal, T.; Jelinek, R. Peptide−Membrane Interactions Studied by a New Phospholipid/Polydiacetylene Colorimetric Vesicle Assay. Biochemistry 2000, 39, 15851–15859. [Google Scholar] [CrossRef]
- Ma, G.; Cheng, Q. Vesicular Polydiacetylene Sensor for Colorimetric Signaling of Bacterial Pore-Forming Toxin. Langmuir 2005, 21, 6123–6126. [Google Scholar] [CrossRef] [PubMed]
- Saymung, R.; Traiphol, N.; Traiphol, R. Promoting Self-Assembly and Synthesis of Color-Responsive Polydiacetylenes Using Mixed Water-Organic Solvents: Effects of Solvent Composition, Structure, and Incubation Temperature. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127046. [Google Scholar] [CrossRef]
- David Nelson, A.; Shiveshwarkar, P.; Lim, B.; Rojas, G.; Abure, I.; Shrestha, A.; Jaworski, J. Tuning the Surface Charge of Self-Assembled Polydiacetylene Vesicles to Control Aggregation and Cell Binding. Biosensors 2020, 10, 132. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, S.; Suga, K.; Kamata, T.; Watanabe, K.; Namigata, H.; Welling, T.A.J.; Nagao, D. Bio-Inspired Polydiacetylene Vesicles for Controlling Stimulus Sensitivity. Macro React. Eng. 2024, 2400016. [Google Scholar] [CrossRef]
- Rueangsuwan, J.; Theerasilp, M.; Crespy, D.; Traiphol, N.; Traiphol, R. Facile Route for Large-Scale Synthesis of Reversible Thermochromic Polydiacetylene/Zinc(II) Assemblies: The Effect of Zinc(II) Precursors. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130490. [Google Scholar] [CrossRef]
- Wu, S.; Pan, L.; Huang, Y.; Yang, N.; Zhang, Q. Co-Assemblies of Polydiacetylenes and Metal Ions for Solvent Sensing. Soft Matter 2018, 14, 6929–6937. [Google Scholar] [CrossRef] [PubMed]
- Khanantong, C.; Charoenthai, N.; Phuangkaew, T.; Kielar, F.; Traiphol, N.; Traiphol, R. Phase Transition, Structure and Color-Transition Behaviors of Monocarboxylic Diacetylene and Polydiacetylene Assemblies: The Opposite Effects of Alkyl Chain Length. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 337–348. [Google Scholar] [CrossRef]
- Khanantong, C.; Charoenthai, N.; Kielar, F.; Traiphol, N.; Traiphol, R. Influences of Bulky Aromatic Head Group on Morphology, Structure and Color-Transition Behaviors of Polydiacetylene Assemblies upon Exposure to Thermal and Chemical Stimuli. Colloids Surf. A Physicochem. Eng. Asp. 2019, 561, 226–235. [Google Scholar] [CrossRef]
- Ahn, D.J.; Chae, E.-H.; Lee, G.S.; Shim, H.-Y.; Chang, T.-E.; Ahn, K.-D.; Kim, J.-M. Colorimetric Reversibility of Polydiacetylene Supramolecules Having Enhanced Hydrogen-Bonding under Thermal and pH Stimuli. J. Am. Chem. Soc. 2003, 125, 8976–8977. [Google Scholar] [CrossRef] [PubMed]
- Beliktay, G.; Shaikh, T.; Koca, E.; Cingil, H.E. Effect of UV Irradiation Time and Headgroup Interactions on the Reversible Colorimetric pH Response of Polydiacetylene Assemblies. ACS Omega 2023, 8, 37213–37224. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Lee, J.-S.; Choi, H.; Sohn, D.; Ahn, D.J. Rational Design and In-Situ FTIR Analyses of Colorimetrically Reversibe Polydiacetylene Supramolecules. Macromolecules 2005, 38, 9366–9376. [Google Scholar] [CrossRef]
- Finney, T.J.; Parikh, S.J.; Berman, A.; Sasaki, D.Y.; Kuhl, T.L. Characterizing and Tuning the Properties of Polydiacetylene Films for Sensing Applications. Langmuir 2021, 37, 12940–12951. [Google Scholar] [CrossRef]
- Weiner, B. Let There Be Light: Characterizing Physical Properties of Colloids, Nanoparticles, Polymers & Proteins Using Light Scattering; Bruce Weiner: Phoenixville, PA, USA, 2019. [Google Scholar]
- Sasaki, D.Y.; Carpick, R.W.; Burns, A.R. High Molecular Orientation in Mono- and Trilayer Polydiacetylene Films Imaged by Atomic Force Microscopy. J. Colloid Interface Sci. 2000, 229, 490–496. [Google Scholar] [CrossRef]
- Lifshitz, Y.; Golan, Y.; Konovalov, O.; Berman, A. Structural Transitions in Polydiacetylene Langmuir Films. Langmuir 2009, 25, 4469–4477. [Google Scholar] [CrossRef]
- Ocko, B.M.; Kelley, M.S.; Nikova, A.T.; Schwartz, D.K. Structure and Phase Behavior of Mixed Monolayers of Saturated and Unsaturated Fatty Acids. Langmuir 2002, 18, 9810–9815. [Google Scholar] [CrossRef]
- Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.; Shelnutt, J.A.; Haddad, R. [No Title Found]. Tribol. Lett. 2001, 10, 89–96. [Google Scholar] [CrossRef]
- Finney, T.J.; Bull, M.R.; Frank, S.L.; Solano, L.N.; Zhao, J.; Maleki, F.; Lam, K.S.; Chen-Izu, Y.; Kuhl, T.L. Planar, Kinked or Twisted? Molecular Structures of Blue and Red Phase Polydiacetylene Langmuir Films. In preparation Langmuir, (submitted).
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of Self-Assembly of Lipid Bilayers and Vesicles. Biochim. Biophys. Acta (BBA)—Biomembr. 1977, 470, 185–201. [Google Scholar] [CrossRef]
- Gaboriaud, F.; Golan, R.; Volinsky, R.; Berman, A.; Jelinek, R. Organization and Structural Properties of Langmuir Films Composed of Conjugated Polydiacetylene and Phospholipids. Langmuir 2001, 17, 3651–3657. [Google Scholar] [CrossRef]
- Hossain, M.I.; Karal, M.A.S.; Kamruzzaman, M.; Syed, I.M.; Hasan, S.; Ahamed, M.K. Effects of Hydrocarbon Chain on the Vesicle Size Distribution, Kinetics of Average Size, Bending Modulus, and Elastic Modulus of Lipid Membranes. Eur. Phys. J. E 2022, 45, 55. [Google Scholar] [CrossRef]
- Rawicz, W.; Olbrich, K.C.; McIntosh, T.; Needham, D.; Evans, E. Effect of Chain Length and Unsaturation on Elasticity of Lipid Bilayers. Biophys. J. 2000, 79, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Malvern Panalytical. Available online: https://www.malvernpanalytical.com/en/learn/knowledge-center/insights/polydispersity-what-does-it-mean-for-dls-and-chromatography (accessed on 20 September 2024).
- Lifshitz, Y.; Upcher, A.; Shusterman, O.; Horovitz, B.; Berman, A.; Golan, Y. Phase Transition Kinetics in Langmuir and Spin-Coated Polydiacetylene Films. Phys. Chem. Chem. Phys. 2010, 12, 713–722. [Google Scholar] [CrossRef]
- Itoh, K.; Nishizawa, T.; Yamagata, J.; Fujii, M.; Osaka, N.; Kudryashov, I. Raman Microspectroscopic Study on Polymerization and Degradation Processes of a Diacetylene Derivative at Surface Enhanced Raman Scattering Active Substrates. 1. Reaction Kinetics. J. Phys. Chem. B 2005, 109, 264–270. [Google Scholar] [CrossRef]
- Mayerhöfer, T.G.; Pipa, A.V.; Popp, J. Beer’s Law-Why Integrated Absorbance Depends Linearly on Concentration. ChemPhysChem 2019, 20, 2748–2753. [Google Scholar] [CrossRef] [PubMed]
- Carpick, R.W.; Mayer, T.M.; Sasaki, D.Y.; Burns, A.R. Spectroscopic Ellipsometry and Fluorescence Study of Thermochromism in an Ultrathin Poly(Diacetylene) Film: Reversibility and Transition Kinetics. Langmuir 2000, 16, 4639–4647. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Hou, Y.; Sugihara, K. Colorimetric Response in Polydiacetylene at the Single Domain Level Using Hyperspectral Microscopy. Chem. Commun. 2023, 59, 3743–3746. [Google Scholar] [CrossRef]
- Luo, J.; Fu, K.; Dong, H.; Chen, D. Self-Suspended Pure Polydiacetylene Nanoparticles with Selective Response to Lysine and Arginine. Chin. J. Chem. Phys. 2016, 29, 749–753. [Google Scholar] [CrossRef]
- Juhasz, L.; Ortuso, R.D.; Sugihara, K. Quantitative and Anisotropic Mechanochromism of Polydiacetylene at Nanoscale. Nano Lett. 2021, 21, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Jo, S.; Chen, J.; Das, B.; Juhasz, L.; Cabral, H.; Sugihara, K. Dual Nanofriction Force Microscopy/Fluorescence Microscopy Imaging Reveals the Enhanced Force Sensitivity of Polydiacetylene by pH and NaCl. Anal. Chem. 2023, 95, 11335–11341. [Google Scholar] [CrossRef] [PubMed]
- Ota, T.; Sugiura, T.; Kawata, S. Rupture Force Measurement of Biotin-Streptavidin Bonds Using Optical Trapping. Appl. Phys. Lett. 2005, 87, 043901. [Google Scholar] [CrossRef]
- Helm, C.A.; Knoll, W.; Israelachvili, J.N. Measurement of Ligand-Receptor Interactions. Proc. Natl. Acad. Sci. USA 1991, 88, 8169–8173. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.U.; Kidwell, D.A.; Colton, R.J. Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy. Langmuir 1994, 10, 354–357. [Google Scholar] [CrossRef]
- Li, X.; Matthews, S.; Kohli, P. Fluorescence Resonance Energy Transfer in Polydiacetylene Liposomes. J. Phys. Chem. B 2008, 112, 13263–13272. [Google Scholar] [CrossRef]
- Tomsho, J.W.; Benkovic, S.J. Elucidation of the Mechanism of the Reaction Between Phenylboronic Acid and a Model Diol, Alizarin Red S. J. Org. Chem. 2012, 77, 2098–2106. [Google Scholar] [CrossRef]
System | Mode of Sensing | Application | Transformation Characterization | Reference |
---|---|---|---|---|
PDA Langmuir Blodgett Bilayer on Glass | Sialic Acid– Hemagglutinin Binding | Influenza Detector | UV-Vis Spectroscopy/ Colorimetric Response | Charych et al. [3] |
PDA-Peptide Amphiphiles Fibers | Cell–RGD peptide Binding | Cell Adhesion | UV-Vis Spectroscopy | Ramakers et al. [13] |
PDA Liposomes with Phenyl- Boronic Acid | Sialic Acid– Boronic Acid Binding | Cell Surface Imaging | UV-Vis Spectroscopy/ Fluorescence Spectroscopy/ Fluorescence Microscopy | Wang et al. [14] |
Guanidinium-PDA Nanosheets | LPA–PDA–Gu Binding | Ovarian Cancer Detector | UV-Vis Spectroscopy/ Fluorescence Spectroscopy | Hu et al. [15] |
PDA Vesicles Patterned to Silicon | EDEA/EDA– α-Cyclodextrin Binding | α-Cyclodextrin Detector | Fluorescence Microscopy/UV-Vis Spectroscopy | Kim et al. [16] |
PDA Grafted to PDMS Microfluidic Device | Compression/ Shear Stress | Microalgae Shear Sensor | Fluorescence Microscopy | Casimiro et al. [17] |
Supported PDA Langmuir Films | Normal Load/Shear Stress | Slime Mold Traction Sensor | Surface Force Apparatus/ Fluorescence Microscopy | Finney et al. [18] |
Head Group | Tail Length | Effective Diameter (nm) | Dispersity |
---|---|---|---|
Carboxylic Acid | C23 | 1400 ± 200 | 0.30 ± 0.02 |
C25 | 140 ± 20 | 0.22 ± 0.05 | |
C27 | 80 ± 20 | 0.28 ± 0.06 | |
C29 | 70 ± 10 | 0.31 ± 0.02 | |
Ethanolamine | C23 | 240 ± 40 | 0.25 ± 0.04 |
C25 | 80 ± 20 | 0.27 ± 0.03 | |
Boronic Acid | C25 | 340 ± 30 | 0.23 ± 0.02 |
Surfactant | Optimal Blue Phase Dose Energy (Jcm−2 mM−1) | Optimal Blue Phase Time (s) | Maximal Red Phase Dose Energy (Jcm−2 mM−1) | Optimal Red Phase Time (s) |
---|---|---|---|---|
Et-TCDA | 0.16 ± 0.01 | 2.6 ± 0.6 | 1.7 ± 0.4 | 28 ± 6 |
Et-PCDA | 1.1 ± 0.1 | 17 ± 3 | 14 ± 3 | 220 ± 40 |
PCDA | 3.9 ± 0.5 | 70 ± 10 | 100 ± 30 | 1900 ± 400 |
HCDA | 4.6 ± 0.7 | 77 ± 9 | 140 ± 20 | 2300 ± 300 |
NCDA | 5.3 ± 0.7 | 84 ± 6 | 170 ± 30 | 3100 ± 200 |
BA-PCDA | 2.2 ± 0.2 | 28 ± 4 | N/A | N/A |
Surfactant | kp (1/s) | kt (1/s) | kp/kt |
---|---|---|---|
Et-TCDA | 0.53 ± 0.03 | 0.13 ± 0.03 | 4 ± 1 |
Et-PCDA | 0.10 ± 0.01 | 0.017 ± 0.003 | 6 ± 1 |
PCDA | 0.026 ± 0.002 | 0.0019 ± 0.0004 | 14 ± 3 |
HCDA | 0.028 ± 0.002 | 0.0016 ± 0.0002 | 18 ± 3 |
NCDA | 0.027 ± 0.001 | 0.0014 ± 0.0002 | 19 ± 3 |
Surfactant | Onset Temperature (°C) | Transition Temperature (°C) | Saturation Temperature (°C) |
---|---|---|---|
Et-TCDA | 44 | 50 | 56 |
Et-PCDA | 55 | 62 | 68 |
PCDA | 72 | 80 | 87 |
HCDA | 80 | 85 | 89 |
NCDA | 77 | 85 | 92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, J.S.; Finney, T.J.; Ilagan, E.; Frank, S.; Chen-Izu, Y.; Suga, K.; Kuhl, T.L. Fluorogenic Biosensing with Tunable Polydiacetylene Vesicles. Biosensors 2025, 15, 27. https://doi.org/10.3390/bios15010027
Miller JS, Finney TJ, Ilagan E, Frank S, Chen-Izu Y, Suga K, Kuhl TL. Fluorogenic Biosensing with Tunable Polydiacetylene Vesicles. Biosensors. 2025; 15(1):27. https://doi.org/10.3390/bios15010027
Chicago/Turabian StyleMiller, John S., Tanner J. Finney, Ethan Ilagan, Skye Frank, Ye Chen-Izu, Keishi Suga, and Tonya L. Kuhl. 2025. "Fluorogenic Biosensing with Tunable Polydiacetylene Vesicles" Biosensors 15, no. 1: 27. https://doi.org/10.3390/bios15010027
APA StyleMiller, J. S., Finney, T. J., Ilagan, E., Frank, S., Chen-Izu, Y., Suga, K., & Kuhl, T. L. (2025). Fluorogenic Biosensing with Tunable Polydiacetylene Vesicles. Biosensors, 15(1), 27. https://doi.org/10.3390/bios15010027