Using AuNPs-DNA Walker with Fluorophores Detects the Hepatitis Virus Rapidly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Materials and Reagents
2.3. Preparation of DNA Walker
2.4. Preparation of AuNPs-DNA Walker
2.5. Colorimetric Detection and Fluorescence Detection of Virul Fragments
3. Results
3.1. Operating Principle of the AuNPs-DNA Walker
3.2. Colorimetric Response of the AuNPs-DNA Walker to HAV Target Sequences
3.3. Specific Detection of the AuNPs-DNA Walker
3.4. Test of the AuNPs-DNA Walker to Virus Target Fragments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rasche, A.; Sander, A.-L.; Corman, V.M.; Drexler, J.F. Evolutionary biology of human hepatitis viruses. J. Hepatol. 2019, 70, 501–520. [Google Scholar] [CrossRef]
- Gregorio, G.V.; Mieli-Vergani, G.; Mowat, A.P. Viral hepatitis. Arch. Dis. Child. 1994, 70, 343–348. [Google Scholar] [CrossRef]
- Feinstone, S.M. History of the Discovery of Hepatitis A Virus. Cold Spring Harb. Perspect. Med. 2019, 9, a031740. [Google Scholar] [CrossRef]
- Guvenir, M.; Arikan, A. Hepatitis B Virus: From Diagnosis to Treatment. Pol. J. Microbiol. 2020, 69, 391–399. [Google Scholar] [CrossRef]
- Jeng, W.J.; Papatheodoridis, G.V.; Lok, A.S.F. Hepatitis B. Lancet 2023, 401, 1039–1052. [Google Scholar] [CrossRef]
- Pol, S.; Lagaye, S. The remarkable history of the hepatitis C virus. Genes Immun. 2019, 20, 436–446. [Google Scholar] [CrossRef]
- Nainan, O.V.; Xia, G.; Vaughan, G.; Margolis, H.S. Diagnosis of hepatitis a virus infection: A molecular approach. Clin. Microbiol. Rev. 2006, 19, 63–79. [Google Scholar] [CrossRef]
- Trepo, C.; Chan, H.L.; Lok, A. Hepatitis B virus infection. Lancet 2014, 384, 2053–2063. [Google Scholar] [CrossRef]
- Feinstone, S.M.; Kapikian, A.Z.; Purceli, R.H. Hepatitis A: Detection by immune electron microscopy of a viruslike antigen associated with acute illness. Science 1973, 182, 1026–1028. [Google Scholar] [CrossRef]
- Al-Sadeq, D.W.; Taleb, S.A.; Zaied, R.E.; Fahad, S.M.; Smatti, M.K.; Rizeq, B.R.; Al Thani, A.A.; Yassine, H.M.; Nasrallah, G.K. Hepatitis B Virus Molecular Epidemiology, Host-Virus Interaction, Coinfection, and Laboratory Diagnosis in the MENA Region: An Update. Pathogens 2019, 8, 63. [Google Scholar] [CrossRef]
- Delem, A.D. Comparison of modified HAVAB and ELISA for determination of vaccine-induced anti-HAV response. Biol. J. Int. Assoc. Biol. Stand. 1992, 20, 289–291. [Google Scholar] [CrossRef]
- Purcell, R.H.; Wong, D.C.; Moritsugu, Y.; Dienstag, J.L.; Routenberg, J.A.; Boggs, J.D. A microtiter solid-phase radioimmunoassay for hepatitis A antigen and antibody. J. Immunol. 1976, 116, 349–356. [Google Scholar] [CrossRef]
- Moritsugu, Y.; Dienstag, J.L.; Valdesuso, J.; Wong, D.C.; Wagner, J.; Routenberg, J.A.; Purcell, R.H. Purification of hepatitis A antigen from feces and detection of antigen and antibody by immune adherence hemagglutination. Infect. Immun. 1976, 13, 898–908. [Google Scholar] [CrossRef]
- Farzin, M.A.; Abdoos, H.; Saber, R. AuNP-based biosensors for the diagnosis of pathogenic human coronaviruses: COVID-19 pandemic developments. Anal. Bioanal. Chem. 2022, 414, 7069–7084. [Google Scholar] [CrossRef]
- Pan, J.; He, Y.; Liu, Z.; Chen, J. Tetrahedron-Based Constitutional Dynamic Network for COVID-19 or Other Coronaviruses Diagnostics and Its Logic Gate Applications. Anal. Chem. 2022, 94, 714–722. [Google Scholar] [CrossRef]
- Gong, S.; Wang, X.; Zhou, P.; Pan, W.; Li, N.; Tang, B. AND Logic-Gate-Based CRISPR/Cas12a Biosensing Platform for the Sensitive Colorimetric Detection of Dual miRNAs. Anal. Chem. 2022, 94, 15839–15846. [Google Scholar] [CrossRef]
- Mokni, M.; Tlili, A.; Attia, G.; Khaoulani, S.; Zerrouki, C.; Omezzine, A.; Othmane, A.; Bouslama, A.; Fourati, N. Novel sensitive immunosensor for the selective detection of Engrailed 2 urinary prostate cancer biomarker. Biosens. Bioelectron. 2022, 217, 114678. [Google Scholar] [CrossRef]
- Goswami, B.B.; Burkhardt, W., 3rd; Cebula, T.A. Identification of genetic variants of hepatitis A virus. J. Virol. Methods 1997, 65, 95–103. [Google Scholar] [CrossRef]
- Buti, M.; Jardí, R.; Bosch, A.; Rodríguez, F.; Sánchez, G.; Pinto, R.; Costa, X.; Sánchez-Avila, J.F.; Cotrina, M.; Esteban, R.; et al. Assessment of the PCR-Southern blot technique for the analysis of viremia in patients with acute hepatitis A. Gastroenterol. Hepatol. 2001, 24, 1–4. [Google Scholar] [CrossRef]
- Jean, J.; D’Souza, D.H.; Jaykus, L.A. Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods. Appl. Environ. Microbiol. 2004, 70, 6603–6610. [Google Scholar] [CrossRef]
- Polish, L.B.; Robertson, B.H.; Khanna, B.; Krawczynski, K.; Spelbring, J.; Olson, F.; Shapiro, C.N. Excretion of hepatitis A virus (HAV) in adults: Comparison of immunologic and molecular detection methods and relationship between HAV positivity and infectivity in tamarins. J. Clin. Microbiol. 1999, 37, 3615–3617. [Google Scholar] [CrossRef]
- Fujiwara, K.; Yokosuka, O.; Ehata, T.; Imazeki, F.; Saisho, H. PCR-SSCP analysis of 5′-nontranslated region of hepatitis A viral RNA: Comparison with clinicopathological features of hepatitis A. Dig. Dis. Sci. 2000, 45, 2422–2427. [Google Scholar] [CrossRef]
- Liu, Y.P.; Yao, C.Y. Rapid and quantitative detection of hepatitis B virus. World J. Gastroenterol. 2015, 21, 11954–11963. [Google Scholar] [CrossRef]
- Arikan, A.; Sayan, M.; Sanlidag, T.; Suer, K.; Akcali, S.; Guvenir, M. Evaluation of the pol/S Gene Overlapping Mutations in Chronic Hepatitis B Patients in Northern Cyprus. Pol. J. Microbiol. 2019, 68, 317–322. [Google Scholar] [CrossRef]
- Sayan, M.; Arikan, A.; Sanlidag, T. Comparison of Performance Characteristics of DxN VERIS System versus Qiagen PCR for HBV Genotype D and HCV Genotype 1b Quantification. Pol. J. Microbiol. 2019, 68, 139–143. [Google Scholar] [CrossRef]
- Ferrari, E. Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors 2023, 13, 411. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Coradduzza, D.; Zoroddu, M.A. Gold nanoparticles and cancer: Detection, diagnosis and therapy. Semin. Cancer Biol. 2021, 76, 27–37. [Google Scholar] [CrossRef]
- Al-Radadi, N.S. Green Biosynthesis of Flaxseed Gold Nanoparticles (Au-NPs) as Potent Anti-cancer Agent Against Breast Cancer Cells. J. Saudi Chem. Soc. 2021, 25, 101243. [Google Scholar] [CrossRef]
- Naz, F.; Kumar Dinda, A.; Kumar, A.; Koul, V. Investigation of ultrafine gold nanoparticles (AuNPs) based nanoformulation as single conjugates target delivery for improved methotrexate chemotherapy in breast cancer. Int. J. Pharm. 2019, 569, 118561. [Google Scholar] [CrossRef]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef]
- Omabegho, T.; Sha, R.; Seeman, N.C. A bipedal DNA Brownian motor with coordinated legs. Science 2009, 324, 67–71. [Google Scholar] [CrossRef]
- Jung, C.; Allen, P.B.; Ellington, A.D. A stochastic DNA walker that traverses a microparticle surface. Nat. Nanotechnol. 2016, 11, 157–163. [Google Scholar] [CrossRef]
- Xu, M.; Tang, D. Recent advances in DNA walker machines and their applications coupled with signal amplification strategies: A critical review. Anal. Chim. Acta 2021, 1171, 338523. [Google Scholar] [CrossRef]
- Chai, H.; Miao, P. Bipedal DNA Walker Based Electrochemical Genosensing Strategy. Anal. Chem. 2019, 91, 4953–4957. [Google Scholar] [CrossRef]
- Ge, J.; Song, J.; Xu, X. Colorimetric detection of viral RNA fragments based on an integrated logic-operated three-dimensional DNA walker. Biosens. Bioelectron. 2022, 217, 114714. [Google Scholar] [CrossRef]
- Tao, F.; Fang, J.; Guo, Y.; Tao, Y.; Han, X.; Hu, Y.; Wang, J.; Li, L.; Jian, Y.; Xie, G. A target-triggered biosensing platform for detection of HBV DNA based on DNA walker and CHA. Anal. Biochem. 2018, 554, 16–22. [Google Scholar] [CrossRef]
- Zheng, L.; Jin, M.; Pan, Y.; Zheng, Y.; Lou, Y. 3D-DNA walking nanomachine based on catalytic hairpin assembly and copper nanoclusters for sensitive detection of hepatitis C virus. Talanta 2024, 269, 125478. [Google Scholar] [CrossRef]
- Liu, S.; Wu, P.; Li, W.; Zhang, H.; Cai, C. Ultrasensitive and selective electrochemical identification of hepatitis C virus genotype 1b based on specific endonuclease combined with gold nanoparticles signal amplification. Anal. Chem. 2011, 83, 4752–4758. [Google Scholar] [CrossRef] [PubMed]
- Shawky, S.M.; Guirgis, B.S.; Azzazy, H.M. Detection of unamplified HCV RNA in serum using a novel two metallic nanoparticle platform. Clin. Chem. Lab. Med. 2014, 52, 565–572. [Google Scholar] [CrossRef]
- Shawky, S.M.; Awad, A.M.; Allam, W.; Alkordi, M.H.; El-Khamisy, S.F. Gold aggregating gold: A novel nanoparticle biosensor approach for the direct quantification of hepatitis C virus RNA in clinical samples. Biosens. Bioelectron. 2017, 92, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Clarke, O.J.; Goodall, B.L.; Hui, H.P.; Vats, N.; Brosseau, C.L. Development of a SERS-Based Rapid Vertical Flow Assay for Point-of-Care Diagnostics. Anal. Chem. 2017, 89, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, S.; Hu, F.; Yang, G.; Li, J.; Tian, H.; Peng, N. An LED-Driven AuNPs-PDMS Microfluidic Chip and Integrated Device for the Detection of Digital Loop-Mediated Isothermal DNA Amplification. Micromachines 2020, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano 2020, 14, 7617–7627. [Google Scholar] [CrossRef] [PubMed]
- Alafeef, M.; Moitra, P.; Dighe, K.; Pan, D. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc. 2021, 16, 3141–3162. [Google Scholar] [CrossRef]
- Zhang, K.; Fan, Z.; Huang, Y.; Ding, Y.; Xie, M.; Wang, M. Hybridization chain reaction circuit-based electrochemiluminescent biosensor for SARS-CoV-2 RdRp gene assay. Talanta 2022, 240, 123207. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Zheng, C.; Pan, D.; Shen, L.; Zhang, W.; Chen, X.; Wen, Y.; Shi, Y. Using AuNPs-DNA Walker with Fluorophores Detects the Hepatitis Virus Rapidly. Biosensors 2024, 14, 370. https://doi.org/10.3390/bios14080370
Sun B, Zheng C, Pan D, Shen L, Zhang W, Chen X, Wen Y, Shi Y. Using AuNPs-DNA Walker with Fluorophores Detects the Hepatitis Virus Rapidly. Biosensors. 2024; 14(8):370. https://doi.org/10.3390/bios14080370
Chicago/Turabian StyleSun, Baining, Chenxiang Zheng, Dun Pan, Leer Shen, Wan Zhang, Xiaohua Chen, Yanqin Wen, and Yongyong Shi. 2024. "Using AuNPs-DNA Walker with Fluorophores Detects the Hepatitis Virus Rapidly" Biosensors 14, no. 8: 370. https://doi.org/10.3390/bios14080370
APA StyleSun, B., Zheng, C., Pan, D., Shen, L., Zhang, W., Chen, X., Wen, Y., & Shi, Y. (2024). Using AuNPs-DNA Walker with Fluorophores Detects the Hepatitis Virus Rapidly. Biosensors, 14(8), 370. https://doi.org/10.3390/bios14080370