Synthetic Microwave Focusing Techniques for Medical Imaging: Fundamentals, Limitations, and Challenges
Abstract
:1. Introduction
2. Scalar Electromagnetic Scattering Theory
3. From Scalar EM Scattering Theory to Focusing Techniques
4. Types of Focusing Techniques
5. Performance Evaluation of Synthetic Microwave Focusing Algorithms
6. Focusing Techniques for Medical Imaging: Challenges and Solutions
- a.
- Unknown propagation velocity
- b.
- Heterogeneous medium
- c.
- Dependent scattering
- d.
- Reflections from external boundaries
- e.
- Multi-scattering compensation
- f.
- Frequency dispersive properties
- g.
- Simplified Green’s function
- i.
- Integration with Quantitively Imaging Methods
- ii.
- Augmentation with Deep Learning
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haykin, S.; Litva, J.; Shepherd, T.J. Radar Array Processing, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Rodriguez-Duarte, D.O.; Vasquez, J.A.T.; Scapaticci, R.; Crocco, L.; Vipiana, F. Assessing a Microwave Imaging System for Brain Stroke Monitoring via High Fidelity Numerical Modelling. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 238–245. (In English) [Google Scholar] [CrossRef]
- Friedrich, C.; Bourguignon, S.; Idier, J.; Goussard, Y. Three-Dimensional Microwave Imaging: Fast and Accurate Computations with Block Resolution Algorithms. Sensors 2020, 20, 6282. [Google Scholar] [CrossRef] [PubMed]
- Matteo, P.; Andrea, R. Microwave Imaging Methods and Applications; Artech: Norwood, MA, USA, 2018; p. 1. [Google Scholar]
- Xu, L.; Bond, E.J.; Van Veen, B.D.; Hagness, S.C. An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas Propag. Mag. 2005, 47, 19–34. [Google Scholar] [CrossRef]
- Blanco-Angulo, C.; Martínez-Lozano, A.; Gutiérrez-Mazón, R.; Juan, C.G.; García-Martínez, H.; Arias-Rodríguez, J.; Sabater-Navarro, J.M.; Ávila-Navarro, E. Non-Invasive Microwave-Based Imaging System for Early Detection of Breast Tumours. Biosensors 2022, 12, 752. [Google Scholar] [CrossRef]
- Sultan, K.; Mahmoud, A.; Abbosh, A. Textile Electromagnetic Brace for Knee Imaging. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 522–536. [Google Scholar] [CrossRef]
- Guo, L.; Alqadami, A.S.M.; Abbosh, A. Stroke Diagnosis Using Microwave Techniques: Review of Systems and Algorithms. IEEE J. Electromagn. RF Microw. Med. Biol. 2023, 7, 122–135. [Google Scholar] [CrossRef]
- Chandra, R.; Zhou, H.; Balasingham, I.; Narayanan, R.M. On the Opportunities and Challenges in Microwave Medical Sensing and Imaging. IEEE Trans. Biomed. Eng. 2015, 62, 1667–1682. [Google Scholar] [CrossRef]
- Hamza, M.N.; Abdulkarim, Y.I.; Saeed, S.R.; Altıntaş, O.; Mahmud, R.H.; Appasani, B.; Ravariu, C. Low-Cost Antenna-Array-Based Metamaterials for Non-Invasive Early-Stage Breast Tumor Detection in the Human Body. Biosensors 2022, 12, 828. [Google Scholar] [CrossRef]
- Porter, E.; O’Loughlin, D. Pathway to Demonstrating Clinical Efficacy of Microwave Breast Imaging: Qualitative and Quantitative Performance Assessment. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 439–448. [Google Scholar] [CrossRef]
- Van Veen, B.D.; Buckley, K.M. Beamforming: A versatile approach to spatial filtering. IEEE ASSP Mag. 1988, 5, 4–24. [Google Scholar] [CrossRef]
- Liu, J.; Chen, L.; Xiong, H.; Han, Y. Review of microwave imaging algorithms for stroke detection. Med. Biol. Eng. Comput. 2023, 61, 2497–2510. [Google Scholar] [CrossRef]
- KaramFard, S.S.; Asl, B.M. Fast Delay-Multiply-and-Sum Beamformer: Application to Confocal Microwave Imaging. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 14–18. [Google Scholar] [CrossRef]
- Jalilvand, M.; Wu, C.; Schmid, J.; Zwick, T. Quantitative imaging of numerically realistic human head model using microwave tomography. Electron. Lett. 2014, 50, 255–256. [Google Scholar] [CrossRef]
- Guo, L.; Khosravi-Farsani, M.; Stancombe, A.; Bialkowski, K.; Abbosh, A. Adaptive Clustering Distorted Born Iterative Method for Microwave Brain Tomography with Stroke Detection and Classification. IEEE Trans. Biomed. Eng. 2022, 69, 1512–1523. [Google Scholar] [CrossRef]
- Semenov, S.Y.; Corfield, D.R. Microwave Tomography for Brain Imaging: Feasibility Assessment for Stroke Detection. Int. J. Antennas Propag. 2008, 2008, 254830. [Google Scholar] [CrossRef]
- Sultan, K.S.; Mohammed, B.; Manoufali, M.; Mahmoud, A.; Mills, P.C.; Abbosh, A. Feasibility of Electromagnetic Knee Imaging Verified on Ex-Vivo Pig Knees. IEEE Trans. Biomed. Eng. 2022, 69, 1651–1662. [Google Scholar] [CrossRef]
- Xu, L.; Hagness, S.C. A confocal microwave imaging algorithm for breast cancer detection. IEEE Microw. Wirel. Compon. Lett. 2001, 11, 130–132. [Google Scholar] [CrossRef]
- Neira, L.M.; Van Veen, B.D.; Hagness, S.C. High-Resolution Microwave Breast Imaging Using a 3-D Inverse Scattering Algorithm with a Variable-Strength Spatial Prior Constraint. IEEE Trans. Antennas Propag. 2017, 65, 6002–6014. [Google Scholar] [CrossRef]
- O’Halloran, M.; Jones, E.; Glavin, M. Quasi-Multistatic MIST Beamforming for the Early Detection of Breast Cancer. IEEE Trans. Biomed. Eng. 2010, 57, 830–840. [Google Scholar] [CrossRef]
- Byrne, D.; Craddock, I.J. Time-Domain Wideband Adaptive Beamforming for Radar Breast Imaging. IEEE Trans. Antennas Propag. 2015, 63, 1725–1735. [Google Scholar] [CrossRef]
- Zamani, A. Frequency-Based Microwave Medical Imaging Techniques. Ph.D. Thesis, The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia, Australia, 2018. [Google Scholar]
- Davis, S.K.; Bond, E.J.; Li, X.; Hagness, S.C.; Van Veen, B.D. Microwave imaging via space-time beamforming for early detection of breast cancer: Beamformer design in the frequency domain: Microwave imaging and inverse scattering techniques. J. Electromagn. Waves Appl. 2003, 17, 357–381. [Google Scholar] [CrossRef]
- Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications, 2nd ed.; Wiley: Newark, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, J.A.; Ding, K.-H. Scattering of Electromagnetic Waves. Theories and Applications; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Lim, H.B.; Nhung, N.T.T.; Li, E.P.; Thang, N.D. Confocal Microwave Imaging for Breast Cancer Detection: Delay-Multiply-and-Sum Image Reconstruction Algorithm. IEEE Trans. Biomed. Eng. 2008, 55, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Lei, G.; Abbosh, A.M. Optimization-Based Confocal Microwave Imaging in Medical Applications. IEEE Trans. Antennas Propag. 2015, 63, 3531–3539. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, B.; Xu, L.; Li, J.; Stoica, P. Multistatic Adaptive Microwave Imaging for Early Breast Cancer Detection. IEEE Trans. Biomed. Eng. 2006, 53, 1647–1657. [Google Scholar] [CrossRef] [PubMed]
- Ahdi Rezaeieh, S.; Zamani, A.; Bialkowski, K.S.; Macdonald, G.A.; Abbosh, A.M. Three-Dimensional Electromagnetic Torso Scanner. Sensors 2019, 19, 1015. [Google Scholar] [CrossRef]
- Abduljabbar, A.; Yavuz, M.E.; Costen, F.; Himeno, R.; Yokota, H. Continuous Wavelet Transform Based Frequency Dispersion Compensation Method for Electromagnetic Time-Reversal Imaging. IEEE Trans. Antennas Propag. 2017, 65, 1321–1329. [Google Scholar] [CrossRef]
- Lin, X.; Ding, Y.; Gong, Z.; Chen, Y. Hybrid Microwave Medical Imaging Approach Combining Quantitative and Qualitative Algorithms. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 438–442. [Google Scholar] [CrossRef]
- Yousefnia, M.; Ebrahimzadeh, A.; Dehmollaian, M.; Madannejad, A. A Time-Reversal Imaging System for Breast Screening: Theory and Initial Phantom Results. IEEE Trans. Biomed. Eng. 2018, 65, 2542–2551. [Google Scholar] [CrossRef]
- Mukherjee, S.; Udpa, L.; Udpa, S.; Rothwell, E.J.; Deng, Y. A Time Reversal-Based Microwave Imaging System for Detection of Breast Tumors. IEEE Trans. Microw. Theory Tech. 2019, 67, 2062–2075. [Google Scholar] [CrossRef]
- Hossain, M.D.; Mohan, A.S.; Abedin, M.J. Beamspace Time-Reversal Microwave Imaging for Breast Cancer Detection. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 241–244. [Google Scholar] [CrossRef]
- Stuchly, M.A.; Fear, E.C. Microwave detection of breast cancer. IEEE Trans. Microw. Theory Tech. 2000, 48, 1854–1863. [Google Scholar] [CrossRef]
- Fear, E.C.; Stuchly, M.A. Microwave system for breast tumor detection. IEEE Microw. Guid. Wave Lett. 1999, 9, 470–472. [Google Scholar] [CrossRef]
- Fear, E.C.; Stuchly, M.A. Microwave breast tumor detection: Antenna design and characterization. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting, Salt Lake City, UT, USA, 16–21 July 2000. [Google Scholar] [CrossRef]
- Shen, C.-C.; Hsieh, P.-Y. Ultrasound Baseband Delay-Multiply-and-Sum (BB-DMAS) nonlinear beamforming. Ultrasonics 2019, 96, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Reimer, T.; Solis-Nepote, M.; Pistorius, S. The Application of an Iterative Structure to the Delay-and-Sum and the Delay-Multiply-and-Sum Beamformers in Breast Microwave Imaging. Diagnostics 2020, 10, 411. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarzadeh, M.; Mahloojifar, A.; Orooji, M. Image Enhancement and Noise Reduction Using Modified Delay-Multiply-and-Sum Beamformer: Application to Medical Photoacoustic Imaging. Cornell University Library. arXiv 2018. [Google Scholar] [CrossRef]
- Islam, M.T.; Islam, M.T.; Samsuzzaman, M.; Kibria, S.; Chowdhury, M.E.H. Microwave Breast Imaging Using Compressed Sensing Approach of Iteratively Corrected Delay Multiply and Sum Beamforming. Diagnostics 2021, 11, 470. [Google Scholar] [CrossRef]
- Reimer, T.; Pistorius, S. An optimization-based approach to radar image reconstruction in breast microwave sensing. Sensors 2021, 21, 8172. [Google Scholar] [CrossRef]
- Elahi, M.A.; O’Loughlin, D.; Lavoie, B.R.; Glavin, M.; Jones, E.; Fear, E.C.; O’Halloran, M. Evaluationof image reconstruction algorithms for confocal microwave imaging: Application to patient data. Sensors 2018, 18, 1678. [Google Scholar] [CrossRef]
- Elahi, M.A. Confocal Microwave Imaging and Artifact Removal Algorithms for the Early Detection of Breast Cance; University of Galway: Galway, Ireland, 2018. [Google Scholar]
- Loughlin, D.; Halloran, M.; Moloney, B.M.; Glavin, M.; Jones, E.; Elahi, M.A. Microwave breast imaging: Clinical advances and remaining challenges. IEEE Trans. Biomed. Eng. 2018, 65, 2580–2590. [Google Scholar] [CrossRef]
- Jacobsen, S.; Birkelund, Y. Improved Resolution and Reduced Clutter in Ultra-Wideband Microwave Imaging Using Cross-Correlated Back Projection: Experimental and Numerical Results. Int. J. Biomed. Imaging 2010, 2010, 781095. [Google Scholar] [CrossRef]
- Ren, K.; Wang, Q.; Burkholder, R.J. A Fast Back-Projection Approach to Diffraction Tomography for Near-Field Microwave Imaging. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2170–2174. [Google Scholar] [CrossRef]
- Cho, Y.S.; Jung, H.K.; Cheon, C.; Chung, Y.S. Adaptive Back-Projection Algorithm Based on Climb Method for Microwave Imaging. IEEE Trans. Magn. 2016, 52, 9400704. [Google Scholar] [CrossRef]
- Abbosh, A.; Brankovic, A. Apparatus and Process for Electromagnetic Imaging. U.S. Patent Application No. 18/280,365, 7 March 2024. [Google Scholar]
- Dielectric Properties of Human Tissue. Available online: https://itis.swiss/virtual-population/tissue-properties/database/tissue-frequency-chart/ (accessed on 1 March 2024).
- Ullah, R.; Saied, I.; Arslan, T. Multistatic radar-based imaging in layered and dispersive media for biomedical applications. Biomed. Signal Process. Control 2023, 82, 104568. [Google Scholar] [CrossRef]
- Moll, J. Microwave radar imaging of heterogeneous breast tissue integrating a priori information. Int. J. Biomed. Imaging 2014, 2014, 943549. [Google Scholar] [CrossRef]
- Lavoie, B.R.; Okoniewski, M.; Fear, E.C. Estimating the effective permittivity for reconstructing accurate microwave-Radar images. PLoS ONE 2016, 11, e0160849. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Duarte, D.O.; Tobon Vasquez, J.A.; Scapaticci, R.; Turvani, G.; Cavagnaro, M.; Casu, M.R.; Crocco, L.; Vipiana, F. Experimental Validation of a Microwave System for Brain Stroke 3-D Imaging. Diagnostics 2021, 11, 1232. [Google Scholar] [CrossRef]
- Hossain, M.D.; Mohan, A.S. Cancer Detection in Highly Dense Breasts Using Coherently Focused Time-Reversal Microwave Imaging. IEEE Trans. Comput. Imaging 2017, 3, 928–939. [Google Scholar] [CrossRef]
- Bolomey, J.-C. The World of Applied Electromagnetics; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 369–414. [Google Scholar] [CrossRef]
- Kechribaris, C.N.; Nikita, K.S.; Uzunoglu, N.K. Reconstruction of two-dimensional permittivity distribution using an improved Rytov approximation and nonlinear optimization: Microwave imaging and inverse scattering techniques. J. Electromagn. Waves Appl. 2003, 17, 183–207. [Google Scholar] [CrossRef]
- Guo, L.; Nguyen-Trong, N.; Ai-Saffar, A.; Stancombe, A.; Bialkowski, K.; Abbosh, A. Calibrated Frequency-Division Distorted Born Iterative Tomography for Real-Life Head Imaging. IEEE Trans. Med. Imaging 2022, 41, 1087–1103. [Google Scholar] [CrossRef]
- Fedeli, A.; Schenone, V.; Randazzo, A.; Pastorino, M.; Henriksson, T.; Semenov, S. Nonlinear S-Parameters Inversion for Stroke Imaging. IEEE Trans. Microw. Theory Tech. 2021, 69, 1760–1771. [Google Scholar] [CrossRef]
- Hopfer, M.; Planas, R.; Hamidipour, A.; Henriksson, T.; Semenov, S. Electromagnetic Tomography for Detection, Differentiation, and Monitoring of Brain Stroke: A Virtual Data and Human Head Phantom Study. IEEE Antennas Propag. Mag. 2017, 59, 86–97. [Google Scholar] [CrossRef]
- Tajik, D.; Kazemivala, R.; Nikolova, N.K. Real-Time Imaging with Simultaneous Use of Born and Rytov Approximations in Quantitative Microwave Holography. IEEE Trans. Microw. Theory Tech. 2022, 70, 1896–1909. [Google Scholar] [CrossRef]
- Al-Saffar, A.; Zamani, A.; Stancombe, A.; Abbosh, A. Operational Learning-Based Boundary Estimation in Electromagnetic Medical Imaging. IEEE Trans. Antennas Propag. 2022, 70, 2234–2245. [Google Scholar] [CrossRef]
- Elahi, M.A.; Shahzad, A.; Glavin, M.; Jones, E.; O’Halloran, M. Hybrid Artifact Removal for Confocal Microwave Breast Imaging. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 149–152. [Google Scholar] [CrossRef]
- Guo, R.; Huang, T.; Li, M.; Zhang, H.; Eldar, Y.C. Physics-Embedded Machine Learning for Electromagnetic Data Imaging: Examining three types of data-driven imaging methods. IEEE Signal Process. Mag. 2023, 40, 18–31. [Google Scholar] [CrossRef]
- Multi-Step Learning-by-Examples Strategy for Real-Time Brain Stroke Microwave Scattering Data Inversion. Electronics 2021, 10, 95. [CrossRef]
- Janani, A.; Ahdi Rezaeieh, S.; Darvazehban, A.; Khosravi-Farsani, M.; Keating, S.; Abbosh, A. Electromagnetic Method for Steatotic Liver Detection Using Contrast in Effective Dispersive Permittivity. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 331–339. [Google Scholar] [CrossRef]
- Sabouni, A.; Flores-Tapia, D.; Noghanian, S.; Thomas, G.; Pistorius, S. Hybrid microwave tomography technique for breast cancer imaging. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 2006, 4273–4276. (In English) [Google Scholar] [CrossRef]
- Semnani, A.; Rekanos, I.T.; Kamyab, M.; Papadopoulos, T.G. Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution. IEEE Trans. Antennas Propag. 2010, 58, 3289–3298. [Google Scholar] [CrossRef]
- Salucci, M.; Arrebola, M.; Shan, T.; Li, M. Artificial Intelligence: New Frontiers in Real-Time Inverse Scattering and Electromagnetic Imaging. IEEE Trans. Antennas Propag. 2022, 70, 6349–6364. [Google Scholar] [CrossRef]
- Chen, X.; Wei, Z.; Li, M.; Rocca, P. A review of deep learning approaches for inverse scattering problems. Electromagn. Waves 2020, 167, 67–81. [Google Scholar] [CrossRef]
Tissue | Skin | Fat | Muscle | Bone | Human Average | Target |
---|---|---|---|---|---|---|
@ (0.7–2 GHz) | 42–38.6 | 11.37–11 | 55.3–53.3 | 12.6–117 | 41.3–36.78 | 84.5–83 |
(s/m) @ (0.7–2 GHz) | 0.8–1.127 | 0.096–0.21 | 0.88–1.45 | 0.12–0.31 | 0.1–0.65 | 0.15–0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbosh, Y.M.; Sultan, K.; Guo, L.; Abbosh, A. Synthetic Microwave Focusing Techniques for Medical Imaging: Fundamentals, Limitations, and Challenges. Biosensors 2024, 14, 498. https://doi.org/10.3390/bios14100498
Abbosh YM, Sultan K, Guo L, Abbosh A. Synthetic Microwave Focusing Techniques for Medical Imaging: Fundamentals, Limitations, and Challenges. Biosensors. 2024; 14(10):498. https://doi.org/10.3390/bios14100498
Chicago/Turabian StyleAbbosh, Younis M., Kamel Sultan, Lei Guo, and Amin Abbosh. 2024. "Synthetic Microwave Focusing Techniques for Medical Imaging: Fundamentals, Limitations, and Challenges" Biosensors 14, no. 10: 498. https://doi.org/10.3390/bios14100498
APA StyleAbbosh, Y. M., Sultan, K., Guo, L., & Abbosh, A. (2024). Synthetic Microwave Focusing Techniques for Medical Imaging: Fundamentals, Limitations, and Challenges. Biosensors, 14(10), 498. https://doi.org/10.3390/bios14100498