Machine Learning-Driven Innovations in Microfluidics
Abstract
1. Introduction
2. Advancing Microfluidic Device Design
2.1. Techniques in Microfluidic Fabrication
2.2. Design Considerations for Microfluidic Devices
2.3. Machine Learning in Design Optimization
2.4. Advanced Machine Learning Applications in Droplet-Based Microfluidics
Application Field | Fabrication Technique | Machine Learning Method | Training Samples | Accuracy | Ref. |
---|---|---|---|---|---|
Design | - | CNN | 150,000 | 94.52% | [80] |
Flow sculpting | CNN | 250,000 | - | [65] | |
3D printing | RNN | 2070 | 85.42% | [81] | |
- | Design Automation of Fluid Dynamics (DAFD) Neural Optimizer | 710 | 95.1% | [64] | |
Inkjet printing | CNN | 7852 | 90% | [74] | |
Droplet | - | Design Automation of Fluid Dynamics (DAFD) Neural Optimizer | 710 | 95.1% | [64] |
- | - | 7500 | 98% | [82] | |
- | Deep neural network (DNN) | 6000 | 97.1% | [73] | |
Soft lithography | Supervised neural network | 498,002 | 91.7% | [83] | |
Computer numerical control (CNC) machining | Mask Region-based CNN (Mask R-CNN) | - | 98% | [84] |
3. Applications of Microfluidic Devices in Biosensing
3.1. Health Monitoring and Diagnostics
Application Field | Diagnostics | Fabrication Technique | Machine Learning Method | Ref. |
---|---|---|---|---|
Biosensor | Cell classification | - | Heuristic genetic algorithm | [94] |
Imaging flow cytometry (IFC) | - | Fully Convolutional Residual Networks (FCRNs) and CNN | [90] | |
Live-cell phenotypic biomarker | - | - | [95] | |
Obtain datasets on a complex chemical reaction | photopolymerization SLA | Artificial Neural Networks (ANNs) | [96] | |
Classification of biological samples | SLA | - | [97] | |
Lung cancer cells | - | CNN | [98] | |
Cytokine storm profiling | Microfluidic patterning technique | CNN | [29] | |
Sweat biomarkers | - | Machine learning-based and image analysis algorithms | [92] | |
Airborne microbiological detection | Soft lithography | Principal Component Analysis (PCA)–support vector machine (SVM) model | [91] | |
Complex reactive proteins (CRPs) | - | Particle Swarm Optimization (PSO)–Artificial Neural Network (ANN) model | [99] |
3.2. Environmental Monitoring
4. Future Aspects
Funding
Conflicts of Interest
References
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The Present and Future Role of Microfluidics in Biomedical Research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Ding, H.; Gao, B.; He, Z.; Gu, Z. Advances of Microfluidics in Biomedical Engineering. Adv. Mater. Technol. 2019, 4, 1800663. [Google Scholar] [CrossRef]
- Xiong, B.; Ren, K.; Shu, Y.; Chen, Y.; Shen, B.; Wu, H. Recent Developments in Microfluidics for Cell Studies. Adv. Mater. 2014, 26, 5525–5532. [Google Scholar] [CrossRef] [PubMed]
- Squires, T.M.; Quake, S.R. Microfluidics: Fluid Physics at the Nanoliter Scale. Rev. Mod. Phys. 2005, 77, 977–1026. [Google Scholar] [CrossRef]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Weigl, B.H.; Bardell, R.L.; Cabrera, C.R. Lab-on-a-Chip for Drug Development. Adv. Drug Deliv. Rev. 2003, 55, 349–377. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.C.; Kouzani, A.Z.; Duan, W. Lab-on-a-Chip: A Component View. Microsyst. Technol. 2010, 16, 1995–2015. [Google Scholar] [CrossRef]
- Haeberle, S.; Zengerle, R. Microfluidic Platforms for Lab-on-a-Chip Applications. Lab. Chip 2007, 7, 1094–1110. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.M.; van den Berg, A. Micro Total Analysis Systems 2001. In Proceedings of the ΜTAS 2001 Symposium, Monterey, CA, USA, 21–25 October 2001; Springer Science & Business Media: Dordrecht, The Netherlands, 2012. [Google Scholar]
- West, J.; Becker, M.; Tombrink, S.; Manz, A. Micro Total Analysis Systems: Latest Achievements. Anal. Chem. 2008, 80, 4403–4419. [Google Scholar] [CrossRef]
- Yeon, J.H.; Park, J.-K. Microfluidic Cell Culture Systems for Cellular Analysis. Biochip J. 2007, 1, 17–27. [Google Scholar]
- Barbulovic-Nad, I.; Au, S.H.; Wheeler, A.R. A Microfluidic Platform for Complete Mammalian Cell Culture. Lab. Chip 2010, 10, 1536–1542. [Google Scholar] [CrossRef]
- Young, E.W.; Beebe, D.J. Fundamentals of Microfluidic Cell Culture in Controlled Microenvironments. Chem. Soc. Rev. 2010, 39, 1036–1048. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The Upcoming 3D-Printing Revolution in Microfluidics. Lab. Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef]
- Lee, J.M.; Zhang, M.; Yeong, W.Y. Characterization and Evaluation of 3D Printed Microfluidic Chip for Cell Processing. Microfluid. Nanofluid. 2016, 20, 5. [Google Scholar] [CrossRef]
- Egan, S.; Fedorko, W.; Lister, A.; Pearkes, J.; Gay, C. Long Short-Term Memory (LSTM) Networks with Jet Constituents for Boosted Top Tagging at the LHC. arXiv 2017, arXiv:1711.09059. [Google Scholar]
- Liu, K.-K.; Wu, R.-G.; Chuang, Y.-J.; Khoo, H.S.; Huang, S.-H.; Tseng, F.-G. Microfluidic Systems for Biosensing. Sensors 2010, 10, 6623–6661. [Google Scholar] [CrossRef] [PubMed]
- Riordon, J.; Sovilj, D.; Sanner, S.; Sinton, D.; Young, E.W. Deep Learning with Microfluidics for Biotechnology. Trends Biotechnol. 2019, 37, 310–324. [Google Scholar] [CrossRef]
- Mohamed, A.-r.; Dahl, G.; Hinton, G. Deep Belief Networks for Phone Recognition. In Proceedings of the Nips Workshop on Deep Learning for Speech Recognition and Related Applications, Whistler, BC, Canada, 12 December 2009; p. 39. [Google Scholar]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The History Began from Alexnet: A Comprehensive Survey on Deep Learning Approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- Targ, S.; Almeida, D.; Lyman, K. Resnet in Resnet: Generalizing Residual Architectures. arXiv 2016, arXiv:1603.08029. [Google Scholar]
- Jeon, H.J.; Leem, J.W.; Ji, Y.; Park, S.M.; Park, J.; Kim, K.Y.; Kim, S.W.; Kim, Y.L. Cyber-Physical Watermarking with Inkjet Edible Bioprinting. Adv. Funct. Mater. 2022, 32, 2112479. [Google Scholar] [CrossRef]
- Leem, J.W.; Jeon, H.-J.; Ji, Y.; Park, S.M.; Kwak, Y.; Park, J.; Kim, K.-Y.; Kim, S.-W.; Kim, Y.L. Edible Matrix Code with Photogenic Silk Proteins. ACS Cent. Sci. 2022, 8, 513–526. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Kim, S.; Park, S.; Jeong, I.-K.; Kang, J.; Kim, Y.R.; Lee, D.Y.; Chung, E. Optical Assessment of Tear Glucose by Smart Biosensor Based on Nanoparticle Embedded Contact Lens. Nano Lett. 2021, 21, 8933–8940. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, D.; Lashkaripour, A.; Fordyce, P.; Densmore, D. Machine Learning for Microfluidic Design and Control. Lab. Chip 2022, 22, 2925–2937. [Google Scholar] [CrossRef] [PubMed]
- Galan, E.A.; Zhao, H.; Wang, X.; Dai, Q.; Huck, W.T.; Ma, S. Intelligent Microfluidics: The Convergence of Machine Learning and Microfluidics in Materials Science and Biomedicine. Matter 2020, 3, 1893–1922. [Google Scholar] [CrossRef]
- Srikanth, S.; Dubey, S.K.; Javed, A.; Goel, S. Droplet Based Microfluidics Integrated with Machine Learning. Sens. Actuators A Phys. 2021, 332, 113096. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, M.; Thng, D.K.H.; Toh, T.B.; Zhou, L.; Bonney, G.K.; Dan, Y.Y.; Chow, P.K.H.; Xu, C.; Chow, E.K.-H. NanoBeacon. Ai: Ai-Enhanced Nanodiamond Biosensor for Automated Sensitivity Prediction to Oxidative Phosphorylation Inhibitors. ACS Sens. 2023, 8, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Song, Y.; Hsiao, T.Y.; He, J.; Wang, C.; Shen, J.; MacLachlan, A.; Dai, S.; Singer, B.H.; Kurabayashi, K. Machine-Learning-Assisted Microfluidic Nanoplasmonic Digital Immunoassay for Cytokine Storm Profiling in COVID-19 patients. ACS Nano 2021, 15, 18023–18036. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, B.; Reeder, J.T.; Seo, S.H.; Lee, S.-U.; Hourlier-Fargette, A.; Shin, J.; Sekine, Y.; Jeong, H.; Oh, Y.S. Soft, Skin-Interfaced Microfluidic Systems with Integrated Immunoassays, Fluorometric Sensors, and Impedance Measurement Capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 27906–27915. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Cheng, H.; Wang, X. Skin-Interfaced Colorimetric Microfluidic Devices for On-Demand Sweat Analysis. npj Flex. Electron. 2023, 7, 43. [Google Scholar] [CrossRef]
- Xing, Z. Survey on Machine Learning and Artificial Intelligence Used for Electronic Design Automation. Ph.D. Dissertation, Politecnico di Torino, Turin, Italy, 2024. [Google Scholar]
- Rydén, H.; Farhadi, H.; Palaios, A.; Hévizi, L.; Sandberg, D.; Kvernvik, T. Next Generation Mobile Networks’ Enablers: Machine Learning-Assisted Mobility, Traffic, and Radio Channel Prediction. IEEE Commun. Mag. 2023, 61, 94–98. [Google Scholar] [CrossRef]
- Yang, S.-M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic Point-of-Care (Poc) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors 2022, 22, 1620. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, N.H.; Hong, J.H.; Uddin, M.J.; Shim, J.S. Artificial Intelligence-Controlled Microfluidic Device for Fluid Automation and Bubble Removal Of Immunoassay Operated by A Smartphone. Anal. Chem. 2022, 94, 3872–3880. [Google Scholar] [CrossRef]
- Owoyele, O.; Pal, P.; Vidal Torreira, A. An Automated Machine Learning-Genetic Algorithm Framework with Active Learning for Design Optimization. J. Energy Resour. Technol. 2021, 143, 082305. [Google Scholar] [CrossRef]
- Li, H.; Kafka, O.L.; Gao, J.; Yu, C.; Nie, Y.; Zhang, L.; Tajdari, M.; Tang, S.; Guo, X.; Li, G. Clustering Discretization Methods for Generation of Material Performance Databases in Machine Learning and Design Optimization. Comput. Mech. 2019, 64, 281–305. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Parra-Cabrera, C.; Kim, Y.T.; Kuo, A.P.; Folch, A. Desktop-Stereolithography 3D-Printing of a Poly(Dimethylsiloxane)-Based Material with Sylgard-184 Properties. Adv. Mater. 2018, 30, 1800001. [Google Scholar] [CrossRef]
- Gul, J.Z.; Sajid, M.; Rehman, M.M.; Siddiqui, G.U.; Shah, I.; Kim, K.-H.; Lee, J.-W.; Choi, K.H. 3D Printing for Soft Robotics—A Review. Sci. Technol. Adv. Mater. 2018, 19, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends Of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Pease, R.F.; Chou, S.Y. Lithography and Other Patterning Techniques for Future Electronics. Proc. IEEE 2008, 96, 248–270. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Qureshi, M.M.; Lee, S.Y.; Badadhe, J.D.; Cho, H.; Chung, E. Laser Speckle Decorrelation Time-Based Platelet Function Testing in Microfluidic System. Sci. Rep. 2019, 9, 16514. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-J.; Qureshi, M.M.; Lee, S.Y.; Chung, E. Optofluidic Laser Speckle Image Decorrelation Analysis for the Assessment of Red Blood Cell Storage. PLoS ONE 2019, 14, e0224036. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Yoon, I.; Jeon, H.-J. Microfluidic System-Based Quantitative Analysis of Platelet Function through Speckle Size Measurement. Biomolecules 2024, 14, 612. [Google Scholar] [CrossRef]
- Mata, A.; Fleischman, A.J.; Roy, S. Characterization of Polydimethylsiloxane (Pdms) Properties for Biomedical micro/Nanosystems. Biomed. Microdevices 2005, 7, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.; Han, J.H.; Jeon, H.-J. Advances in Platelet-Dysfunction Diagnostic Technologies. Biomolecules 2024, 14, 714. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.M.; Ali, Z. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines 2021, 12, 319. [Google Scholar] [CrossRef]
- Behroodi, E.; Latifi, H.; Bagheri, Z.; Ermis, E.; Roshani, S.; Salehi Moghaddam, M. A Combined 3d Printing/Cnc Micro-Milling Method to Fabricate a Large-Scale Microfluidic Device with the Small Size 3d Architectures: An Application for Tumor Spheroid Production. Sci. Rep. 2020, 10, 22171. [Google Scholar] [CrossRef]
- Heckele, M.; Bacher, W.; Müller, K. Hot Embossing—The Molding Technique for Plastic Microstructures. Microsyst. Technol. 1998, 4, 122–124. [Google Scholar] [CrossRef]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3D/4D Printing of Polymers: Fused Deposition Modelling (Fdm), Selective Laser Sintering (Sls), and Stereolithography (Sla). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef] [PubMed]
- Schmidleithner, C.; Kalaskar, D.M. Stereolithography; IntechOpen: London, UK, 2018. [Google Scholar]
- Huang, J.; Qin, Q.; Wang, J. A review of Stereolithography: Processes and Systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Kadry, H.; Wadnap, S.; Xu, C.; Ahsan, F. Digital light processing (Dlp) 3D-Printing Technology and Photoreactive Polymers in Fabrication of Modified-Release Tablets. Eur. J. Pharm. Sci. 2019, 135, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mao, Q.; Yin, J.; Wang, Y.; Fu, J.; Huang, Y. Theoretical Prediction and Experimental Validation of the Digital Light Processing (DLP) Working Curve for Photocurable Materials. Addit. Manuf. 2021, 37, 101716. [Google Scholar] [CrossRef]
- Maines, E.M.; Porwal, M.K.; Ellison, C.J.; Reineke, T.M. Sustainable Advances in SLA/DLP 3D Printing Materials and Processes. Green Chem. 2021, 23, 6863–6897. [Google Scholar] [CrossRef]
- Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive Manufacturing by Digital Light Processing: A review. Prog. Addit. Manuf. 2023, 8, 331–351. [Google Scholar]
- Glatzel, T.; Litterst, C.; Cupelli, C.; Lindemann, T.; Moosmann, C.; Niekrawietz, R.; Streule, W.; Zengerle, R.; Koltay, P. Computational Fluid Dynamics (CFD) Software Tools for Microfluidic Applications—A Case Study. Comput. Fluids 2008, 37, 218–235. [Google Scholar]
- Baroud, C.N.; Gallaire, F.; Dangla, R. Dynamics of Microfluidic Droplets. Lab. Chip 2010, 10, 2032–2045. [Google Scholar] [CrossRef]
- Banka, N. Individually-Controllable Magnetic Artificial Cilia for Microfluidic Manipulation Tasks. Ph.D. Dissertation, University of Washington, Seattle, WA, USA, 2017. [Google Scholar]
- Naderi, A.; Bhattacharjee, N.; Folch, A. Digital Manufacturing for Microfluidics. Annu. Rev. Biomed. Eng. 2019, 21, 325–364. [Google Scholar] [CrossRef] [PubMed]
- Waldbaur, A.; Rapp, H.; Länge, K.; Rapp, B.E. Let There Be Chip—Towards Rapid Prototyping of Microfluidic Devices: One-Step Manufacturing Processes. Anal. Methods 2011, 3, 2681–2716. [Google Scholar]
- Su, F.; Chakrabarty, K.; Fair, R.B. Microfluidics-Based Biochips: Technology Issues, Implementation Platforms, and Design-automation Challenges. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2006, 25, 211–223. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, Z. Microfluidic Electronics. Lab. Chip 2012, 12, 2782–2791. [Google Scholar] [CrossRef]
- Stoecklein, D.; Lore, K.G.; Davies, M.; Sarkar, S.; Ganapathysubramanian, B. Deep Learning for Flow Sculpting: Insights into Efficient Learning Using Scientific Simulation Data. Sci. Rep. 2017, 7, 46368. [Google Scholar]
- Lashkaripour, A.; Rodriguez, C.; Mehdipour, N.; Mardian, R.; McIntyre, D.; Ortiz, L.; Campbell, J.; Densmore, D. Machine Learning Enables Design Automation of Microfluidic Flow-Focusing Droplet Generation. Nat. Commun. 2021, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Nathanael, K.; Cheng, S.; Kovalchuk, N.M.; Arcucci, R.; Simmons, M.J. Optimization of Microfluidic Synthesis of Silver Nanoparticles: A Generic Approach Using Machine Learning. Chem. Eng. Res. Des. 2023, 193, 65–74. [Google Scholar] [CrossRef]
- Mejia-Salazar, J.R.; Rodrigues Cruz, K.; Materon Vasques, E.M.; Novais de Oliveira, O., Jr. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors 2020, 20, 1951. [Google Scholar] [CrossRef]
- Sher, M.; Zhuang, R.; Demirci, U.; Asghar, W. Based Analytical Devices for Clinical Diagnosis: Recent Advances in the Fabrication Techniques and Sensing Mechanisms. Expert Rev. Mol. Diagn. 2017, 17, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Lamprou, D.A. Microfluidics in Pharmaceutical Sciences: Formulation, Drug Delivery, Screening, and Diagnostics; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Karaboğa, M.N.S.; Sezgintürk, M.K. Microfluidic Based Biosensors and Applications. In Biosensors; CRC Press: Boca Raton, FL, USA, 2022; pp. 261–287. [Google Scholar]
- Moragues, T.; Arguijo, D.; Beneyton, T.; Modavi, C.; Simutis, K.; Abate, A.R.; Baret, J.-C.; deMello, A.J.; Densmore, D.; Griffiths, A.D. Droplet-Based Microfluidics. Nat. Rev. Methods Primers 2023, 3, 32. [Google Scholar] [CrossRef]
- Amirifar, L.; Besanjideh, M.; Nasiri, R.; Shamloo, A.; Nasrollahi, F.; de Barros, N.R.; Davoodi, E.; Erdem, A.; Mahmoodi, M.; Hosseini, V. Droplet-Based Microfluidics In Biomedical Applications. Biofabrication 2022, 14, 022001. [Google Scholar] [CrossRef] [PubMed]
- Hadikhani, P.; Borhani, N.; Hashemi, S.M.H.; Psaltis, D. Learning from Droplet Flows in Microfluidic Channels Using Deep Neural Networks. Sci. Rep. 2019, 9, 8114. [Google Scholar] [CrossRef]
- Choi, E.; An, K.; Kang, K.-T. Deep-Learning-Based Microfluidic Droplet Classification for Multijet Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 15576–15586. [Google Scholar] [CrossRef]
- Lashkaripour, A.; McIntyre, D.P.; Calhoun, S.G.; Krauth, K.; Densmore, D.M.; Fordyce, P.M. Design Automation of Microfluidic Single and Double Emulsion Droplets with Machine Learning. Nat. Commun. 2024, 15, 83. [Google Scholar] [CrossRef]
- Duran, M.; Serrano, A.; Nikulin, A.; Dauvergne, J.-L.; Derzsi, L.; del Barrio, E.P. Microcapsule Production by Droplet Microfluidics: A Review from the Material Science Approach. Mater. Des. 2022, 223, 111230. [Google Scholar] [CrossRef]
- Shahab, M.; Rengaswamy, R. Reinforcement-Learning Designs Droplet Microfluidic Networks. Comput. Chem. Eng. 2022, 161, 107787. [Google Scholar] [CrossRef]
- Liang, T.-C.; Zhong, Z. Adaptive Droplet Routing in Digital Microfluidic Biochips Using Deep Reinforcement Learning. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020. [Google Scholar]
- Ma, X.; Guo, G.; Wu, X.; Wu, Q.; Liu, F.; Zhang, H.; Shi, N.; Guan, Y. Advances in Integration, Wearable Applications, and Artificial Intelligence of Biomedical Microfluidics Systems. Micromachines 2023, 14, 972. [Google Scholar] [CrossRef] [PubMed]
- Lore, K.G.; Stoecklein, D.; Davies, M.; Ganapathysubramanian, B.; Sarkar, S. Hierarchical Feature Extraction for Efficient Design of Microfluidic Flow Patterns. In Proceedings of the Feature Extraction: Modern Questions and Challenges, Montreal, QC, Canada, 11 December 2015; pp. 213–225. [Google Scholar]
- Han, S.; Kim, T.; Kim, D.; Park, Y.-L.; Jo, S. Use of deep learning for Characterization of Microfluidic Soft Sensors. IEEE Robot. Autom. Lett. 2018, 3, 873–880. [Google Scholar] [CrossRef]
- Svensson, C.M.; Shvydkiv, O.; Dietrich, S.; Mahler, L.; Weber, T.; Choudhary, M.; Tovar, M.; Figge, M.T.; Roth, M. Coding of Experimental Conditions in Microfluidic Droplet Assays Using Colored Beads and Machine Learning Supported Image Analysis. Small 2019, 15, 1802384. [Google Scholar] [CrossRef] [PubMed]
- Khor, J.W.; Jean, N.; Luxenberg, E.S.; Ermon, S.; Tang, S.K. Using Machine Learning to Discover Shape Descriptors for Predicting Emulsion Stability in A Microfluidic Channel. Soft Matter 2019, 15, 1361–1372. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Wang, K.; Qiu, T. Accelerating Intelligent Microfluidic Image Processing with Transfer Deep Learning: A Microchannel Droplet/Bubble Breakup Case Study. Sep. Purif. Technol. 2023, 315, 123703. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, J.; Liu, T.; Luo, Y.; Loh, X.J.; Chen, X. Machine Learning-Reinforced Noninvasive Biosensors for Healthcare. Adv. Healthc. Mater. 2021, 10, 2100734. [Google Scholar] [CrossRef]
- Banerjee, A.; Maity, S.; Mastrangelo, C.H. Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, Iot, and the Role of Machine Learning in Smart Biosensors. Sensors 2021, 21, 1253. [Google Scholar] [CrossRef]
- Gonzalez-Navarro, F.F.; Stilianova-Stoytcheva, M.; Renteria-Gutierrez, L.; Belanche-Muñoz, L.A.; Flores-Rios, B.L.; Ibarra-Esquer, J.E. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods. Sensors 2016, 16, 1483. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]
- Hassan, R.Y. Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. Sensors 2022, 22, 7539. [Google Scholar] [CrossRef]
- Heo, Y.J.; Lee, D.; Kang, J.; Lee, K.; Chung, W.K. Real-Time Image Processing for Microscopy-Based Label-Free Imaging Flow Cytometry in a Microfluidic Chip. Sci. Rep. 2017, 7, 11651. [Google Scholar] [CrossRef]
- Yang, N.; Song, W.; Xiao, Y.; Xia, M.; Xiao, L.; Li, T.; Zhang, Z.; Yu, N.; Zhang, X. Minimum Minutes Machine-Learning Microfluidic Microbe Monitoring Method (M7). ACS Nano 2024, 18, 4862–4870. [Google Scholar] [CrossRef]
- Baker, L.B.; Seib, M.S.; Barnes, K.A.; Brown, S.D.; King, M.A.; De Chavez, P.J.D.; Qu, S.; Archer, J.; Wolfe, A.S.; Stofan, J.R. Skin-interfaced Microfluidic System with Machine Learning-Enabled Image Processing of Sweat Biomarkers in Remote Settings. Adv. Mater. Technol. 2022, 7, 2200249. [Google Scholar] [CrossRef]
- Doganay, M.T.; Chakraborty, P.; Bommakanti, S.M.; Jammalamadaka, S.; Battalapalli, D.; Madabhushi, A.; Draz, M. Artificial Intelligence Performance In Testing Microfluidics For Point-of-Care. Lab. Chip 2024, 24, 4998–5008. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Mahjoubfar, A.; Tai, L.-C.; Blaby, I.K.; Huang, A.; Niazi, K.R.; Jalali, B. Deep Learning in Label-Free Cell Classification. Sci. Rep. 2016, 6, 21471. [Google Scholar] [CrossRef]
- Manak, M.S.; Varsanik, J.S.; Hogan, B.J.; Whitfield, M.J.; Su, W.R.; Joshi, N.; Steinke, N.; Min, A.; Berger, D.; Saphirstein, R.J. Live-Cell Phenotypic-Biomarker Microfluidic Assay for the Risk Stratification of Cancer Patients via Machine Learning. Nat. Biomed. Eng. 2018, 2, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Rizkin, B.A.; Shkolnik, A.S.; Ferraro, N.J.; Hartman, R.L. Combining Automated Microfluidic Experimentation with Machine Learning for Efficient Polymerization Design. Nat. Mach. Intell. 2020, 2, 200–209. [Google Scholar] [CrossRef]
- Dabbagh, S.R.; Rabbi, F.; Doğan, Z.; Yetisen, A.K.; Tasoglu, S. Machine Learning-Enabled Multiplexed Microfluidic Sensors. Biomicrofluidics 2020, 14, 061506. [Google Scholar] [CrossRef]
- Hashemzadeh, H.; Shojaeilangari, S.; Allahverdi, A.; Rothbauer, M.; Ertl, P.; Naderi-Manesh, H. A combined Microfluidic Deep Learning Approach for Lung Cancer Cell High Throughput Screening Toward Automatic Cancer Screening Applications. Sci. Rep. 2021, 11, 9804. [Google Scholar] [CrossRef]
- Jemmali, A.; Kaziz, S.; Echouchene, F.; Gazzah, M.H. Optimization of Lab-on-a CD by Experimental Design and Machine Learning Models for Microfluidic Biosensor Application. IEEE Sens. J. 2024, 24, 9299–9307. [Google Scholar] [CrossRef]
- Pouyanfar, N.; Harofte, S.Z.; Soltani, M.; Siavashy, S.; Asadian, E.; Ghorbani-Bidkorbeh, F.; Keçili, R.; Hussain, C.M. Artificial Intelligence-Based Microfluidic Platforms for the Sensitive Detection of Environmental Pollutants: Recent Advances and Prospects. Trends Environ. Anal. Chem. 2022, 34, e00160. [Google Scholar] [CrossRef]
- Antonelli, G.; Filippi, J.; D’Orazio, M.; Curci, G.; Casti, P.; Mencattini, A.; Martinelli, E. Integrating Machine Learning and Biosensors in Microfluidic Devices: A Review. Biosens. Bioelectron. 2024, 263, 116632. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chen, X.; Sui, G. Pollen Detection Through Integrated Microfluidics and Smartphone-Driven Deep Learning Systems. Results Eng. 2024, 24, 102867. [Google Scholar] [CrossRef]
- Shi, J.; You, L.; Wang, Y.; Peng, B. Deep Learning Based Method for Dynamic Tracking of Bubbles in Microfluidic Gas-Driven Water Experiments. Geoenergy Sci. Eng. 2024, 243, 213391. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, J.; Hou, H.; Huang, L.; Li, J. High-Throughput Microfluidic Systems Accelerated by Artificial Intelligence for Biomedical Applications. Lab. Chip 2024, 24, 1307–1326. [Google Scholar] [CrossRef]
- Apoorva, S.; Nguyen, N.-T.; Rajan, S.K. Recent Developments and Future Perspectives of Microfluidics and Smart Technologies in Wearable Devices. Lab. Chip 2024, 24, 1833–1866. [Google Scholar] [CrossRef] [PubMed]
- Khondakar, K.R.; Kaushik, A.K. Next-Generation Smart Biosensing: Nano-Platforms, Nano-Microfluidics Interfaces, and Emerging Applications of Quantum Sensing; Academic Press: London, UK, 2024. [Google Scholar]
- Haghayegh, F.; Norouziazad, A.; Haghani, E.; Feygin, A.A.; Rahimi, R.H.; Ghavamabadi, H.A.; Sadighbayan, D.; Madhoun, F.; Papagelis, M.; Felfeli, T. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. Adv. Sci. 2024, 11, 2400595. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Panigrahi, D.; Rewatkar, P.; Haick, H. Role of Machine Learning Assisted Biosensors in Point-of-Care-Testing For Clinical Decisions. ACS Sens. 2024, 9, 4495–4519. [Google Scholar] [CrossRef] [PubMed]
- Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions 2018, 3, 60. [Google Scholar] [CrossRef]
- Padash, M.; Enz, C.; Carrara, S. Microfluidics by Additive Manufacturing for Wearable Biosensors: A Review. Sensors 2020, 20, 4236. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Pandey, S.; Gupta, A.; Dudani, P.; Gupta, S.; Rangarajan, K. Data Privacy in Healthcare: In the Era of Artificial Intelligence. Indian Dermatol. Online J. 2023, 14, 788–792. [Google Scholar] [CrossRef]
- Soenksen, L.R.; Ma, Y.; Zeng, C.; Boussioux, L.; Villalobos Carballo, K.; Na, L.; Wiberg, H.M.; Li, M.L.; Fuentes, I.; Bertsimas, D. Integrated Multimodal Artificial Intelligence Framework for Healthcare Applications. npj Digit. Med. 2022, 5, 149. [Google Scholar] [CrossRef] [PubMed]
- Molani, A.; Pennati, F.; Ravazzani, S.; Scarpellini, A.; Storti, F.M.; Vegetali, G.; Paganelli, C.; Aliverti, A. Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications. Sensors 2024, 24, 6682. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.H.E.-D.; Abdelrahman, A.F.M. Advancing Microfluidic Systems Through Innovative Device Design and Computational Analysis. Q. J. Emerg. Technol. Innov. 2023, 8, 65–84. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, Y.W.; Jeon, H.-J. Machine Learning-Driven Innovations in Microfluidics. Biosensors 2024, 14, 613. https://doi.org/10.3390/bios14120613
Park J, Kim YW, Jeon H-J. Machine Learning-Driven Innovations in Microfluidics. Biosensors. 2024; 14(12):613. https://doi.org/10.3390/bios14120613
Chicago/Turabian StylePark, Jinseok, Yang Woo Kim, and Hee-Jae Jeon. 2024. "Machine Learning-Driven Innovations in Microfluidics" Biosensors 14, no. 12: 613. https://doi.org/10.3390/bios14120613
APA StylePark, J., Kim, Y. W., & Jeon, H.-J. (2024). Machine Learning-Driven Innovations in Microfluidics. Biosensors, 14(12), 613. https://doi.org/10.3390/bios14120613