Label-Free Surface-Enhanced Raman Spectroscopy with Machine Learning for the Diagnosis of Thyroid Cancer by Using Fine-Needle Aspiration Liquid Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ag NPs
2.3. Clinical Sample Collection and Storage
2.4. Labe-Free SERS Measurements on FNA Washout Fluids
2.5. Raman Data Processing and Machine Learning Classification Model
2.6. Classification Model Performance Analysis
3. Results
3.1. SERS Liquid Assay Optimization and Sample Pre-Treatment
3.2. Acquisition of SERS Spectra on Thyroid FNA Washout Biofluid Samples
3.3. Classification Model on SERS Spectra
3.4. Performance Analysis and Interpretability of the Classification Model
4. Discussion
- 1.
- The first is the advantage of using a quartz tube for the liquid SERS assay. We chose to measure through a quartz tube instead of a standard slide because our samples are in a liquid phase. The liquid SERS method improves the uniformity of sample measurement compared to spreading liquid samples on a microscope slide, where uneven spreading and drying can affect the SERS signal. In addition, the advantages of using the quartz tube include optical clarity and the low Raman signal background of quartz in the visible and near-infrared region, ensuring minimal interference with the Raman signal. A potential disadvantage is the alignment and focusing into the tube, which requires patience and experience. This was easily solved in our experiment: once the position of the quartz tube on the sample stage was optimized, we recorded and fixed this position for further tests.
- 2.
- The second advantage is the use of FNA washout fluids as SERS liquid biopsy samples. Unlike most previous SERS-based thyroid diagnostic reports that rely on serum or tissue samples, our study utilizes FNA washout fluids. While the understanding of their contents is still under investigation. During the puncture process, FNA samples contain cell clusters and interstitial fluid, which contains extracellular contents and substances released from damaged cells. The FNA samples are then transferred to the preservation solution, which stabilizes and preserves the original cell morphology. Typically, commercial preservation solutions contain formaldehyde, glutaraldehyde, and ethanol. These organic reagents could partially disrupt cell membranes, potentially releasing intracellular biomarkers such as metabolites and proteins into the solution. In our experiment, the FNA washout fluids were centrifuged and the bottom precipitates, consisting primarily of cells, were discarded. Therefore, it is reasonable to assume that the supernatants of the FNA washout fluids contain extracellular biomarkers and possibly some intracellular substances, which may be useful for SERS diagnosis. However, we acknowledge that further studies are needed to confirm this hypothesis.
- 3.
- Finally, we discuss the performance of CNN compared to PCA-LDA, SVM, and RF. In this work, the diagnostic accuracy is additionally contributed by the advanced deep learning model, CNN, whose robustness to variability within cancer tissues makes it particularly well suited for this type of diagnostic task. The superior performance of the CNN model can be attributed to the following reasons: CNN excels at handling high-dimensional data and automatically extracting hierarchical features from raw inputs, allowing it to capture intricate patterns and variations in Raman spectra. Unlike SVM and RF, which rely heavily on hand-crafted features and may struggle with tumor heterogeneity, CNNs can learn complex non-linear relationships directly from the data. This enables CNNs to effectively distinguish between subtle differences in spectral data, resulting in significantly higher sensitivity and overall accuracy.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paschou, S.A.; Vryonidou, A.; Goulis, D.G. Thyroid nodules: A guide to assessment, treatment and follow-up. Maturitas 2017, 96, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, C.; Huang, F.; Chen, J.; Sun, Y.; Xu, K.; Huang, P. Risk of malignancy in thyroid nodules: Predictive value of puncture feeling of grittiness in the process of fine-needle aspiration. Sci. Rep. 2017, 7, 13109. [Google Scholar] [CrossRef] [PubMed]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017, 27, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Cabanillas, M.E. Genomic alterations in thyroid cancer: Biological and clinical insights. Nat. Rev. Endocrinol. 2024, 20, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sun, H.; Sun, L.; Shi, K.; Chen, Y.; Ren, X.; Ge, Y.; Jiang, D.; Liu, X.; Knoll, W.; et al. Rapid, label-free histopathological diagnosis of liver cancer based on Raman spectroscopy and deep learning. Nat. Commun. 2023, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Ye, J. Spontaneous Raman and Surface-Enhanced Raman Scattering Bioimaging. In Optical Imaging in Human Disease and Biological Research; Wei, X., Gu, B., Eds.; Springer: Singapore, 2021; pp. 177–195. [Google Scholar]
- Bi, X.; Wang, J.; Xue, B.; He, C.; Liu, F.; Chen, H.; Lin, L.L.; Dong, B.; Li, B.; Jin, C.; et al. SERSomes for metabolic phenotyping and prostate cancer diagnosis. Cell Rep. Med. 2024, 5, 101579. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, G.J.; Xue, C.; Pei, L.; Xiang, Y.; Zhang, C.; Chi, X.; Liu, G.; Ye, Y.; Cui, D.; et al. RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. Light Sci. Appl. 2024, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, G.; Locke, A.; Sivakumar, A.; Thomas, G.; Jansen, M.A. Clinical translational application of Raman spectroscopy to advance Benchside biochemical characterization to bedside diagnosis of esophageal diseases. J. Gastroenterol. Hepatol. 2019, 34, 1911–1921. [Google Scholar] [CrossRef] [PubMed]
- Traynor, D.; Behl, I.; O’Dea, D.; Bonnier, F.; Siobhan, N.; O’Connell, F.; Maguire, A.; Flint, S.; Galvin, S.; Healy, C.M.; et al. Raman spectral cytopathology for cancer diagnostic applications. Nat. Protoc. 2021, 16, 3716–3735. [Google Scholar] [CrossRef] [PubMed]
- Rau, J.V.; Fosca, M.; Graziani, V.; Taffon, C.; Rocchia, M.; Caricato, M.; Pozzilli, P.; Muda, A.O.; Crescenzi, A. Proof-of-concept Raman spectroscopy study aimed to differentiate thyroid follicular patterned lesions. Sci. Rep. 2017, 7, 14970. [Google Scholar] [CrossRef] [PubMed]
- Palermo, A.; Fosca, M.; Tabacco, G.; Marini, F.; Craziani, V.; Santarsia, M.C.; Longo, F.; Lauria, A.; Cesareo, R.; Giovanni, I.; et al. Raman Spectroscopy Applied to Parathyroid Tissues: A New Diagnostic Tool to Discriminate Normal Tissue from Adenoma. Anal. Chem. 2018, 90, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Sbroscia, M.; Di Gioacchino, M.; Ascenzi, P.; Crucitti, P.; di Masi, A.; Giovanni, I.; Longo, F.; Mariotti, D.; Naciu, A.M.; Palermo, A.; et al. Thyroid cancer diagnosis by Raman spectroscopy. Sci. Rep. 2020, 10, 13342. [Google Scholar] [CrossRef] [PubMed]
- Kujdowicz, M.; Januś, D.; Taczanowska-Niemczuk, A.; Lankosz, M.W.; Adamek, D. Raman Spectroscopy as a Potential Adjunct of Thyroid Nodule Evaluation: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 15131. [Google Scholar] [CrossRef]
- You, C.; Shen, Y.; Sun, S.; Zhou, J.; Li, J.; Su, G.; Michalopoulou, E.; Peng, W.; Gu, Y.; Guo, W.; et al. Artificial intelligence in breast imaging: Current situation and clinical challenges. Exploration 2023, 3, 20230007. [Google Scholar] [CrossRef] [PubMed]
- Wanderi, K.; Cui, Z. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. Exploration 2022, 2, 20210097. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Lin, L.; Chen, Z.; Ye, J. Artificial Intelligence for Surface-Enhanced Raman Spectroscopy. Small Methods 2024, 8, 2301243. [Google Scholar] [CrossRef]
- Ralbovsky, N.M.; Lednev, I.K. Raman Spectroscopy and Machine Learning as a Potential Universal Diagnostic Technique. In Raman Spectroscopy in Human Health and Biomedicine; World Scientific: London, UK, 2023; pp. 108–172. [Google Scholar]
- Fang, S.; Wu, S.; Chen, Z.; He, C.; Lin, L.L.; Ye, J. Recent progress and applications of Raman spectrum denoising algorithms in chemical and biological analyses: A review. TrAC Trends Anal. Chem. 2024, 172, 117578. [Google Scholar] [CrossRef]
- Huang, W.; Shang, Q.; Xiao, X.; Zhang, H.; Gu, Y.; Yang, L.; Shi, G.; Yang, Y.; Hu, Y.; Yuan, Y.; et al. Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 281, 121654. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, P.; Wu, S.; Chen, Z.; Fang, S.; Xiao, H.; Hu, F.; Jiang, L.; Wang, L.; Mo, B.; et al. Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 317, 124461. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Shi, B.; He, C.; Wu, S.; Zhu, L.; Jiang, J.; Wang, L.; Lin, L.; Ye, J.; Zhang, H. Euclidean distance-based Raman spectroscopy (EDRS) for the prognosis analysis of gastric cancer: A solution to tumor heterogeneity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 288, 122163. [Google Scholar] [CrossRef]
- Chen, C.; Wu, W.; Chen, C.; Chen, F.; Dong, X.; Ma, M.; Yan, Z.; Lv, X.; Ma, Y.; Zhu, M. Rapid diagnosis of lung cancer and glioma based on serum Raman spectroscopy combined with deep learning. J. Raman Spectrosc. 2021, 52, 1798–1809. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, L.; Liu, B.; Liu, L.; Liu, Y.; Zheng, Q.; Liu, D.; Luo, J. Highly accurate diagnosis of lung adenocarcinoma and squamous cell carcinoma tissues by deep learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120400. [Google Scholar] [CrossRef] [PubMed]
- Bellantuono, L.; Tommasi, R.; Pantaleo, E.; Verri, M.; Amoroso, N.; Crucitti, P.; Di Gioacchio, M.; Longo, F.; Monaco, A.; Naciu, A.M.; et al. An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis. Sci. Rep. 2023, 13, 16590. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, R.; Liu, F.; Miao, P.; Lin, L.; Ye, J. In Vivo Surface-Enhanced Transmission Raman Spectroscopy under Maximum Permissible Exposure: Toward Photosafe Detection of Deep-Seated Tumors. Small Methods 2023, 7, 2201334. [Google Scholar] [CrossRef]
- Awiaz, G.; Lin, J.; Wu, A. Recent advances of Au@Ag core–shell SERS-based biosensors. Exploration 2023, 3, 20220072. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Bi, X.; Gu, Y.; Wang, F.; Ye, J. Surface-enhanced Raman scattering nanotags for bioimaging. J. Appl. Phys. 2021, 129, 16590. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, L.; Ye, J. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater. Today Bio 2022, 13, 100205. [Google Scholar] [CrossRef]
- Lin, L.; He, H.; Xue, R.; Zhang, Y.; Wang, Z.; Nie, S.; Ye, J. Direct and quantitative assessments of near-infrared light attenuation and spectroscopic detection depth in biological tissues using surface-enhanced Raman scattering. Med-X 2023, 1, 9. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Zhang, K.; Zhang, H.; Lai, Y. Diagnostic strategy for malignant and benign thyroid nodules smaller than 10 mm based on surface-enhanced Raman spectroscopy and machine learning. Chem. Eng. J. 2024, 471, 144794. [Google Scholar] [CrossRef]
- De Leon Portilla, P.; González, A.L.; Sanchez-Mora, E. Thyroxine Quantification by Using Plasmonic Nanoparticles as SERS Substrates. Chemosensors 2023, 11, 516. [Google Scholar] [CrossRef]
- Xia, L.; Lu, J.; Chen, Z.; Cui, X.; Chen, S.; Pei, D. Identifying benign and malignant thyroid nodules based on blood serum surface-enhanced Raman spectroscopy. Nanomed. Nanotechnol. Biol. Med. 2021, 32, 102328. [Google Scholar] [CrossRef]
- Sun, X.; Chen, B.; Li, Z.; Shan, Y.; Jian, M.; Meng, X.; Wang, Z. Accurate diagnosis of thyroid cancer using a combination of surface-enhanced Raman spectroscopy of exosome on MXene-coated gold@silver core@shell nanoparticle substrate and deep learning. Chem. Eng. J. 2024, 488, 150835. [Google Scholar] [CrossRef]
- Rau, J.V.; Graziani, V.; Marco, F.; Taffon, C.; Rocchia, M.; Crucitti, P.; Pozilli, P.; Muda, A.O.; Caricato, M.; Crescenzi, A. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma. Sci. Rep. 2016, 6, 35117. [Google Scholar] [CrossRef]
- Soares de Oliveira, M.A.; Campbell, M.; Afify, A.M.; Huang, E.C.; Chan, J.W. Simulated fine-needle aspiration diagnosis of follicular thyroid nodules by hyperspectral Raman microscopy and chemometric analysis. J. Biomed. Opt. 2022, 27, 095001. [Google Scholar] [CrossRef]
- De Oliveira, M.A.S.; Campbell, M.; Afify, A.M.; Huang, E.C.; Chan, J.W. Hyperspectral Raman microscopy can accurately differentiate single cells of different human thyroid nodules. Biomed. Opt. Express 2019, 10, 4411–4421. [Google Scholar] [CrossRef]
- Song, H.; Dong, C.; Zhang, X.; Wu, W.; Chen, C.; Ma, B.; Chen, F.; Chen, C.; Lv, X. Rapid identification of papillary thyroid carcinoma and papillary microcarcinoma based on serum Raman spectroscopy combined with machine learning models. Photodiagn. Photodyn. Ther. 2022, 37, 102647. [Google Scholar] [CrossRef]
- Wang, S.-S.; Xie, C.; Ye, D.-X.; Jin, B. Differentiating Follicular Thyroid Carcinoma and Thyroid Adenoma by Using Near-Infrared Surface-Enhanced Raman Spectroscopy. Indian J. Surg. 2023. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Lin, D.; Huang, Z.; Pan, J.; Chen, G.; Lin, J.; Liu, N.; Yu, Y.; Feng, S. Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues. Laser Phys. Lett. 2014, 11, 045602. [Google Scholar] [CrossRef]
- Liu, F.; Sun, Z.; Li, B.; Liu, J.; Chen, Z.; Ye, J. Surface-enhanced Raman scattering spatial fingerprinting decodes the digestion behavior of lysosomes in live single cells. VIEW 2024, 5, 20240004. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- He, C.; Liu, F.; Wang, J.; Bi, X.; Pan, J.; Xue, W.; Qian, X.; Chen, Z.; Ye, J. When surface-enhanced Raman spectroscopy meets complex biofluids: A new representation strategy for reliable and comprehensive characterization. Anal. Chim. Acta 2024, 1312, 342767. [Google Scholar] [CrossRef] [PubMed]
SERS Peak (cm−1) | Assignments | References |
---|---|---|
747 | Adenine, Cytochrome c | [13,14,25] |
1038 | τ(HCH)(CH3), τ(HCH)(CH2) collagen, phospholipids, phenylalanine | [14] |
1163 | ν(C-C), ν(C-N) of proteins and ν(C-C) of lipids, carotenoids | [13,14] |
1396 | CH-rocking, carbohydrates | [35] |
1616 | Amide I and lipids | [13] |
Accuracy | Sensitivity | Specificity | AUC | |
---|---|---|---|---|
PCA-LDA | 0.6208 | 0.4413 | 0.8283 | 0.645 |
RF | 0.7733 | 0.5633 | 0.9833 | 0.798 |
SVM | 0.7625 | 0.5433 | 0.9817 | 0.773 |
CNN | 0.8810 | 0.8780 | 0.8840 | 0.953 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Wu, S.; Wongwasuratthakul, P.; Chen, Z.; Cai, W.; Li, Q.; Lin, L.L. Label-Free Surface-Enhanced Raman Spectroscopy with Machine Learning for the Diagnosis of Thyroid Cancer by Using Fine-Needle Aspiration Liquid Samples. Biosensors 2024, 14, 372. https://doi.org/10.3390/bios14080372
Gao L, Wu S, Wongwasuratthakul P, Chen Z, Cai W, Li Q, Lin LL. Label-Free Surface-Enhanced Raman Spectroscopy with Machine Learning for the Diagnosis of Thyroid Cancer by Using Fine-Needle Aspiration Liquid Samples. Biosensors. 2024; 14(8):372. https://doi.org/10.3390/bios14080372
Chicago/Turabian StyleGao, Lili, Siyi Wu, Puwasit Wongwasuratthakul, Zhou Chen, Wei Cai, Qinyu Li, and Linley Li Lin. 2024. "Label-Free Surface-Enhanced Raman Spectroscopy with Machine Learning for the Diagnosis of Thyroid Cancer by Using Fine-Needle Aspiration Liquid Samples" Biosensors 14, no. 8: 372. https://doi.org/10.3390/bios14080372
APA StyleGao, L., Wu, S., Wongwasuratthakul, P., Chen, Z., Cai, W., Li, Q., & Lin, L. L. (2024). Label-Free Surface-Enhanced Raman Spectroscopy with Machine Learning for the Diagnosis of Thyroid Cancer by Using Fine-Needle Aspiration Liquid Samples. Biosensors, 14(8), 372. https://doi.org/10.3390/bios14080372