Design and Application of Microfluidic Capture Device for Physical–Magnetic Isolation of MCF-7 Circulating Tumor Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functional Nanoparticle Synthesis
2.2.1. Magnetic Nanoparticle (MNP) Synthesis
2.2.2. Functionalization of MNP
2.3. Microfluidic Chip and Experimental Setup
2.4. Characterization
2.5. Operating Principle: Simulation, Biomimetic Study and Capture Study
3. Results
3.1. Characterization
3.2. Simulation and Biomimetic Studies
3.3. CTC Capture Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Perea-Bello, A.H.; Trapero-Bertran, M.; Dürsteler, C. Palliative Care Costs in Different Ambulatory-Based Settings: A Systematic Review. PharmacoEconomics 2024, 42, 301–318. [Google Scholar] [CrossRef] [PubMed]
- Mader, S.; Pantel, K. Liquid Biopsy: Current Status and Future Perspectives. Oncol. Res. Treat. 2017, 40, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Pantel, K.; Alix-Panabières, C.J.M.O. Liquid biopsy: Potential and challenges. Mol. Oncol. 2016, 10, 371. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilsabzali, H.; Beischlag, T.V.; Cox, M.E.; Parameswaran, A.M.; Park, E.J. Detection and isolation of circulating tumor cells: Principles and methods. Biotechnol. Adv. 2013, 31, 1063–1084. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.P.; Thendral, V.; Uthappa, U.T.; Lee, K.-H.; Kigga, M.; Altalhi, T.; Kurkuri, M.D.; Kant, K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. Biosensors 2022, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Kim, E.; Alhammadi, M.; Reddicherla, U.; Aliya, S.; Tiwari, J.N.; Park, H.S.; Choi, J.H.; Son, C.Y.; Vilian, A.T.E.; et al. Recent advances in microfluidic approaches for the isolation and detection of exosomes. TrAC Trends Anal. Chem. 2023, 159, 116912. [Google Scholar] [CrossRef]
- Patil, P.; Kumeria, T.; Losic, D.; Kurkuri, M.J.R.A. Isolation of circulating tumour cells by physical means in a microfluidic device: A review. RSC Adv. 2015, 5, 89745–89762. [Google Scholar] [CrossRef]
- Sun, D.; Ma, Y.; Wu, M.; Chen, Z.; Zhang, L.; Lu, J. Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles. J. Pharm. Anal. 2023, 13, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Kafshgari, M.H.; Hayden, O. Advances in analytical microfluidic workflows for differential cancer diagnosis. Nano Select 2023, 4, 1–47. [Google Scholar] [CrossRef]
- Guo, L.; Liu, C.; Qi, M.; Cheng, L.; Wang, L.; Li, C.; Dong, B. Recent progress on nanostructure-based enrichment of circulating tumor cells and downstream analysis. Lab A Chip 2023, 23, 1493–1523. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tong, N.; Li, F.; Zhao, K.; Wang, D.; Niu, Y.; Xu, F.; Cheng, J.; Wang, J. Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip. Micromachines 2023, 14, 159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z.; Zheng, D.; Huang, T.; Fu, Q.; Liu, Y. Label-Free Separation of Circulating Tumor Cells and Clusters by Alternating Frequency Acoustic Field in a Microfluidic Chip. Int. J. Mol. Sci. 2023, 24, 3338. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Liu, H.; Zhang, Z.; Lin, C.; Wang, B. Hybrid magnetic and deformability based isolation of circulating tumor cells using microfluidics. AIP Adv. 2019, 9, 025023. [Google Scholar] [CrossRef]
- Frenea-Robin, M.; Marchalot, J. Basic Principles and Recent Advances in Magnetic Cell Separation. Magnetochemistry 2022, 8, 11. [Google Scholar] [CrossRef]
- Nalbandian, L.; Patrikiadou, E.; Zaspalis, V.; Patrikidou, A.; Hatzidaki, E.; Papandreou, C. Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Characterization and Proteins Conjugation. Curr. Nanosci. 2015, 12, 455–468. [Google Scholar] [CrossRef]
- Cha, J.; Cho, H.; Chung, J.-S.; Park, J.S.; Han, K.-H. Effective Circulating Tumor Cell Isolation Using Epithelial and Mesenchymal Markers in Prostate and Pancreatic Cancer Patients. Cancers 2023, 15, 2825. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, X.; Guo, C.; Liu, Z.; Guo, X.; Tian, Z.; Wang, Z.; Yang, J.; Huang, X.; Ou, L. Greatly isolated heterogeneous circulating tumor cells using hybrid engineered cell membrane-camouflaged magnetic nanoparticles. J. Nanobiotechnology 2024, 22, 231. [Google Scholar] [CrossRef]
- Mishra, B.; Patel, B.B.; Tiwari, S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery, Nanomedicine: Nanotechnology. Biol. Med. 2010, 6, 9–24. [Google Scholar] [CrossRef]
- Frigerio, B.; Bizzoni, C.; Jansen, G.; Leamon, C.P.; Peters, G.J.; Low, P.S.; Matherly, L.H.; Figini, M. Folate receptors and transporters: Biological role and diagnostic/therapeutic targets in cancer and other diseases. J. Exp. Clin. Cancer Res. 2019, 38, 125. [Google Scholar] [CrossRef]
- Ren, J.; Chen, Z.; Ma, E.; Wang, W.; Zheng, S.; Wang, H. Dual-source powered nanomotors coupled with dual-targeting ligands for efficient capture and detection of CTCs in whole blood and in vivo tumor imaging. Colloids Surf. B Biointerfaces 2023, 231, 113568. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Cui, G.; Wu, X.; Yang, M.; Piao, Y.; Bai, Z.; Wang, L.; Kraft, M.; Zhao, W.; et al. A magnetic nanoparticle assisted microfluidic system for low abundance cell sorting with high recovery. Micro Nano Eng. 2022, 15, 100136. [Google Scholar] [CrossRef]
- Goldstein, I.; Alyas, S.; Asghar, W.; Ilyas, A. Biosensors for the Isolation and Detection of Circulating Tumor Cells (CTCs) in Point-of-Care Settings. Micromachines 2023, 14, 1035. [Google Scholar] [CrossRef] [PubMed]
- Bi, M.Z.A.; Tirth, V.; Yousuff, C.M.; Shukla, N.K.; Islam, S.; Irshad, K.; Aarif, K.M. Simulation Guided Microfluidic Design for Multitarget Separation Using Dielectrophoretic Principle. BioChip J. 2020, 14, 390–404. [Google Scholar] [CrossRef]
- Mascolo, M.C.; Pei, Y.; Ring, T.A. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases. Materials 2013, 6, 5549–5567. [Google Scholar] [CrossRef]
- Uthappa, U.T.; Kigga, M.; Sriram, G.; Ajeya, K.V.; Jung, H.-Y.; Neelgund, G.M.; Kurkuri, M.D. Facile green synthetic approach of bio inspired polydopamine coated diatoms as a drug vehicle for controlled drug release and active catalyst for dye degradation. Microporous Mesoporous Mater. 2019, 288, 109572. [Google Scholar] [CrossRef]
- Soleymani, J.; Hasanzadeh, M.; Somi, M.H.; Shadjou, N.; Jouyban, A. Probing the specific binding of folic acid to folate receptor using amino-functionalized mesoporous silica nanoparticles for differentiation of MCF 7 tumoral cells from MCF 10A. Biosens. Bioelectron. 2018, 115, 61–69. [Google Scholar] [CrossRef]
- Amin, M.; D‘Cruz, B.; Madkour, M.; Al-Hetlani, E. Magnetic nanocomposite-based SELDI probe for extraction and detection of drugs, amino acids and fatty acids. Microchim. Acta 2019, 186, 1–10. [Google Scholar] [CrossRef]
- Pham, X.; Tan, P.N.; Pham, T.; Tran, T.; Tran, T. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 045010. [Google Scholar] [CrossRef]
- Batul, R.; Bhave, M.; Mahon, P.J.; Yu, A. Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity. Molecules 2020, 25, 2090. [Google Scholar] [CrossRef] [PubMed]
- Parın, F.N.; Ullah, S.; Yildirim, K.; Hashmi, M.; Kim, I.-S. Fabrication and Characterization of Electrospun Folic Acid/Hybrid Fibers: In Vitro Controlled Release Study and Cytocompatibility Assays. Polymers 2021, 13, 3594. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bendre, A.; Somasekhara, D.; Nadumane, V.K.; Sriram, G.; Bilimagga, R.S.; Kurkuri, M.D. Design and Application of Microfluidic Capture Device for Physical–Magnetic Isolation of MCF-7 Circulating Tumor Cells. Biosensors 2024, 14, 308. https://doi.org/10.3390/bios14060308
Bendre A, Somasekhara D, Nadumane VK, Sriram G, Bilimagga RS, Kurkuri MD. Design and Application of Microfluidic Capture Device for Physical–Magnetic Isolation of MCF-7 Circulating Tumor Cells. Biosensors. 2024; 14(6):308. https://doi.org/10.3390/bios14060308
Chicago/Turabian StyleBendre, Akhilesh, Derangula Somasekhara, Varalakshmi K. Nadumane, Ganesan Sriram, Ramesh S. Bilimagga, and Mahaveer D. Kurkuri. 2024. "Design and Application of Microfluidic Capture Device for Physical–Magnetic Isolation of MCF-7 Circulating Tumor Cells" Biosensors 14, no. 6: 308. https://doi.org/10.3390/bios14060308
APA StyleBendre, A., Somasekhara, D., Nadumane, V. K., Sriram, G., Bilimagga, R. S., & Kurkuri, M. D. (2024). Design and Application of Microfluidic Capture Device for Physical–Magnetic Isolation of MCF-7 Circulating Tumor Cells. Biosensors, 14(6), 308. https://doi.org/10.3390/bios14060308