Blood Coagulation-Inspired Fibrin Hydrogel for Portable Detection of Thrombin Based on Personal Glucometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instrumentation
2.3. Preparation of Solutions
2.4. Determination of Thrombin Activity
2.5. Selectivity and Interference Study
3. Results and Discussion
3.1. Principle of the Glucometer Method for Detecting Thrombin Based on Blood Coagulation
3.2. Optimization of Reaction Parameters
3.3. Analytical Performance
3.4. Selectivity and Interference Study
3.5. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinha, B.; Ramulu, T.S.; Kim, K.W.; Venu, R.; Lee, J.J.; Kim, C.G. Planar Hall magnetoresistive aptasensor for thrombin detection. Biosens. Bioelectron. 2014, 59, 140–144. [Google Scholar] [CrossRef]
- DeAnglis, A.P.; Nur, I.; Gorman, A.J.; Meidler, R. A method to measure thrombin activity in a mixture of fibrinogen and thrombin powders. Blood Coagul. Fibrinolysis 2017, 28, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.A.; Key, N.S.; Levy, J.H. Blood coagulation: Hemostasis and thrombin regulation. Anesth. Analg. 2009, 108, 1433–1446. [Google Scholar] [CrossRef] [PubMed]
- Nesheim, M. Thrombin and fibrinolysis. Chest 2003, 124, 33S–39S. [Google Scholar] [CrossRef] [PubMed]
- Danckwardt, S.; Hentze, M.W.; Kulozik, A.E. Pathologies at the nexus of blood coagulation and inflammation: Thrombin in hemostasis, cancer, and beyond. J. Mol. Med. 2013, 91, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- García, P.S.; Ciavatta, V.T.; Fidler, J.A.; Woodbury, A.; Levy, J.H.; Tyor, W.R. Concentration-dependent dual role of thrombin in protection of cultured rat cortical neurons. Neurochem. Res. 2015, 40, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Ikeda, K.; Kondo, H.; McGeer, P.L. Thrombin accumulation in brains of patients with Alzheimer’s disease. Neurosci. Lett. 1992, 146, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Prior, S.M.; Mann, K.G.; Freeman, K.; Butenas, S. Continuous thrombin generation in whole blood: New applications for assessing activators and inhibitors of coagulation. Anal. Biochem. 2018, 551, 19–25. [Google Scholar] [CrossRef]
- Nierodzik, M.L.; Karpatkin, S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 2006, 10, 355–362. [Google Scholar] [CrossRef]
- Soni, G.K.; Wangoo, N.; Sharma, R.K. A smartphone-based ultrasensitive colorimetric aptasensing platform for serine protease thrombin detection. Microchem. J. 2024, 199, 109906. [Google Scholar] [CrossRef]
- Shen, M.M.; Wang, Y.Y.; Kan, X.W. Dual-recognition colorimetric sensing of thrombin based on surface-imprinted aptamer–Fe3O4. J. Mater. Chem. B 2021, 9, 4249–4256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.B.; Wang, M.K.; Liu, J.Y.; Lv, Y.T.; Su, X.G. Construction of a dual-signal sensing platform based on DNA enhanced peroxidase-activity of iron cobalt oxide nanosheets for thrombin detection. Sens. Actuators B Chem. 2023, 396, 134526. [Google Scholar] [CrossRef]
- Chen, H.Q.; Yuan, F.; Wang, S.Z.; Xu, J.; Zhang, Y.Y.; Wang, L. Aptamer-based sensing for thrombin in red region via fluorescence resonant energy transfer between NaYF4:Yb,Er upconversion nanoparticles and gold nanorods. Biosens. Bioelectron. 2013, 48, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, M.M.; Hu, C.G.; Wu, K.B. Portable, self-powered, and light-addressable photoelectrochemical sensing platforms using pH meter readouts for high-throughput screening of thrombin inhibitor drugs. Anal. Chem. 2018, 90, 9366–9373. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.B.; Yuan, R.; Chai, Y.Q.; Bai, L.J.; Yuan, Y.L.; Wang, Y. Label-free electrochemical aptasensor for sensitive thrombin detection using layer-by-layerself-assembled multilayers with toluidine blue–graphene composites and gold nanoparticles. Talanta 2012, 98, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, L.D.; Tang, L.H.; Lin, L.; Liu, Y.; Li, J.H. Enzyme-guided plasmonic biosensor based on dual-functional nano-hybrid for sensitive detection of thrombin. Biosens. Bioelectron. 2015, 70, 404–410. [Google Scholar] [CrossRef]
- Han, C.L.; Yuan, X.K.; Shen, Z.H.; Xiao, Y.X.; Wang, X.W.; Khan, M.; Liu, S.H.; Li, W.; Hu, Q.Z.; Wu, W.L. A paper-based lateral flow sensor for the detection of thrombin and its inhibitors. Anal. Chim. Acta 2022, 1205, 339756. [Google Scholar] [CrossRef] [PubMed]
- Amani, M.H.; Rahimnejad, M.; Ezoji, H. Smartphone-assisted quantitative colorimetric identification of thrombin based on peroxidase mimetic features of fibrinogen-gold nanozymes. Microchim. Acta 2024, 191, 83. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Current trends in digital camera-based bioassays for point-of-care tests. Clin. Chim. Acta 2024, 552, 117677. [Google Scholar] [CrossRef]
- Xiang, Y.; Lu, Y. Portable quantitative detection of protein biomarkers and small molecular toxins using antibodies and ubiquitous personal glucose meters. Anal. Chem. 2012, 84, 4174–4178. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, H.; Li, P.; Park, H.G. A label-free and washing-free method to detect biological thiols on a personal glucose meter utilizing glucose oxidase-mimicking activity of gold nanoparticles. Biosens. Bioelectron. 2024, 250, 116019. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.Y.; Li, Z.Y.; Liu, C.C. CRISPR-powered biosensing platform for quantitative detection of alpha-fetoprotein by a personal glucose meter. Sens. Actuators B Chem. 2023, 390, 133994. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.R.; Xie, L.; Wang, Y.; Liu, Y.; Fu, R.; Cui, Y.; Zhao, Q.; Wang, C.; Jiao, B.; He, Y. Construction of a portable immunosensor for the sensitive detection of carbendazim in agricultural products using a personal glucose meter. Food Chem. 2023, 407, 135161. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Sun, X.; Wang, Y.; Gao, Z.; Zheng, B. Portable biosensor for cardiac Troponin I based on the combination of a DNA walking machine and a personal glucose meter. Sens. Actuators B Chem. 2023, 385, 133712. [Google Scholar] [CrossRef]
- Chen, G.Y.; Zhang, H.; Yang, F.Q. A simple and portable method for β-Glucosidase activity assay and its inhibitor screening based on a personal glucose meter. Anal. Chim. Acta 2021, 1142, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, G.Y.; Qian, Z.M.; Li, W.J.; Li, C.H.; Hu, Y.J.; Yang, F.Q. A portable personal glucose meter method for enzyme activity detection and inhibitory activity evaluation based on alkaline phosphatase-mediated reaction. Anal. Bioanal. Chem. 2021, 413, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, X.; Sun, X.; Zhang, J.; Zhao, Y.; Liu, X.; Li, F. DNA tetrahedra-cross-linked hydrogel functionalized paper for onsite analysis of DNA methyltransferase activity using a personal glucose meter. Anal. Chem. 2020, 92, 4592–4599. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.Z.; Mo, F.Y.; Liu, Y.H.; Liu, Y.; Li, G.P.; Yu, W.Q.; Liu, X.Q. Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter. Biosens. Bioelectron. 2022, 198, 113819. [Google Scholar] [CrossRef]
- Fu, Q.; Wu, Z.; Du, D.; Zhu, C.; Lin, Y.; Tang, Y. Versatile barometer biosensor based on Au@Pt core/shell nanoparticle probe. ACS Sens. 2017, 2, 789–795. [Google Scholar] [CrossRef]
Sample | Added (U/mL) | Found ± SD (U/mL) | Recovery (%) |
---|---|---|---|
Human serum | 0 | 0 | - |
0.26 | 0.24 ± 0.03 | 92.8 | |
0.52 | 0.56 ± 0.05 | 107.7 | |
0.77 | 0.76 ± 0.02 | 97.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.-N.; Wu, S.-Y.; Deng, H.-Y.; Zhang, H.; Shi, S.; Geng, S. Blood Coagulation-Inspired Fibrin Hydrogel for Portable Detection of Thrombin Based on Personal Glucometer. Biosensors 2024, 14, 250. https://doi.org/10.3390/bios14050250
Yang D-N, Wu S-Y, Deng H-Y, Zhang H, Shi S, Geng S. Blood Coagulation-Inspired Fibrin Hydrogel for Portable Detection of Thrombin Based on Personal Glucometer. Biosensors. 2024; 14(5):250. https://doi.org/10.3390/bios14050250
Chicago/Turabian StyleYang, Dan-Ni, Shu-Yi Wu, Han-Yu Deng, Hao Zhang, Shan Shi, and Shan Geng. 2024. "Blood Coagulation-Inspired Fibrin Hydrogel for Portable Detection of Thrombin Based on Personal Glucometer" Biosensors 14, no. 5: 250. https://doi.org/10.3390/bios14050250
APA StyleYang, D. -N., Wu, S. -Y., Deng, H. -Y., Zhang, H., Shi, S., & Geng, S. (2024). Blood Coagulation-Inspired Fibrin Hydrogel for Portable Detection of Thrombin Based on Personal Glucometer. Biosensors, 14(5), 250. https://doi.org/10.3390/bios14050250