Fire up Biosensor Technology to Assess the Vitality of Trees after Wildfires
Abstract
:1. Introduction
2. Biosensors
3. Plant Biosensors
4. Sugars and Ethanol as Plant Signaling Molecules in the Stress Response
4.1. Amperometric Glucose Biosensors
4.2. Amperometric Fructose Biosensors
4.3. Amperometric Ethanol Biosensors
5. Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodwin, S.; Olazabal, M.; Castro, A.J.; Pascual, U. Global mapping of urban nature-based solutions for climate change adaptation. Nat. Sustain. 2023, 6, 458–469. [Google Scholar] [CrossRef]
- Anzano, A.; Bonanomi, G.; Mazzoleni, S.; Lanzotti, V. Plant metabolomics in biotic and abiotic stress: A critical overview. Phytochem. Rev. 2022, 21, 503–524. [Google Scholar] [CrossRef]
- van Zanten, M.; Ai, H.; Quint, M. Plant thermotropism: An underexplored thermal engagement and avoidance strategy. J. Exp. Bot. 2021, 72, 7414–7420. [Google Scholar] [CrossRef] [PubMed]
- Cocozza, C.; Traversi, M.L.; Giovannelli, A. Tree growth conditions are demanded when optimal, are unwanted when limited, but when are they suboptimal? Plants 2021, 10, 1943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Li, R.; Ge, Y.; Li, Y.; Li, R. Plants’ response to abiotic stress: Mechanisms and strategies. Int. J. Mol. Sci. 2023, 24, 10915. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.-L.; Gao, Q.-X. Contributions of natural systems and human activity to greenhouse gas emissions. Adv. Clim. Chang. Res. 2018, 9, 243–252. [Google Scholar] [CrossRef]
- Carnicer, J.; Alegria, A.; Giannakopoulos, C.; Di Giuseppe, F.; Karali, A.; Koutsias, N.; Lionello, P.; Parrington, M.; Vitolo, C. Global warming is shifting the relationships between fire weather and realized fire-induced CO2 emissions in Europe. Sci. Rep. 2022, 12, 10365. [Google Scholar] [CrossRef] [PubMed]
- Michaletz, S.T.; Johnson, E.A. How forest fires kill trees: A review of the fundamental biophysical processes. Scand. J. For. Res. 2007, 22, 500–515. [Google Scholar] [CrossRef]
- O’Brien, J.J.; Hiers, J.K.; Varner, J.M.; Hoffman, C.M.; Dickinson, M.B.; Michaletz, S.T.; Loudermilk, E.L.; Butler, B.W. Advances in mechanistic approaches to quantifying biophysical fire effects. Curr. For. Rep. 2018, 4, 161–177. [Google Scholar] [CrossRef]
- Clarke, P.J.; Lawes, M.J.; Midgley, J.J.; Lamont, B.B.; Ojeda, F.; Burrows, G.E.; Enright, N.J.; Knox, K.J.E. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol. 2013, 197, 19–35. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 2017, 22, 1008–1015. [Google Scholar] [CrossRef]
- Rosenberg, B.; Kemeny, G.; Switzer, R.C.; Hamilton, T.C. Quantitative evidence for protein denaturation as the cause of thermal death. Nature 1971, 232, 471–473. [Google Scholar] [CrossRef]
- Dickinson, M.B.; Johnson, E.A. Temperature-dependent rate models of vascular cambium cell mortality. Can. J. For. Res. 2004, 34, 546–559. [Google Scholar] [CrossRef]
- Bär, A.; Michaletz, S.T.; Mayr, S. Fire effects on tree physiology. New Phytol. 2019, 223, 1728–1741. [Google Scholar] [CrossRef]
- Nesmith, J.; Das, A.; O’Hara, K.; van Mantgem, P. The influence of pre-fire tree growth and crown condition on post-fire mortality of sugar pine following prescribed fire in Sequoia National Park. Can. J. For. Res. 2015, 45, 910–919. [Google Scholar] [CrossRef]
- Maringer, J.; Ascoli, D.; Küffer, N.; Schmidtlein, S.; Conedera, M. What drives European beech (Fagus sylvatica L.) mortality after forest fires of varying severity? For. Ecol. Manag. 2016, 368, 81–93. [Google Scholar] [CrossRef]
- Kelsey, R.G.; Douglas, W.J. Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire. BioScience 2017, 67, 443–451. [Google Scholar] [CrossRef]
- Reed, C.C.; Hood, S.M. Nonstructural carbohydrates explain post-fire tree mortality and recovery patterns. Tree Physiol. 2024, 44, tpad155. [Google Scholar] [CrossRef]
- Moraskie, M.; Roshid, M.H.O.; O’Connor, G.; Dikici, E.; Zingg, J.M.; Deo, S.; Daunert, S. Microbial whole-cell biosensors: Current applications, challenges, and future perspectives. Biosens. Bioelectron. 2021, 191, 113359. [Google Scholar] [CrossRef] [PubMed]
- Wijayanti, S.D.; Tsvik, L.; Haltrich, D. Recent advances in electrochemical enzyme-based biosensors for food and beverage analysis. Foods 2023, 12, 3355. [Google Scholar] [CrossRef] [PubMed]
- Sadani, K.; Nag, P.; Thian, X.Y.; Mukherji, S. Enzymatic optical biosensors for healthcare applications. Biosens. Bioelectron. X 2022, 12, 100278. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, J.; Chao, J. Recent advances in DNA-based electrogenerated chemiluminescence biosensors. Sens. Diagn. 2023, 2, 582–599. [Google Scholar] [CrossRef]
- Shan, C.W.; Chen, Z.; Han, G.C.; Feng, X.Z.; Kraatz, H.B. Electrochemical immuno-biosensors for the detection of the tumor marker alpha-fetoprotein: A review. Talanta 2024, 271, 125638. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Sadanandom, A.; Napier, R.M. Biosensors in plants. Curr. Opin. Plant Biol. 2010, 13, 736–743. [Google Scholar] [CrossRef]
- Danielsson, B. Calorimetric biosensors. Biochem. Soc. Trans. 1991, 19, 26–28. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.J.; Yang, Z.; Wilkinson, S.; Zhou, X. Optical biosensors based on refractometric sensing schemes: A review. Biosens. Bioelectron. 2019, 144, 111693. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.S. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Ong, J.J.; Pollard, T.D.; Goyanes, A.; Gaisford, S.; Elbadawi, M.; Basit, A.W. Optical biosensors—Illuminating the path to personalized drug dosing. Biosens. Bioelectron. 2021, 188, 113331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, W.; Lv, C.; Liu, X.; Yang, M.; Guo, M.; Fu, Q. Electrochemical biosensors represent promising detection tools in medical field. Adv. Sens. Energ. Mat. 2023, 2, 100081. [Google Scholar] [CrossRef]
- Sumitha, M.S.; Xavier, T.S. Recent advances in electrochemical biosensors—A brief review. Hybrid Adv. 2023, 2, 100023. [Google Scholar] [CrossRef]
- Perumal, V.; Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Singh, A.K.; Mittal, S.; Das, M.; Saharia, A.; Tiwari, M. Optical biosensors: A decade in review. Alex. Eng. J. 2023, 67, 673–691. [Google Scholar] [CrossRef]
- Roda, A.; Mirasoli, M.; Guardigli, M.; Zangheri, M.; Caliceti, C.; Calabria, D.; Simoni, P. Advanced biosensors for monitoring astronauts’ health during long-duration space missions. Biosens. Bioelectron. 2018, 111, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Gavrilaș, S.; Ursachi, C.Ș.; Perța-Crișan, S.; Munteanu, F.D. Recent trends in biosensors for environmental quality monitoring. Sensors 2022, 22, 1513. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Zhu, J.; Wu, W.; Wang, N.; Wang, J.; Wu, J.; Wu, Q.; Wang, X.; Yu, C.; Wei, G.; et al. Wearable sweat biosensors refresh personalized health/medical diagnostics. Research 2021, 2021, 9757126. [Google Scholar] [CrossRef]
- Pillai, S.; Upadhyay, A.; Sayson, D.; Nguyen, B.H.; Tran, S.D. Advances in medical wearable biosensors: Design, fabrication and materials strategies in healthcare monitoring. Molecules 2022, 27, 165. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Brito, N.F.; Szulczyński, B.; Wojciechowski, M.; Buda, N.; Melo, A.C.A.; Kamysz, W.; Gębicki, J. Olfactory receptor-based biosensors as potential future tools in medical diagnosis. TrAC Trends Anal. Chem. 2022, 150, 116599. [Google Scholar] [CrossRef]
- Nassar, J.M.; Khan, S.M.; Villalva, D.R.; Nour, M.M.; Almuslem, A.S.; Hussain, M.M. Compliant plant wearables for localized microclimate and plant growth monitoring. Npj Flex. Electron. 2018, 2, 24. [Google Scholar] [CrossRef]
- Zhao, F.; He, J.; Li, X.; Bai, Y.; Ying, Y.; Ping, J. Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens. Bioelectron. 2020, 170, 112636. [Google Scholar] [CrossRef]
- Barbosa, J.A.; Freitas, V.M.S.; Vidotto, L.H.B.; Schleder, G.R.; de Oliveira, R.A.G.; da Rocha, J.F.; Kubota, L.T.; Vieira, L.C.S.; Tolentino, H.C.N.; Neckel, I.T.; et al. Biocompatible wearable electrodes on leaves toward the on-site monitoring of water loss from plants. ACS Appl. Mater. Interfaces 2022, 14, 22989–23001. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Aguirre, I.; Hodnik, V.; Glais, L.; Rupar, M.; Jacquot, E.; Anderluh, G.; Ravnikar, M. Surface plasmon resonance for monitoring the interaction of Potato virus Y with monoclonal antibodies. Anal. Biochem. 2014, 447, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Huang, X.; Xu, J.; Li, G.; Ma, J.; Ji, H.F.; Zhu, S.; Chen, H. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal. Biochem. 2013, 440, 18–22. [Google Scholar] [CrossRef]
- Kumar, V.; Arora, K. Trends in nano-inspired biosensors for plants. Mater. Sci. Energy Technol. 2020, 3, 255–273. [Google Scholar] [CrossRef]
- Bharti, A.; Jain, U.; Chauhan, N. From lab to field: Nano-biosensors for real-time plant nutrient tracking. Plant Nano Biol. 2024, 9, 100079. [Google Scholar] [CrossRef]
- Crespo-Rosa, J.R.; Foca, G.; Ulrici, A.; Pigani, L.; Zanfrognini, B.; Cubillana-Aguilera, L.; Palacios-Santander, J.M.; Zanardi, C. Simultaneous detection of glucose and fructose in synthetic musts by multivariate analysis of silica-based amperometric sensor signals. Sensors 2021, 21, 4190. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Lee, K.H. Electrochemical sensors for sustainable precision agriculture—A review. Front Chem. 2022, 10, 848320. [Google Scholar] [CrossRef] [PubMed]
- Ai, G.; Zhou, Y.; Zhang, H.; Wei, Q.; Luo, B.; Xie, Y.; Wang, C.; Xue, X.; Li, A. Ultrasensitive molecular imprinted electrochemical sensor for in vivo determination of glycine betaine in plants. Food Chem. 2024, 435, 137554. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xu, T.; Li, A.; Zhao, C. A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition. Comput. Electron. Agric. 2024, 218, 108714. [Google Scholar] [CrossRef]
- Sneha, M.; Ravindranath, N.A.; Murugesan, N.; Jayaraman, V. A biosensor for monitoring of salt stress in plants. Org. Electron. 2023, 113, 106698. [Google Scholar] [CrossRef]
- Ruiz-Gonzalez, A.; Kempson, H.; Haseloff, J. A simple reversed iontophoresis-based sensor to enable in vivo multiplexed measurement of plant biomarkers using screen-printed electrodes. Sensors 2023, 23, 780. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, F.; Wang, M.; Zhang, Y.; Fu, S. Flexible wearable sensors for crop monitoring: A review. Front. Plant Sci. 2024, 15, 1406074. [Google Scholar] [CrossRef]
- Qu, C.-C.; Sun, X.-Y.; Sun, W.-X.; Cao, L.-X.; Wang, X.-Q.; He, Z.-Z. Flexible wearables for plants. Small 2021, 17, 2104482. [Google Scholar] [CrossRef] [PubMed]
- Dufil, G.; Bernacka-Wojcik, I.; Armada-Moreira, A.; Stavrinidou, E. Plant bioelectronics and biohybrids: The growing contribution of organic electronic and carbon-based materials. Chem. Rev. 2022, 122, 4847–4883. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lu, H.; Jiang, S.; Gao, B. Recent advances of microneedles biosensors for plants. Anal. Bioanal. Chem. 2024, 416, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.H.; Zhou, J.; Pan, Y.X.; Ping, J.F. Wearable electrochemical sensors for plant small-molecule detection. Trends Plant Sci. 2024, 29, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Baek, E.; Jeon, K.S.; Park, K.H.; Yeo, J.; Lee, J. Monitoring of water transportation in plant stem with microneedle sap flow sensor. J. Microelectromech. Syst. 2018, 27, 440–447. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, X.; Chen, Y.; Castellano, M.J.; Schnable, J.C.; Schnable, P.S.; Dong, L. In-planta nitrate detection using insertable plant microsensor. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems, Berlin, Germany, 23–27 June 2019. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, D.; Wang, W.; Liu, J.; Guan Thng, S.T.; Chen, P. A silk-microneedle patch to detect glucose in the interstitial fluid of skin or plant tissue. Sens. Actuator B-Chem. 2022, 372, 132626. [Google Scholar] [CrossRef]
- GhavamiNejad, P.; GhavamiNejad, A.; Zheng, H.; Dhingra, K.; Samarikhalaj, M.; Poudineh, M. A conductive hydrogel microneedle based assay integrating PEDOT:PSS and Ag-Pt nanoparticles for real-time, enzyme-less, and electrochemical sensing of glucose. Adv. Healthc. Mater. 2023, 12, e2202362. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhou, S.H.; Chen, J.B.; Zhou, J.; Fan, K.; Pan, Y.X. An integrated plant glucose monitoring system based on microneedle-enabled electrochemical sensor. Biosens. Bioelectron. 2024, 248, 115964. [Google Scholar] [CrossRef]
- Zhao, L.; Wen, Z.Z.; Jiang, F.J.; Zheng, Z.Z.; Lu, S.Z. Silk/polyols/GOD microneedle based electrochemical biosensor for continuous glucose monitoring. Rsc Adv. 2020, 10, 6163–6171. [Google Scholar] [CrossRef] [PubMed]
- Diacci, C.; Abedi, T.; Lee, J.W.; Gabrielsson, E.O.; Berggren, M.; Simon, D.T.; Niittylä, T.; Stavrinidou, E. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience 2021, 24, 101966. [Google Scholar] [CrossRef] [PubMed]
- Bukhamsin, A.; Ait Lahcen, A.; Filho, J.D.O.; Shetty, S.; Blilou, I.; Kosel, J.; Salama, K.N. Minimally-invasive, real-time, non-destructive, species-independent phytohormone biosensor for precision farming. Biosens. Bioelectron. 2022, 214, 114515. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, S.A.; De la Paz, E.; Del Caño, R.; Seker, S.; Saha, T.; Wang, J.; Jaramillo-Botero, A. Non-invasive in vivo glucose-based stress monitoring in plants. Biosens. Bioelectron. 2023, 231, 115300. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, S.A.; Valencia, D.P.; Velez, G.E.; Jaramillo-Botero, A. Advancing abiotic stress monitoring in plants with a wearable non-destructive real-time salicylic acid laser-induced-graphene sensor. Biosens. Bioelectron. 2024, 255, chen116261. [Google Scholar] [CrossRef]
- Dhanjai; Mugo, S.M.; Lu, W. Modified stainless steel microneedle electrode for polyphenolics detection. Anal. Bioanal. Chem. 2020, 412, 7063–7072. [Google Scholar] [CrossRef]
- Hossain, N.I.; Tabassum, S. Stem-FIT: A microneedle based multi-parametric sensor for in situ monitoring of salicylic acid and pH levels in live plants. In Proceedings of the 2022 IEEE 17th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Taoyuan, Taiwan, 14–17 April 2022; pp. 312–316. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Wang, X.; Hou, P.; Luo, B.; Song, P.; Pan, D.; Li, A.; Chen, L. Disposable stainless steel-based electrochemical microsensor for in vivo determination of indole-3-acetic acid in soybean seedlings. Biosens. Bioelectron. 2019, 126, 193–199. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, L.; Li, M.; Li, C.; Li, P.; Li, H. Au@ SnO2-vertical graphene-based microneedle sensor for in-situ determination of abscisic acid in plants. Mater. Sci. Eng. C 2021, 127, 112237. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Ai, Y.; Yan, L.; Wang, B.; Huang, Y.; Zou, Q.; Fu, H.; Niu, X.; Sun, W. Wireless electrochemical sensor for the detection of phytoregulator indole-3-acetic acid using gold nanoparticles and three-dimensional reduced graphene oxide modified screen printed carbon electrode. Talanta 2023, 253, 124030. [Google Scholar] [CrossRef]
- Gao, J.; Li, H.; Li, M.; Wang, G.; Long, Y.; Li, P.; Li, C.; Yang, B. Polydopamine/graphene/MnO2 composite-based electrochemical sensor for in situ determination of free tryptophan in plants. Anal. Chim. Acta 2021, 1145, 103–113. [Google Scholar] [CrossRef]
- Gota, T.; Chowdhury, M.; Ojumu, T. Non-enzymatic fructose sensor based on Co3O4 thin film. Electroanalysis 2017, 29, 2855–2862. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Luo, B.; Wang, C.; Hou, P.; Dong, H.; Li, A.; Zhao, C. Enzyme-free electrochemical sensors for in situ quantification of reducing sugars based on carboxylated graphene–carboxylated multiwalled carbon nanotubes–gold nanoparticle–modified electrode. Front. Plant Sci. 2022, 13, 872190. [Google Scholar] [CrossRef] [PubMed]
- Cho, L.-H.; Pasriga, R.; Yoon, J.; Jeon, J.-S.; An, G. Roles of sugars in controlling flowering time. J. Plant Biol. 2018, 61, 121–130. [Google Scholar] [CrossRef]
- Ahmad, I.Z. Role of sugars in abiotic stress signaling in plants. In Plant Signaling Molecules. Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing Sawston: Cambridge, UK, 2019; pp. 207–217. [Google Scholar] [CrossRef]
- D’Andrea, E.; Rezaie, N.; Battistelli, A.; Gavrichkova, O.; Kuhlmann, I.; Matteucci, G.; Moscatello, S.; Proietti, S.; Scartazza, A.; Trumbore, S.; et al. Winter’s bite: Beech trees survive complete defoliation due to spring late-frost damage by mobilizing old C reserves. New Phytol. 2019, 224, 625–631. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, E.; Scartazza, A.; Battistelli, A.; Collalti, A.; Proietti, S.; Rezaie, N.; Matteucci, G.; Moscatello, S. Unravelling resilience mechanisms in forests: Role of non-structural carbohydrates in responding to extreme weather events. Tree Physiol. 2021, 41, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Formela-Luboińska, M.; Labudda, M.; Morkunas, I. The role of sugars in plant responses to stress and their regulatory function during development. Int. J. Mol. Sci. 2022, 23, 5161. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sheen, J. Dynamic and diverse sugar signaling. Curr. Opin. Plant Biol. 2016, 33, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Giovannelli, A.; Traversi, M.L.; Anichini, M.; Hoshika, Y.; Fares, S.; Paoletti, E. Effect of long-tTerm vs. short-term ambient ozone exposure on radial stem growth, sap flux and xylem morphology of O3-sensitive poplar trees. Forests 2019, 10, 396. [Google Scholar] [CrossRef]
- Giovannelli, A.; Mattana, S.; Emiliani, G.; Anichini, M.; Traversi, M.L.; Pavone, F.S.; Cicchi, R. Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings. Tree Physiol. 2022, 42, 1149–1163. [Google Scholar] [CrossRef]
- Barbaroux, C.; Breda, N.; Dufrene, E. Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petrea and Fagus sylvatica). New Phytol. 2003, 157, 605–615. [Google Scholar] [CrossRef]
- Martinez-Trinidad, T.; Watson, W.T.; Arnold, M.A.; Lombardini, L. Investigations of exogenous applications of carbohydrates on the growth and vitality of live oaks. Urban For. Urban Green. 2009, 8, 41–48. [Google Scholar] [CrossRef]
- Lo Presti, D.; Di Tocco, J.; Massaroni, C.; Cimini, S.; De Gara, L.; Singh, S.; Raucci, A.; Manganiello, G.; Woo, S.L.; Schena, E.; et al. Current understanding, challenges and perspective on portable systems applied to plant monitoring and precision agriculture. Biosens. Bioelectron. 2023, 222, 115005. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.M.; Cluck, D.R.; Smith, S.L.; Ryan, K.C. Using bark char codes to predict post-fire cambium mortality. Fire Ecol. 2008, 4, 57–73. [Google Scholar] [CrossRef]
- Giovannelli, A.; Emiliani, G.; Traversi, M.L.; Deslauriers, A.; Rossi, S. Sampling cambial region and mature xylem for non structural carbohydrates and starch analyses. Dendrochronologia 2011, 29, 177–182. [Google Scholar] [CrossRef]
- Martinez-Trinidad, T.; Watson, W.T.; Arnold, M.A.; Lombardini, L.; Appel, D.N. Comparing various techniques to measure tree vitality of live oaks. Urban For. Urban Green. 2010, 9, 199–203. [Google Scholar] [CrossRef]
- Xue, Y.; Thalmayer, A.S.; Zeising, S.; Fischer, G.; Lübke, M. Commercial and scientific solutions for blood glucose monitoring—A review. Sensors 2022, 22, 425. [Google Scholar] [CrossRef] [PubMed]
- Kamanina, O.A.; Kamanin, S.S.; Kharkova, A.S.; Arlyapov, V.A. Glucose biosensor based on screen-printed electrode modified with silicone sol–gel conducting matrix containing carbon nanotubes. 3 Biotech 2019, 9, 290. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Wang, D.; Xu, J.; Chen, K.; Li, X.; Yi, H.; Ni, Z. Glucose sensing on screen-printed electrochemical electrodes based on porous graphene aerogel @prussian blue. Biomed. Microdevices 2022, 24, 14. [Google Scholar] [CrossRef]
- Sakalauskiene, L.; Brasiunas, B.; Popov, A.; Kausaite-Minkstimiene, A.; Ramanaviciene, A. The development of reagentless amperometric glucose biosensor based on gold nanostructures, prussian blue and glucose oxidase. Biosensors 2023, 13, 942. [Google Scholar] [CrossRef]
- Liu, C.-T.; Liu, C.-H.; Lai, Y.-T.; Lee, C.-Y.; Gupta, S.; Tai, N.-H. A salivary glucose biosensor based on immobilization of glucose oxidase in nafion-carbon nanotubes nanocomposites modified on screen printed electrode. Microchem. J. 2023, 91, 108872. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, W.; Cui, Y. Development of an amperometric biosensor on a toothbrush for glucose. Sens. Actuators Rep. 2023, 5, 100133. [Google Scholar] [CrossRef]
- Albanese, D.; Sannini, A.; Malvano, F.; Pilloton, R.; Di Matteo, M. Optimisation of glucose biosensors based on sol–gel entrapment and prussian blue-modified screen-printed electrodes for real food analysis. Food Anal. Methods 2014, 7, 1002–1008. [Google Scholar] [CrossRef]
- Khosravi, S.; Soltanian, S.; Servati, A.; Khademhosseini, A.; Zhu, Y.; Servati, P. Screen-printed textile-based electrochemical biosensor for noninvasive monitoring of glucose in sweat. Biosensors 2023, 13, 684. [Google Scholar] [CrossRef]
- Ang, L.F.; Por, L.Y.; Yam, M.F. Development of an amperometric-based glucose biosensor to measure the glucose content of fruit. PLoS ONE 2015, 10, e0111859. [Google Scholar] [CrossRef]
- Šakinyte, I.; Barkauskas, J.; Gaidukevič, J.; Razumiene, J. Thermally reduced graphene oxide: The study and use for reagentless amperometric d-fructose biosensors. Talanta 2015, 144, 1096–1103. [Google Scholar] [CrossRef]
- Bollella, P.; Hibino, Y.; Conejo-valverde, P.; Soto-cruz, J.; Bergueiro, J. The influence of the shape of Au nanoparticles on the catalytic current of fructose dehydrogenase. Anal. Bioanal. Chem. 2019, 411, 7645–7657. [Google Scholar] [CrossRef]
- Bollella, P. Enzyme-based amperometric biosensors: 60 years later, Quo Vadis? Anal. Chim. Acta 2022, 1234, 340517. [Google Scholar] [CrossRef]
- Silveri, F.; Paolini, D.; Della Pelle, F.; Bollella, P.; Scroccarello, A.; Suzuki, Y.; Fukawa, E.; Sowa, K.; Di Franco, C.; Torsi, L.; et al. Lab-made flexible third-generation fructose biosensors based on 0D-nanostructured transducers. Biosens. Bioelectron. 2023, 237, 115450. [Google Scholar] [CrossRef]
- Antiochia, R.; Palleschi, G. A tri-enzyme electrode probe for the sequential determination of fructose and glucose in the same sample. Anal. Lett. 1997, 30, 683–697. [Google Scholar] [CrossRef]
- Begun, A.; Kobatake, E.; Suzawa, T.; Ikariyama, Y.; Aizawa, M. New electrocatalytic biomolecular interface for fabricating a fructose dehydrogenase-based sensing system. Anal. Chim. Acta 1993, 280, 31–36. [Google Scholar] [CrossRef]
- Paredes, P.A.; Parellada, J.; Fernndez, V.M.; Katakis, I.; Dominguez, E. Amperometric mediated carbon paste biosensor based on D-fructose dehydrogenase for the determination of fructose in food analysis. Biosens. Bioelectron. 1997, 12, 1233–1243. [Google Scholar] [CrossRef]
- Biscay, J.; Rama, E.C.; García, M.B.G.; Reviejo, A.J.; Carrazón, J.M.P.; García, A.C. Amperometric fructose sensor based on ferrocyanide modified screen-printed carbon electrode. Talanta 2012, 88, 432–438. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kano, K.; Shirai, O.; Kitazumi, Y. Diffusion-limited electrochemical D-fructose sensor based on direct electron transfer-type bioelectrocatalysis by a variant of D-fructose dehydrogenase at a porous gold microelectrode. J. Electroanal. Chem. 2020, 877, 114651. [Google Scholar] [CrossRef]
- Trivedi, U.B.; Lakshminarayana, D.; Kothari, I.L.; Patel, P.B.; Panchal, C.J. Amperometric fructose biosensor based on fructose dehydrogenase enzyme. Sens. Actuators B 2009, 136, 45–51. [Google Scholar] [CrossRef]
- Siepenkoetter, T.; Salaj-Kosla, U.; Magner, E. The immobilization of fructose dehydrogenase on nanoporous gold electrodes for the detection of fructose. ChemElectroChem 2017, 4, 905–912. [Google Scholar] [CrossRef]
- Antiochia, R.; Gorton, L. A new osmium-polymer modified screen-printed graphene electrode for fructose detection. Sensor. Actuator. B Chem. 2014, 195, 287–293. [Google Scholar] [CrossRef]
- Bollella, P.; Hibino, Y.; Kano, K.; Gorton, L.; Antiochia, R. Highly sensitive membraneless fructose biosensor based on fructose dehydrogenase immobilized onto aryl thiol modified highly porous gold electrode: Characterization and application in food samples. Anal. Chem. 2018, 90, 12131–12136. [Google Scholar] [CrossRef]
- Bilgi, M.; Ayranci, E. Development of amperometric biosensors using screen-printed carbon electrodes modified with conducting polymer and nanomaterials for the analysis of ethanol, methanol and their mixtures. J. Electroanal. Chem. 2018, 823, 588–592. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, Y.; Feng, J.; Chu, Z.; Jin, W. Screen-printing of nanocube-based flexible microchips for the precise biosensing of ethanol during fermentation. AIChE J. 2021, 67, e1714. [Google Scholar] [CrossRef]
- Istrate, O.M.; Bala, C.; Rotariu, L. A new highly sensitive electrochemical biosensor for ethanol detection based on gold nanoparticles/reduced graphene oxide/polyallylamine hydrochloride nanocomposite. Biosensors 2023, 13, 954. [Google Scholar] [CrossRef]
- Azevedo, A.M.; Prazeres, D.M.F.; Cabral, J.M.S.; Fonseca, L.P. Ethanol biosensors based on alcohol oxidase. Biosens. Bioelectron. 2005, 21, 235–247. [Google Scholar] [CrossRef]
- Akyilmaz, E.; Dinckaya, E. A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determinationin serum. Talanta 2000, 53, 505–509. [Google Scholar] [CrossRef]
- Stasyuk, N.; Demkiv, O.; Gayda, G.; Zakalska, O.; Nogala, W.; Gonchar, M. Amperometric biosensors based on alcohol oxidase and peroxidase-like nanozymes for ethanol determination. Mikrochim. Acta. 2022, 189, 474. [Google Scholar] [CrossRef]
- Hooda, V.; Kumar, V.; Gahlaut, A.; Hooda, V. A novel amperometric bienzymatic biosensor based on alcohol oxidase coupled PVC reaction cell and nanomaterials modified working electrode for rapid quantification of alcohol. Prep. Biochem. Biotechnol. 2018, 48, 877–886. [Google Scholar] [CrossRef]
- Hooda, V.; Gahlaut, A.; Hooda, V. A novel amperometric biosensor for rapid detection of ethanol utilizing gold nanoparticles and enzyme coupled PVC reaction cell. Environ. Technol. 2021, 42, 3318–3328. [Google Scholar] [CrossRef]
- Maringer, J.; Ascoli, D.; Dorren, L.; Bebi, P.; Conedera, M. Temporal trends in the protective capacity of burnt beech forests (Fagus sylvatica L.) against rockfall. Eur. J. For. Res. 2016, 135, 657–673. [Google Scholar] [CrossRef]
- Thompson, M.T.; Koyama, A.; Kavanagh, K.L. Wildfire effects on physiological properties in conifers of central Idaho forests, USA. Trees 2017, 31, 545–555. [Google Scholar] [CrossRef]
- Battipaglia, G.; Tognetti, R.; Valese, E.; Ascoli, D.; De Luca, P.F.; Basile, S.; Ottaviano, M.; Mazzoleni, S.; Marchetti, M.; Esposito, A. Incendi 2017: Un’importante lezione. Forest 2017, 14, 231–236. [Google Scholar] [CrossRef]
- Valor, T.; Casals, P.; Altieri, S.; González-Olabarria, J.R.; Piqué, M.; Battipaglia, G. Disentangling the effects of crown scorch and competition release on the physiological and growth response of Pinus halepensis Mill. using δ13C and δ18O isotopes. For. Ecol. Manag. 2018, 424, 276–287. [Google Scholar] [CrossRef]
- Valor, T.; González-Olabarria, J.R.; Piqué, M. Assessing the impact of prescribed burning on the growth of European pines. For. Ecol. Manag. 2015, 343, 101–109. [Google Scholar] [CrossRef]
Analyte | Bioreceptor | Sensitivity | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Glucose | GOx | 22.7 nA/μM/cm2 | 0–80 μM | 9.4 μM | [65] |
Gallic Acid | CNT-CNC@PANI/microneedle | nd | 0.58–512.6 μM | 1.7 μM | [67] |
Salicylic acid | CuMOF | nd | 50–1000 μM | 37.4 μM | [68] |
Abscisic acid | Au@SnO2-vertical graphene (VG)/Ta microelectrodes | 1.460 μA/μM | 0.012–495.2 μM | 0.004 μM | [70] |
Indole-3-acetic acid | AuNPs-3DGR modified SPEs | 0.527 μA/μM | 0.25–120 μM | 0.15 μM | [71] |
Fructose | Co3O4 thin film | 495 μA/mM/cm2 | 0.021–1.74 mM | 1.7 μM | [73] |
Tryptophan | PDA/RGO-MnO2/GCE | 0.39–1.66 μA/μM | 1–300 μM | 0.22–0.39 μM | [72] |
Glucose | COOH-GR–COOH-MWNT–AuNPs | nd | 5–80 mM | 0.537 mM | [74] |
Fructose | COOH-GR–COOH-MWNT–AuNPs | nd | 2–20 mM | 1.63 mM | [74] |
Arabinose | COOH-GR–COOH-MWNT–AuNPs | nd | 2–50 mM | 1.811 mM | [74] |
Mannose | COOH-GR–COOH-MWNT–AuNPs | nd | 5–60 mM | 4.903 mM | [74] |
Xylose | COOH-GR–COOH-MWNT–AuNPs | nd | 2–40 mM | 0.693 mM | [74] |
Galactose | COOH-GR–COOH-MWNT–AuNPs | nd | 5–40 mM | 2.105 mM | [74] |
Salicylic acid | MIPs | 0.0312 μA/μM/mm2 | 0–20 μM | 2.74 μM | [64] |
Analyte | Bioreceptor | Sensitivity | Linear Range | LOD | Reference |
---|---|---|---|---|---|
Glucose | GOx | 1480 nA/mM | 0.045–1.04 mM | 0.015 mM | [90] |
Glucose | GOx | nd | 0.5–6.0 mM | 0.15 mM | [91] |
Glucose | GOx | 99.13 μA/mM/cm2 | 20–700 μM | 20 μM | [93] |
Glucose | GOx | 0.0817 μA/mM/cm2 | 0.18–5.22 mM | 5 μM | [94] |
Glucose | GOx | nd | 0.025–1.0 mM | 8.8 μM | [92] |
Glucose | GOx | 18.41 μA/mM/cm2 | 20–1000 μM | 20 μΜ | [96] |
Fructose | FDH | 1.25 μA/mM | 0.1–1.0 mM | 0.05 mM | [105] |
Fructose | FDH | 200 μA/mM/cm2 | nd | 2.0 mM | [106] |
Fructose | FDH | 0.62 nA/μM | 3–13 mM | 0.65 μΜ. | [107] |
Fructose | FDH | 3.7 μA/mM/cm2 | 0.05–0.3 mM | 1.2 μM | [108] |
Fructose | FDH | 2.15 μA/mM/cm2 | 0.1–8.0 mM | 0.8 μM | [109] |
Fructose | FDH | 175 μA/mM/cm2 | 0.05–5.0 mM | 0.3 μM | [110] |
Ethanol | AOX | 260 μA/mM/cm2 | 5–100 µM | 1.5 µM | [116] |
Ethanol | AOX | 155 µA/mM/cm2 | 0.01–50 mM | 0.1 nM | [117] |
Ethanol | AOX | nd | 0.01–42 mM | 0.1 nM | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touloupakis, E.; Calegari Moia, I.; Zampieri, R.M.; Cocozza, C.; Frassinelli, N.; Marchi, E.; Foderi, C.; Di Lorenzo, T.; Rezaie, N.; Muzzini, V.G.; et al. Fire up Biosensor Technology to Assess the Vitality of Trees after Wildfires. Biosensors 2024, 14, 373. https://doi.org/10.3390/bios14080373
Touloupakis E, Calegari Moia I, Zampieri RM, Cocozza C, Frassinelli N, Marchi E, Foderi C, Di Lorenzo T, Rezaie N, Muzzini VG, et al. Fire up Biosensor Technology to Assess the Vitality of Trees after Wildfires. Biosensors. 2024; 14(8):373. https://doi.org/10.3390/bios14080373
Chicago/Turabian StyleTouloupakis, Eleftherios, Isabela Calegari Moia, Raffaella Margherita Zampieri, Claudia Cocozza, Niccolò Frassinelli, Enrico Marchi, Cristiano Foderi, Tiziana Di Lorenzo, Negar Rezaie, Valerio Giorgio Muzzini, and et al. 2024. "Fire up Biosensor Technology to Assess the Vitality of Trees after Wildfires" Biosensors 14, no. 8: 373. https://doi.org/10.3390/bios14080373
APA StyleTouloupakis, E., Calegari Moia, I., Zampieri, R. M., Cocozza, C., Frassinelli, N., Marchi, E., Foderi, C., Di Lorenzo, T., Rezaie, N., Muzzini, V. G., Traversi, M. L., & Giovannelli, A. (2024). Fire up Biosensor Technology to Assess the Vitality of Trees after Wildfires. Biosensors, 14(8), 373. https://doi.org/10.3390/bios14080373