Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring
Abstract
:1. Introduction
2. MOF Based Wearable and Portable Electrochemical Sensors
2.1. Cortisol
2.2. SARS-CoV-2
2.3. Creatinine
2.4. Glucose
2.4.1. Non-Enzymatic Glucose Sensors
2.4.2. Enzymatic Glucose Sensors
2.5. Isopentane
2.6. Isoprene
2.7. Lactate
2.8. Levodopa
2.9. Metal Ions
2.10. Melatonin
2.11. Nerve Agent
2.12. Sulfur Mustard Stimulant
2.13. Sweat Monitoring
2.14. Uric Acid
3. Challenges in MOF-Based Sensing Devices
4. Summary and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AuE | Gold electrode |
BMIM | Butylmethyl imidazolium |
CC | Conductive carbon |
CD | Carbon dots |
CE | Counter electrode |
Cl-ISE | Chloride-ion selective electrode |
CNT | Chloride-ion selective electrode |
CNTF | Carbon nanotube fiber |
CPE | Carbon paste electrode |
CRT | Creatinine |
CSNPC | Core–shell nanoporous carbon |
CuNPs | Copper nanoparticles |
FISE | Fluoride ion-selective electrode |
GO | Graphene oxide |
GOx | Glucose oxidase |
HNPC | Hybridized nanoporous carbon |
IL | Ionic liquid |
KOH | Potassium hydroxide |
LD | Levodopa |
LDHs | Layered double hydroxides |
LOD | Limit of detection |
LOx | Lactate oxidase |
MOF | Metal–organic framework |
MWCNT | Multiwalled carbon nanotube |
NC | Nanocage |
Nf | Nafion |
N-GQDs | Nitrogen-doped graphene quantum dots |
NiNPs | Nickel nanoparticles |
PB | Prussian blue |
PD | Parkinson’s disease |
PDMS | Polydimethylsiloxane |
PET | Polyethylene terephthalate |
PGE | Pencil graphite electrode |
PIF | Polyimide film |
PoC | Point of care |
PSM | Permselective membrane |
PtNPs | Platinum nanoparticles |
PU | Polyurethane |
PVA | Polyvinyl alcohol |
RE | Reference electrode |
RGO | Reduced graphene oxide |
SPCE | Screen-printed carbon electrode |
UA | Uric acid |
WE | Working electrode |
ZIF | Zeolitic imidazolate frameworks |
References
- Wang, X.; Ma, T.; Ma, J.-G.; Cheng, P. Integration of Devices Based on Metal–Organic Frameworks: A Promising Platform for Chemical Sensing. Coord. Chem. Rev. 2024, 518, 216067. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Z.; Niu, J.; Peng, J.; Wang, T.; Hou, X. Emerging Innovations in Portable Chemical Sensing Devices: Advancements from Microneedles to Hydrogel, Microfluidic, and Paper-Based Platforms. Talanta 2024, 278, 126412. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic Textiles for Wearable Point-of-Care Systems. Chem. Rev. 2022, 122, 3259–3291. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lee, G.-H.; Kim, S.Y.; Kwon, S.Y.; Kim, H.-R.; Park, S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano 2021, 15, 1960–2004. [Google Scholar] [CrossRef]
- Rebelo, R.; Barbosa, A.I.; Caballero, D.; Kwon, I.K.; Oliveira, J.M.; Kundu, S.C.; Reis, R.L.; Correlo, V.M. 3D Biosensors in Advanced Medical Diagnostics of High Mortality Diseases. Biosens. Bioelectron. 2019, 130, 20–39. [Google Scholar] [CrossRef]
- Mahato, K.; Srivastava, A.; Chandra, P. Paper Based Diagnostics for Personalized Health Care: Emerging Technologies and Commercial Aspects. Biosens. Bioelectron. 2017, 96, 246–259. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Zhang, T. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small 2017, 13, 1602790. [Google Scholar] [CrossRef]
- Windmiller, J.R.; Wang, J. Wearable Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2013, 25, 29–46. [Google Scholar] [CrossRef]
- Hosseinzadeh Fakhr, M.; Lopez Carrasco, I.; Belyaev, D.; Kang, J.; Shin, Y.; Yeo, J.-S.; Koh, W.-G.; Ham, J.; Michaelis, A.; Opitz, J.; et al. Recent Advances in Wearable Electrochemical Biosensors towards Technological and Material Aspects. Biosens. Bioelectron. X 2024, 19, 100503. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G. Reviews of Wearable Healthcare Systems: Materials, Devices and System Integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523. [Google Scholar] [CrossRef]
- Khan, B.; Riaz, Z.; Ahmad, R.u.S.; Khoo, B.L. Advancements in Wearable Sensors for Cardiovascular Disease Detection for Health Monitoring. Mater. Sci. Eng. R Rep. 2024, 159, 100804. [Google Scholar] [CrossRef]
- Osman, A.; Lu, J. 3D Printing of Polymer Composites to Fabricate Wearable Sensors: A Comprehensive Review. Mater. Sci. Eng. R Rep. 2023, 154, 100734. [Google Scholar] [CrossRef]
- Mahato, K.; Wang, J. Electrochemical Sensors: From the Bench to the Skin. Sens. Actuators B Chem. 2021, 344, 130178. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical Sensors and Biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef]
- Theyagarajan, K.; Kim, Y.-J. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. Biosensors 2023, 13, 424. [Google Scholar] [CrossRef]
- Xu, X.; Zuo, Y.; Chen, S.; Hatami, A.; Gu, H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. Biosensors 2024, 14, 125. [Google Scholar] [CrossRef]
- Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef]
- Theyagarajan, K.; Lakshmi, B.A.; Kim, C.; Kim, Y.-J. A Nanohybrid-Based Smartphone-Compatible High Performance Electrochemical Glucose Sensor. Mater. Today Chem. 2024, 41, 102282. [Google Scholar] [CrossRef]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable Biosensors for Healthcare Monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Dong, Q.; Ryu, H.; Lei, Y. Metal Oxide Based Non-Enzymatic Electrochemical Sensors for Glucose Detection. Electrochim. Acta 2021, 370, 137744. [Google Scholar] [CrossRef]
- Theyagarajan, K.; Lakshmi, B.A.; Kim, Y.-J. Enzymeless Detection and Real-Time Analysis of Intracellular Hydrogen Peroxide Released from Cancer Cells Using Gold Nanoparticles Embedded Bimetallic Metal Organic Framework. Colloids Surf. B Biointerfaces 2025, 245, 114209. [Google Scholar] [CrossRef] [PubMed]
- Mohanapriya, D.; Satija, J.; Senthilkumar, S.; Kumar Ponnusamy, V.; Thenmozhi, K. Design and Engineering of 2D MXenes for Point-of-Care Electrochemical Detection of Bioactive Analytes and Environmental Pollutants. Coord. Chem. Rev. 2024, 507, 215746. [Google Scholar] [CrossRef]
- Joshi, A.; Kim, K.-H. Recent Advances in Nanomaterial-Based Electrochemical Detection of Antibiotics: Challenges and Future Perspectives. Biosens. Bioelectron. 2020, 153, 112046. [Google Scholar] [CrossRef]
- Theyagarajan, K.; Sruthi, V.P.; Satija, J.; Senthilkumar, S.; Kim, Y.-J. Materials and Design Strategies for the Electrochemical Detection of Antineoplastic Drugs: Progress and Perspectives. Mater. Sci. Eng. R Rep. 2024, 161, 100840. [Google Scholar] [CrossRef]
- Rojas, S.; Arenas-Vivo, A.; Horcajada, P. Metal-Organic Frameworks: A Novel Platform for Combined Advanced Therapies. Coord. Chem. Rev. 2019, 388, 202–226. [Google Scholar] [CrossRef]
- Wijesundara, Y.H.; Howlett, T.S.; Kumari, S.; Gassensmith, J.J. The Promise and Potential of Metal–Organic Frameworks and Covalent Organic Frameworks in Vaccine Nanotechnology. Chem. Rev. 2024, 124, 3013–3036. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- Xue, Y.; Zheng, S.; Xue, H.; Pang, H. Metal–Organic Framework Composites and Their Electrochemical Applications. J. Mater. Chem. A 2019, 7, 7301–7327. [Google Scholar] [CrossRef]
- Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. Metal–Organic Frameworks for Energy Storage: Batteries and Supercapacitors. Coord. Chem. Rev. 2016, 307, 361–381. [Google Scholar] [CrossRef]
- Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.-L. Metal–Organic Frameworks: Structures and Functional Applications. Mater. Today 2019, 27, 43–68. [Google Scholar] [CrossRef]
- Lei, J.; Qian, R.; Ling, P.; Cui, L.; Ju, H. Design and Sensing Applications of Metal–Organic Framework Composites. TrAC Trends Anal. Chem. 2014, 58, 71–78. [Google Scholar] [CrossRef]
- Pashazadeh-Panahi, P.; Belali, S.; Sohrabi, H.; Oroojalian, F.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Metal-Organic Frameworks Conjugated with Biomolecules as Efficient Platforms for Development of Biosensors. TrAC Trends Anal. Chem. 2021, 141, 116285. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, D.; Li, C.; Zhao, J.; Feng, R.; Zhang, Y.; Xu, R.; Wei, Q. Europium Metal–Organic Framework with a Tetraphenylethylene-Based Ligand: A Dual-Mechanism Quenching Immunosensor for Enhanced Electrochemiluminescence via the Coordination Trigger. Anal. Chem. 2024, 96, 3898–3905. [Google Scholar] [CrossRef]
- Kempahanumakkagari, S.; Vellingiri, K.; Deep, A.; Kwon, E.E.; Bolan, N.; Kim, K.-H. Metal–Organic Framework Composites as Electrocatalysts for Electrochemical Sensing Applications. Coord. Chem. Rev. 2018, 357, 105–129. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Y.; Liu, S.; Xu, M. The Applications of Metal−Organic Frameworks in Electrochemical Sensors. ChemElectroChem 2018, 5, 6–19. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ding, X.; Hua, K.; Sun, A.; Hu, X.; Nie, Z.; Zhang, Y.; Wang, J.; Li, R.; et al. Progress and Opportunities for Metal–Organic Framework Composites in Electrochemical Sensors. RSC Adv. 2023, 13, 10800–10817. [Google Scholar] [CrossRef]
- Li, C.; Xu, R.; Liu, X.; Tian, L.; Wang, H.; Zhang, Y.; Wei, Q. Visible Self-Luminous Indium-Based Metal–Organic Framework for Electrochemiluminescence Detection of Hg2+. Sens. Actuators B Chem. 2024, 405, 135383. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, H.; Chai, Y.; Shi, W.; Yuan, R. High-Efficiency CNNS@NH2-MIL(Fe) Electrochemiluminescence Emitters Coupled with Ti3C2 Nanosheets as a Matrix for a Highly Sensitive Cardiac Troponin I Assay. Anal. Chem. 2020, 92, 8992–9000. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Bhattacharya, A.; Dutta, T.; Nag, S.; Wulferding, D.; Lemmens, P.; Pal, S.K. Nano MOF Entrapping Hydrophobic Photosensitizer for Dual-Stimuli-Responsive Unprecedented Therapeutic Action against Drug-Resistant Bacteria. ACS Appl. Bio Mater. 2019, 2, 1772–1780. [Google Scholar] [CrossRef] [PubMed]
- Julien, P.A.; Mottillo, C.; Friščić, T. Metal–Organic Frameworks Meet Scalable and Sustainable Synthesis. Green Chem. 2017, 19, 2729–2747. [Google Scholar] [CrossRef]
- Chuang, C.-H.; Kung, C.-W. Metal−Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. Electroanalysis 2020, 32, 1885–1895. [Google Scholar] [CrossRef]
- Liu, C.-S.; Li, J.; Pang, H. Metal-Organic Framework-Based Materials as an Emerging Platform for Advanced Electrochemical Sensing. Coord. Chem. Rev. 2020, 410, 213222. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T.; Yu, Y.; Asif, M.; Xu, N.; Xiao, F.; Liu, H. Coffee Ring–Inspired Approach toward Oriented Self-Assembly of Biomimetic Murray MOFs as Sweat Biosensor. Small 2018, 14, 1802670. [Google Scholar] [CrossRef]
- Rasheed, T.; Rizwan, K. Metal-Organic Frameworks Based Hybrid Nanocomposites as State-of–the-Art Analytical Tools for Electrochemical Sensing Applications. Biosens. Bioelectron. 2022, 199, 113867. [Google Scholar] [CrossRef]
- Fang, X.; Zong, B.; Mao, S. Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Lett. 2018, 10, 64. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Martins, P.R.; Rocha, D.P.; Matias, T.A.; Julião, M.S.S.; Munoz, R.A.A.; Angnes, L. Recent Trends and Perspectives in Electrochemical Sensors Based on MOF-Derived Materials. J. Mater. Chem. C 2021, 9, 8718–8745. [Google Scholar] [CrossRef]
- Daniel, M.; Mathew, G.; Anpo, M.; Neppolian, B. MOF Based Electrochemical Sensors for the Detection of Physiologically Relevant Biomolecules: An Overview. Coord. Chem. Rev. 2022, 468, 214627. [Google Scholar] [CrossRef]
- Liu, W.; Yin, X.-B. Metal–Organic Frameworks for Electrochemical Applications. TrAC Trends Anal. Chem. 2016, 75, 86–96. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Q.; Xue, H.; Pang, H. Metal-Organic Frameworks for Direct Electrochemical Applications. Coord. Chem. Rev. 2018, 376, 292–318. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, A.; Gupta, V.; Sundramoorthy, A.K.; Arya, S. Involvement of Metal Organic Frameworks in Wearable Electrochemical Sensor for Efficient Performance. Trends Environ. Anal. Chem. 2023, 38, e00200. [Google Scholar] [CrossRef]
- Rebecca, P.N.B.; Durgalakshmi, D.; Balakumar, S.; Rakkesh, R.A. Advancing Healthcare Applications: Wearable Sensors Utilizing Metal–Organic Frameworks. Sens. Diagn. 2023, 2, 1360–1375. [Google Scholar] [CrossRef]
- Su, T.; Mi, Z.; Xia, Y.; Jin, D.; Xu, Q.; Hu, X.; Shu, Y. A Wearable Sweat Electrochemical Aptasensor Based on the Ni–Co MOF Nanosheet-Decorated CNTs/PU Film for Monitoring of Stress Biomarker. Talanta 2023, 260, 124620. [Google Scholar] [CrossRef]
- Palanisamy, S.; Lee, L.-Y.; Kao, C.-F.; Chen, W.-L.; Wang, H.-C.; Shen, S.-T.; Jian, J.-W.; Yuan, S.-S.F.; Kung, Y.-A.; Wang, Y.-M. One-Step-One-Pot Hydrothermally Derived Metal-Organic-Framework-Nanohybrids for Integrated Point-of-Care Diagnostics of SARS-CoV-2 Viral Antigen/Pseudovirus Utilizing Electrochemical Biosensor Chip. Sens. Actuators B Chem. 2023, 390, 133960. [Google Scholar] [CrossRef]
- Kalasin, S.; Sangnuang, P.; Surareungchai, W. Lab-on-Eyeglasses to Monitor Kidneys and Strengthen Vulnerable Populations in Pandemics: Machine Learning in Predicting Serum Creatinine Using Tear Creatinine. Anal. Chem. 2021, 93, 10661–10671. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical Glucose Biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, W.; Li, Y. Recent Progress in MOF-Based Electrochemical Sensors for Non-Enzymatic Glucose Detection. Molecules 2023, 28, 4891. [Google Scholar] [CrossRef]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef]
- Tu, J.; Torrente-Rodríguez, R.M.; Wang, M.; Gao, W. The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Adv. Funct. Mater. 2020, 30, 1906713. [Google Scholar] [CrossRef]
- Zafar, H.; Channa, A.; Jeoti, V.; Stojanović, G.M. Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors 2022, 22, 638. [Google Scholar] [CrossRef]
- Zha, X.; Yang, W.; Shi, L.; Zeng, Q.; Xu, J.; Yang, Y. 2D Bimetallic Organic Framework Nanosheets for High-Performance Wearable Power Source and Real-Time Monitoring of Glucose. Dalton Trans. 2023, 52, 2631–2640. [Google Scholar] [CrossRef]
- Shu, Y.; Su, T.; Lu, Q.; Shang, Z.; Xu, Q.; Hu, X. Highly Stretchable Wearable Electrochemical Sensor Based on Ni-Co MOF Nanosheet-Decorated Ag/rGO/PU Fiber for Continuous Sweat Glucose Detection. Anal. Chem. 2021, 93, 16222–16230. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, L.; Li, K.; Zhang, Q.; Li, Y.; Hou, C.; Wang, H. Non-Enzyme Electrochemical Sensing Fabrics and Wearable Applications Based on Bimetallic NiCo-MOFs. Electroanalysis 2023, 35, e202200556. [Google Scholar] [CrossRef]
- Xia, Y.; Su, T.; Mi, Z.; Feng, Z.; Hong, Y.; Hu, X.; Shu, Y. Wearable Electrochemical Sensor Based on Bimetallic MOF Coated CNT/PDMS Film Electrode via a Dual-Stamping Method for Real-Time Sweat Glucose Analysis. Anal. Chim. Acta 2023, 1278, 341754. [Google Scholar] [CrossRef]
- Blessy Rebecca, P.N.; Durgalakshmi, D.; Balakumar, S.; Ajay Rakkesh, R. Enhancing Self-Powered Wearable Device Performance: ZIF-8/rGO Hybrid Nanostructures for Extended Operation and Electrochemical Glucose Detection. Chem. Eng. J. 2024, 484, 149789. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, S.; Ju, Y.; Yang, J.; Zhao, C.; Liu, H. Water Splitting-Assisted Electrocatalytic Oxidation of Glucose with a Metal–Organic Framework for Wearable Non-enzymatic Perspiration Sensing. Anal. Chem. 2019, 91, 10764–10771. [Google Scholar] [CrossRef]
- Chen, X.; Feng, X.-Z.; Zhan, T.; Xue, Y.-T.; Li, H.-X.; Han, G.-C.; Chen, Z.; Kraatz, H.-B. Construction of a Portable Enzyme-Free Electrochemical Glucose Detection System Based on the Synergistic Interaction of Cu-MOF and PtNPs. Sens. Actuators B Chem. 2023, 395, 134498. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, M.; Xiong, C.; Zhu, X.; Chen, C.; Zhou, F.; Dong, Y.; Wang, Y.; Xu, J.; Li, Y.; et al. Dual Confinement of High–Loading Enzymes within Metal–Organic Frameworks for Glucose Sensor with Enhanced Cascade Biocatalysis. Biosens. Bioelectron. 2022, 196, 113695. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Zahed, M.A.; Sharifuzzaman, M.; Reza, M.S.; Hui, X.; Sharma, S.; Shin, Y.D.; Park, J.Y. A Hybridized Nanoporous Carbon Reinforced 3D Graphene-Based Epidermal Patch for Precise Sweat Glucose and Lactate Analysis. Biosens. Bioelectron. 2023, 219, 114846. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.T.; Leoi, M.W.N.; Yu, Y.; Tan, S.C.L.; Nadzri, N.; Goh, W.P.; Jiang, C.; Ni, X.P.; Wang, P.; Zhao, M.; et al. Co-Encapsulating Enzymes and Carbon Dots in Metal–Organic Frameworks for Highly Stable and Sensitive Touch-Based Sweat Sensors. Adv. Funct. Mater. 2024, 34, 2310121. [Google Scholar] [CrossRef]
- Banga, I.; Paul, A.; Sardesai, A.U.; Muthukumar, S.; Prasad, S. ZEUS (ZIF-Based Electrochemical Ultrasensitive Screening) Device for Isopentane Analytics with Focus on Lung Cancer Diagnosis. RSC Adv. 2021, 11, 20519–20528. [Google Scholar] [CrossRef] [PubMed]
- Banga, I.; Paul, A.; Sardesai, A.; Muthukumar, S.; Prasad, S. AuNP@ZeNose (ZIF-Based Electrochemical Nose) for Detection of Flu Biomarker in Breath. Microchim. Acta 2022, 189, 231. [Google Scholar] [CrossRef] [PubMed]
- Jannath, K.A.; Karim, M.M.; Saputra, H.A.; Seo, K.-D.; Kim, K.B.; Shim, Y.-B. A Review on the Recent Advancements in Nanomaterials for Non-enzymatic Lactate Sensing. Bull. Korean Chem. Soc. 2023, 44, 407–419. [Google Scholar] [CrossRef]
- Chang, L.-Y.; Rinawati, M.; Guo, Y.-T.; Lin, Y.-C.; Chang, C.-Y.; Su, W.-N.; Mizuguchi, H.; Huang, W.-H.; Chen, J.-L.; Yeh, M.-H. Nitrogen-Doped Graphene Quantum Dots Incorporated into MOF-Derived NiCo Layered Double Hydroxides for Non-enzymatic Lactate Detection in Noninvasive Biosensors. ACS Appl. Nano Mater. 2024, 7, 14431–14442. [Google Scholar] [CrossRef]
- Xiao, J.; Fan, C.; Xu, T.; Su, L.; Zhang, X. An Electrochemical Wearable Sensor for Levodopa Quantification in Sweat Based on a Metal–Organic Framework/Graphene Oxide Composite with Integrated Enzymes. Sens. Actuators B Chem. 2022, 359, 131586. [Google Scholar] [CrossRef]
- Elashery, S.E.A.; Attia, N.F.; Oh, H. Design and Fabrication of Novel Flexible Sensor Based on 2D Ni-MOF Nanosheets as a Preliminary Step toward Wearable Sensor for Onsite Ni (II) Ions Detection in Biological and Environmental Samples. Anal. Chim. Acta 2022, 1197, 339518. [Google Scholar] [CrossRef]
- Yin, H.; He, H.; Li, T.; Hu, M.; Huang, W.; Wang, Z.; Yang, X.; Yao, W.; Xiao, F.; Wu, Y.; et al. Ultra-Sensitive Detection of Multiplexed Heavy Metal Ions by MOF-Derived Carbon Film Encapsulating BiCu Alloy Nanoparticles in Potable Electrochemical Sensing System. Anal. Chim. Acta 2023, 1239, 340730. [Google Scholar] [CrossRef]
- Richard, B.; Niyas, K.; Ankitha, M.; Rasheed, P.A. Biological Metal–Organic Framework-Embedded MXene Nanocomposite as a Wearable Transducer Patch for Real-Time Monitoring of the Sleep Hormone. ACS Appl. Nano Mater. 2024, 7, 9585–9597. [Google Scholar] [CrossRef]
- Disley, J.; Gil-Ramírez, G.; Gonzalez-Rodriguez, J. A Review of Sensing Technologies for Nerve Agents, through the Use of Agent Mimics in the Gas Phase: Future Needs. TrAC Trends Anal. Chem. 2023, 168, 117282. [Google Scholar] [CrossRef]
- Sandhu, S.S.; Kotagiri, Y.G.; Fernando I, P.U.A.I.; Kalaj, M.; Tostado, N.; Teymourian, H.; Alberts, E.M.; Thornell, T.L.; Jenness, G.R.; Harvey, S.P.; et al. Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. J. Am. Chem. Soc. 2021, 143, 18261–18271. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, S.S.; Chang, A.-Y.; Fernando, P.U.A.I.; Morales, J.F.; Tostado, N.; Jernberg, J.; Moores, L.C.; Wang, J. MIP-202 Catalyst-Integrated Solid-Contact Potentiometric Chloride Sensor for Versatile Multiphasic Detection of a Sulfur Mustard Simulant. Sens. Actuators B Chem. 2023, 375, 132818. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Hui, X.; Reza, M.S.; Pradhan, G.B.; Jeong, S.H.; Song, H.; Zahed, M.A.; Sharifuzzaman, M.; Park, J.Y. A Core-Shell Structured Nanoporous Carbon/Nanotube Incorporated Laser-Assisted Graphene-Based Multifunctional Patch for Perspiration Ions Analysis and Monitoring. Chem. Eng. J. 2023, 474, 145836. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; Shi, Y.; Yang, X.; Li, L.; Lu, Q.; Zheng, H.; Feng, S.; Bai, Y.; Zhang, T. Vertically Aligned Conductive Metal-Organic Framework Nanowires Array Composite Fiber as Efficient Solid-Contact for Wearable Potentiometric Sweat Sensing. Sens. Actuators B Chem. 2022, 369, 132290. [Google Scholar] [CrossRef]
- Xiao, J.; Luo, Y.; Su, L.; Lu, J.; Han, W.; Xu, T.; Zhang, X. Hydrophilic Metal-Organic Frameworks Integrated Uricase for Wearable Detection of Sweat Uric Acid. Anal. Chim. Acta 2022, 1208, 339843. [Google Scholar] [CrossRef]
Sensors | Linear Range (µM) | LOD (µM) | Sensitivity | pH | Potential (V) | Ref. |
---|---|---|---|---|---|---|
PVA/KOH/NiCo-MOF/GCE | 5–205; 205–2655; 2655–5655 | 0.11 | 1422.2; 522.9; 285.8 µA mM−1 cm−2 | Basic | 0.50 | [63] |
PVA/KOH/NiCo-MOF/PET | 10–200 | 10 | 0.31 µA µM−1 | |||
NiCo-MOF/Ag/RGO/PU | 10–660 | 3.28 | 425.9 µA mM−1 cm−2 | 7.0 | 0.50 | [64] |
NiCo-MOF/NF | 40–5340 | 1.68 | 2.935 µA mM−1 | Basic | 0.60 | [65] |
Nf/NiCo-MOF/CNT/PDMS | 20–1100 | 6.78 | 71.62 µA mM−1 cm−2 | Basic | 0.50 | [66] |
20–280 | - | - | 7.4 | |||
ZIF-8/RGO/PGE | 5–5000 | 0.3 | 5047.18 µA mM−1 cm−2 | 7.4 | 0.35 | [67] |
Pd@Co-MOF/PET | 10–1000 | 2.0 | - | - | 0.60 | [68] |
Cu-MOF/PtNPs/AuE | 400–25,000 | 60 | 158.41 µA mM−1 cm−2 | Basic | 0.55 | [69] |
GOx/Hemin@NC-ZIF | 50–600 | 2.0 | - | 7.2 | 0.60 | [70] |
PSM/GOx/PB/HNPC/PIF | 0–1500 | 0.025 | 82.7 µA mM−1 cm−2 | 7.4 | −0.05 | [71] |
GOx-CDs@ZIF-8 | 0–7000 | 12.5 | 9.28 µA mM−1 cm−2 | Basic | −0.05 | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theyagarajan, K.; Kim, Y.-J. Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring. Biosensors 2024, 14, 492. https://doi.org/10.3390/bios14100492
Theyagarajan K, Kim Y-J. Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring. Biosensors. 2024; 14(10):492. https://doi.org/10.3390/bios14100492
Chicago/Turabian StyleTheyagarajan, K, and Young-Joon Kim. 2024. "Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring" Biosensors 14, no. 10: 492. https://doi.org/10.3390/bios14100492
APA StyleTheyagarajan, K., & Kim, Y. -J. (2024). Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring. Biosensors, 14(10), 492. https://doi.org/10.3390/bios14100492