Rapid Separation and Detection of Drugs in Complex Biological Matrix Using TD-CDI Mass Spectrometer
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instrumentation
3. Results and Discussion
3.1. Basic Separation Effect Verification
3.2. Performance Optimization
3.3. Analyses of Drugs with Similar m/z
3.4. Detection of Actual Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, X.; Xu, L.; Xiao, X. Negative implicit in-group stereotypes of Chinese male drug abusers: Evidence from ERP. Curr. Psychol. 2023, 42, 23861–23873. [Google Scholar] [CrossRef] [PubMed]
- Guerri, C.; Pascual, M. Impact of neuroimmune activation induced by alcohol or drug abuse on adolescent brain development. Int. J. Dev. Neurosci. 2019, 77, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Solis, E., Jr.; Cameron-Burr, K.T.; Kiyatkin, E.A. Heroin Contaminated with Fentanyl Dramatically Enhances Brain Hypoxia and Induces Brain Hypothermia. eNeuro 2017, 4, e0323-17. [Google Scholar] [CrossRef] [PubMed]
- Hazin, R.; Cadet, J.L.; Kahook, M.Y.; Saed, D. Ocular manifestations of crystal methamphetamine use. Neurotox. Res. 2009, 15, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Quinton, M.S.; Yamamoto, B.K. Causes and consequences of methamphetamine and MDMA toxicity. AAPS J. 2006, 8, E337–E347. [Google Scholar] [CrossRef] [PubMed]
- Kertesz, S.G.; Gordon, A.J. A crisis of opioids and the limits of prescription control: United States. Addiction 2019, 114, 169–180. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.; Tanz, L.J.; Gladden, R.M.; Davis, N.L.; Bitting, J. Trends in and characteristics of drug overdose deaths involving illicitly manufactured fentanyls—United States, 2019–2020. Morb. Mortal. Wkly. Rep. 2021, 70, 1740. [Google Scholar] [CrossRef] [PubMed]
- Valdez, C.A. Gas Chromatography-Mass Spectrometry Analysis of Synthetic Opioids Belonging to the Fentanyl Class: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1938–1968. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, L.A.; Wylie, F.M.; Logan, B.K.; Scott, K.S. Gas Chromatography-Mass Spectrometry Method for the Quantitative Identification of 23 New Psychoactive Substances in Blood and Urine. J. Anal. Toxicol. 2019, 43, 346–352. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Kamel, A.H.; Awwad, N.S.; Aboterika, A.H.A. Characterization of Some “Hashish” Samples in the Egyptian Illicit Trafficking Market Using a Thermal Separation Probe and Gas Chromatography–Mass Spectrometry. ACS Omega 2023, 8, 25378–25384. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Xia, Y.; Ouyang, Z. Ambient Ionization and Miniature Mass Spectrometry Systems for Disease Diagnosis and Therapeutic Monitoring. Theranostics 2017, 7, 2968–2981. [Google Scholar] [CrossRef] [PubMed]
- Feider, C.L.; Krieger, A.; DeHoog, R.J.; Eberlin, L.S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91, 4266–4290. [Google Scholar] [CrossRef]
- Kuo, T.-H.; Dutkiewicz, E.P.; Pei, J.; Hsu, C.-C. Ambient Ionization Mass Spectrometry Today and Tomorrow: Embracing Challenges and Opportunities. Anal. Chem. 2020, 92, 2353–2363. [Google Scholar] [CrossRef]
- Rankin-Turner, S.; Heaney, L.M. Applications of ambient ionization mass spectrometry in 2020: An annual review. Anal. Sci. Adv. 2021, 2, 193–212. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Zhang, N.; Li, X.; Xu, J.; Lei, H.; Ma, Q. Integrating Post-Ionization Separation via Differential Mobility Spectrometry into Direct Analysis in Real Time Mass Spectrometry for Toy Safety Screening. Anal. Chem. 2024, 96, 265–271. [Google Scholar] [CrossRef]
- Vircks, K.E.; Mulligan, C.C. Rapid screening of synthetic cathinones as trace residues and in authentic seizures using a portable mass spectrometer equipped with desorption electrospray ionization. Rapid Commun. Mass Spectrom. 2012, 26, 2665–2672. [Google Scholar] [CrossRef]
- Brown, H.; Oktem, B.; Windom, A.; Doroshenko, V.; Evans-Nguyen, K. Direct Analysis in Real Time (DART) and a portable mass spectrometer for rapid identification of common and designer drugs on-site. Forensic Chem. 2016, 1, 66–73. [Google Scholar] [CrossRef]
- Espy, R.D.; Teunissen, S.F.; Manicke, N.E.; Ren, Y.; Ouyang, Z.; van Asten, A.; Cooks, R.G. Paper spray and extraction spray mass spectrometry for the direct and simultaneous quantification of eight drugs of abuse in whole blood. Anal. Chem. 2014, 86, 7712–7718. [Google Scholar] [CrossRef]
- Wiley, J.S.; Shelley, J.T.; Cooks, R.G. Handheld low-temperature plasma probe for portable “point-and-shoot” ambient ionization mass spectrometry. Anal. Chem. 2013, 85, 6545–6552. [Google Scholar] [CrossRef]
- Santos, H.I.; Pinheiro, K.M.P.; Richter, E.M.; Coltro, W.K.T. Determination of scopolamine and butylscopolamine in beverages, urine and Buscopan® tablets samples using electrophoresis microchip with integrated contactless conductivity detection. Talanta 2024, 266, 124960. [Google Scholar] [CrossRef]
- Liu, M.; Yang, H.; Hu, J.; Shen, B.; Xiang, P.; Qiang, H.; Deng, H.; Yu, Z.; Shi, Y. Analysis of 28 hair samples from users of the hallucinogenic beverage ayahuasca. Forensic Sci. Int. 2021, 323, 110790. [Google Scholar] [CrossRef] [PubMed]
- Halim, S.A.; Low, J.H.; Chee, Y.C.; Alias, M.R. Seizures among young adults consuming kratom beverages in Malaysia: A case series. Epilepsy Behav. 2021, 121, 108057. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y. Thermal desorption for remediation of contaminated soil: A review. Chemosphere 2019, 221, 841–855. [Google Scholar] [CrossRef]
- Prestage, J.; Day, C.; Husheer, S.L.G.; Winter, W.T.; Ho, W.O.; Saffell, J.R.; Hutter, T. Selective Detection of Volatile Organics in a Mixture Using a Photoionization Detector and Thermal Desorption from a Nanoporous Preconcentrator. ACS Sens. 2022, 7, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Reiss, R.; Ehlert, S.; Heide, J.; Pütz, M.; Forster, T.; Zimmermann, R. Ambient Pressure Laser Desorption—Chemical Ionization Mass Spectrometry for Fast and Reliable Detection of Explosives, Drugs, and Their Precursors. Appl. Sci. 2018, 8, 933. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Tsai, Y.-D.; Lee, C.-W.; Chen, B.-H.; Shiea, J. Direct and rapid characterization of illicit drugs in adulterated samples using thermal desorption electrospray ionization mass spectrometry. J. Food Drug Anal. 2019, 27, 451–459. [Google Scholar] [CrossRef]
- Cheng, S.C.; Lee, R.H.; Jeng, J.Y.; Lee, C.W.; Shiea, J. Fast screening of trace multiresidue pesticides on fruit and vegetable surfaces using ambient ionization tandem mass spectrometry. Anal. Chim. Acta 2020, 1102, 63–71. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Xu, C.; Li, H.; Xing, Y.; Hou, K.; Li, H. Rapid Screening of Trace Volatile and Nonvolatile Illegal Drugs by Miniature Ion Trap Mass Spectrometry: Synchronized Flash-Thermal-Desorption Purging and Ion Injection. Anal. Chem. 2019, 91, 10212–10220. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, W.; Li, H.; Xing, Y.; Hou, K.; Li, H. Rapid On-Site Detection of Illegal Drugs in Complex Matrix by Thermal Desorption Acetone-Assisted Photoionization Miniature Ion Trap Mass Spectrometer. Anal. Chem. 2019, 91, 3845–3851. [Google Scholar] [CrossRef]
- Guo, X.; Zhai, J.; Ma, L.; Wu, Q.; Bai, H.; Ma, Q. Rapid on-site screening of five prohibited ingredients in cosmetics using thermal desorption-corona discharge ionization coupled with ion mobility spectrometry. Se Pu 2019, 37, 233–238. [Google Scholar] [CrossRef]
- Terence, G.H.; Inese, S.; Karen, R.B.; Yunxia, W.; David, M.; Ronald, E.S. Identifying and Overcoming Matrix Effects in Drug Discovery and Development. In Tandem Mass Spectrometry; Jeevan, K.P., Ed.; IntechOpen: Rijeka, Croatia, 2012; p. Ch. 19. [Google Scholar] [CrossRef]
- Ke-Guo, T.; Jing, G.; Li-li, Y.; Quan, Y.; Xiao-Hao, W. Development and Application of Self-aspiration Hollow Needle Corona Discharge Ionization Source. Chin. J. Anal. Chem. 2022, 50, 1143–1149. [Google Scholar]
- Yang, Q.; Chen, S.; Li, Y.; Jiao, T.; Cheng, L.; Yu, Q.; Lu, X. Mass spectrometry analysis of drugs using an integrated thermal desorption corona discharge ionization device. Int. J. Mass Spectrom. 2023, 494, 117149. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Ye, Z.; Yang, Q.; Zhou, J.; Wang, J.; Huo, X. Rapid Separation and Detection of Drugs in Complex Biological Matrix Using TD-CDI Mass Spectrometer. Biosensors 2024, 14, 271. https://doi.org/10.3390/bios14060271
Shi W, Ye Z, Yang Q, Zhou J, Wang J, Huo X. Rapid Separation and Detection of Drugs in Complex Biological Matrix Using TD-CDI Mass Spectrometer. Biosensors. 2024; 14(6):271. https://doi.org/10.3390/bios14060271
Chicago/Turabian StyleShi, Wenyan, Zi Ye, Qin Yang, Jianhua Zhou, Jiasi Wang, and Xinming Huo. 2024. "Rapid Separation and Detection of Drugs in Complex Biological Matrix Using TD-CDI Mass Spectrometer" Biosensors 14, no. 6: 271. https://doi.org/10.3390/bios14060271
APA StyleShi, W., Ye, Z., Yang, Q., Zhou, J., Wang, J., & Huo, X. (2024). Rapid Separation and Detection of Drugs in Complex Biological Matrix Using TD-CDI Mass Spectrometer. Biosensors, 14(6), 271. https://doi.org/10.3390/bios14060271