The Evolution of Illicit-Drug Detection: From Conventional Approaches to Cutting-Edge Immunosensors—A Comprehensive Review
Abstract
:1. Introduction
2. Commonly Used Illicit Drugs and Their Adverse Effects on Human Health: The Risks Are Real
2.1. Methamphetamine
2.2. Cocaine
2.3. Heroine
2.4. Cannabis
2.5. Fentanyl
2.6. MDMA
2.7. Ketamine
3. Conventional Techniques Available for Detecting Illicit Drugs
3.1. Gas Chromatography–Mass Spectrometry (GC-MS) and Liquid Chromatography–Mass Spectrometry (LC-MS)
3.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.3. High-Performance Liquid Chromatography (HPLC)
3.4. Capillary Electrophoresis (CE)
3.5. Colorimetric Test Kits (‘Spot’ Tests)
4. Immunosensors for the Detection of Illicit Drugs
4.1. Electrochemical Immunosensors
4.2. Optical Immunosensors
4.3. Piezoelectric Immunosensors
Immunosensing Technique | Advantages | Disadvantages | Mitigation Strategies |
---|---|---|---|
Electrochemical |
|
|
|
Optical |
|
|
|
Piezoelectric |
|
|
|
Drug | Technique Used | Sample Type | Limit of Detection (LOD) | Time | References |
---|---|---|---|---|---|
Cocaine | Multi-electrochemical competitive immunosensor using anti-cocaine antibody and protein-G-functionalized magnetic beads. | Urine, Serum, Saliva | 14.4 ng/mL (urine) 3.6 ng/mL (Saliva) 25.2 ng/mL (Human serum) 3.6 ng/mL (saliva) | 1–6 h | [107] |
Based on the combination of benzoylecgonine (BE) antibody and poly-l-phenylalanine-bearing electroactive macromonomer (EDOT-BTDA-PPhe) | Synthetic biological fluids | - | - | [65] | |
surface plasmon resonance (SPR) biosensor based on an indirect inhibitive immunoassay | Saliva | MA and COC equal to 0.95 and 3.14 ng·mL−1 | - | [83] | |
Laser-induced immunofluorometric biosensor using high-affinity antibody IP3G2 | Drug sample | 0.023 ng/mL | 90 s | [108] | |
Microfluidic-chip-based electrochemical immunosensors integrated with ELISA | Oral Fluids | 0.15 ng/mL | 22 min | [60] | |
Molecularly imprinted-polymer-based optical immunosensor using Mn-doped ZnS-QDs optosensing. | Oral fluids and serum | 0.035 and 0.015 ng/mL for oral fluid and serum. | - | [109,110] | |
Morphine | Manufacture of morphine detector based on quartz@Au-layer piezoelectric immunosensor with mouse anti-morphine antibody. | Morphine sulphate | 0.25 ng/mL | 460 s | [97] |
Voltammetric immunosensor using screen-printed electrodes modified with gold nanoparticles | Saliva | 0.09 ng/mL | - | [111] | |
Label-free immunosensors based on ECL intensity of luminol using indium-tin coated glass with gold nanoparticle | Urine | 0.82 ng mL−1 | - | [112] | |
Fentanyl | An ultrasensitive monoclonal-antibody-based immunochromatographic strip along with ic-ELISA | Human urine and serum | 0.14 ng/mL and 0.840 ng/mL | - | [113] |
Nanoporous electrochemical immunosensor for extremely sensitive detection employing gold working electrode and anti-fentanyl polyclonal antibody | sweat | 11.5 ng/mL, after optimization can detect down to ≈1 ng/mL | - | [114] | |
Methamphetamine | portable chemiluminescent fiber-based immunosensor combined with optical fiber sensor with competitive enzyme-linked immunoassay employing biotin-streptavidin mediated peroxidase nanocomposite | biological sources (human blood, urine, and oral fluid) | 0.5 ng/mL | 10 min | [91] |
Electro-chemiluminescent immunosensor for POC testing using a portable meter. | METH-BSA | 0.188 ng/mL | - | [115] | |
Ionic liquid hydrogel material with increased sensitivity toward electrochemical detection | Saliva | 0.72 ng/mL | - | [116] | |
FOPPR technique based-biosensor for the detection using anti-MA bind to BSA-MA conjugate on gold NPs | Urine | 0.16 ng/mL | 15 min | [58] | |
Cannabis | Nanoimmunosensor based on Horseradish Peroxide and double-layer Gold Nanoparticles | Rat serum sample | 0.0033 ng/mL | - | [117] |
Electrochemical Immunosensing employing surface of the GCE for anti-THC-monoclonal antibody | body fluids | 0.0033 ng/mL | - | [118] | |
A GPCR-based yeast biosensor | Artificial Saliva | - | - | [79] | |
Ketamine | A label-free immunosensor based on quartz crystal microbalance. | Human urine | 0.0086 ng/mL | - | [95] |
Electrochemiluminescence immunosensor based on PAMAM. | Blood plasma | 0.0067 ng/mL | - | [119] | |
Electrochemiluminescence-based immunosensor using ketamine antibody immobilized on Au-NPs. | Human hair | 0.0057 ng/mL | - | [73] |
5. Other Detection Methods
6. Conclusion and Future Aspects
Funding
Conflicts of Interest
References
- Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; De Wael, K.; Cristea, C. Tackling the problem of sensing commonly abused drugs through nanomaterials and (bio) recognition approaches. Front. Chem. 2020, 8, 561638. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, L.; Hall, W.; Warner-Smith, M.; Lynskey, M. Illicit drug use. In Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; WHO: Geneva, Switzerland, 2004; Volume 1, pp. 1109–1176. [Google Scholar]
- Ahmed, S.R.; Chand, R.; Kumar, S.; Mittal, N.; Srinivasan, S.; Rajabzadeh, A.R. Recent biosensing advances in the rapid detection of illicit drugs. TrAC Trends Anal. Chem. 2020, 131, 116006. [Google Scholar] [CrossRef]
- Soni, S.; Jain, U.; Chauhan, N. A systematic review on sensing techniques for drug-facilitated sexual assaults (DFSA) monitoring. Chin. J. Anal. Chem. 2021, 49, 83–92. [Google Scholar] [CrossRef]
- Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications—An overview. Front. Bioeng. Biotechnol. 2016, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.P.; Kougianos, E. Biosensors: A tutorial review. IEEE Potentials 2006, 25, 35–40. [Google Scholar] [CrossRef]
- Moina, C.; Ybarra, G. Fundamentals and applications of immunosensors. In Advances in Immunoassay Technology; IntechOpen: London, UK, 2012; Volume 66. [Google Scholar]
- Aydin, M.; Aydin, E.B.; Sezgintürk, M.K. Advances in immunosensor technology. Adv. Clin. Chem. 2021, 102, 1–62. [Google Scholar]
- Sun, B.; Wang, Y.; Li, D.; Li, W.; Gou, X.; Gou, Y.; Hu, F. Development of a sensitive electrochemical immunosensor using polyaniline functionalized graphene quantum dots for detecting a depression marker. Mater. Sci. Eng. C 2020, 111, 110797. [Google Scholar] [CrossRef]
- Quinn, D.I.; Wodak, A.; Day, R.O. Pharmacokinetic and pharmacodynamic principles of illicit drug use and treatment of illicit drug users. Clin. Pharmacokinet. 1997, 33, 344–400. [Google Scholar] [CrossRef]
- Kelly, T.M.; Daley, D.C. Integrated treatment of substance use and psychiatric disorders. Soc. Work. Public Health 2013, 28, 388–406. [Google Scholar] [CrossRef]
- Anglin, M.D.; Burke, C.; Perrochet, B.; Stamper, E.; Dawud-Noursi, S. History of the methamphetamine problem. J. Psychoact. Drugs 2000, 32, 137–141. [Google Scholar]
- Cho, A.K.; Melega, W.P. Patterns of methamphetamine abuse and their consequences. J. Addict. Dis. 2001, 21, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Winslow, B.T.; Voorhees, K.I.; Pehl, K.A. Methamphetamine abuse. Am. Fam. Physician 2007, 76, 1169–1174. [Google Scholar]
- Wang, X.; Northcutt, A.L.; Cochran, T.A.; Zhang, X.; Fabisiak, T.J.; Haas, M.E.; Amat, J.; Li, H.; Rice, K.C.; Maier, S.F.; et al. Methamphetamine activates toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem. Neurosci. 2019, 10, 3622–3634. [Google Scholar] [CrossRef]
- Wagner, D.J.; Sager, J.E.; Duan, H.; Isoherranen, N.; Wang, J. Interaction and transport of methamphetamine and its primary metabolites by organic cation and multidrug and toxin extrusion transporters. Drug Metab. Dispos. 2017, 45, 770–778. [Google Scholar] [CrossRef]
- Majeed, M.I.; Nawaz, H.; Arshad, F.N. Detecting the Presence of Illicit Drugs Using Biosensors. In Nanobiosensors: From Design to Applications; Wiley: Hoboken, NJ, USA, 2020; pp. 223–253. [Google Scholar] [CrossRef]
- John, D.K.; dos Santos Souza, K.; Ferrão, M.F. Overview of cocaine identification by vibrational spectroscopy and chemometrics. Forensic Sci. Int. 2023, 342, 111540. [Google Scholar] [CrossRef]
- Schwartz, B.G.; Rezkalla, S.; Kloner, R.A. Cardiovascular effects of cocaine. Circulation 2010, 122, 2558–2569. [Google Scholar] [CrossRef]
- Warner-Smith, M.; Darke, S.; Lynskey, M.; Hall, W. Heroin overdose: Causes and consequences. Addiction 2001, 96, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.; Madea, B.; Hess, C. Confirmation of recent heroin abuse: Accepting the challenge. Drug Test. Anal. 2018, 10, 54–71. [Google Scholar] [CrossRef]
- Bencharit, S.; Morton, C.L.; Xue, Y.; Potter, P.M.; Redinbo, M.R. Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat. Struct. Mol. Biol. 2003, 10, 349–356. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Agrawal, D.C. Cannabis-induced neuroactivity: Research trends and commercial prospects. In Medicinal Herbs and Fungi: Neurotoxicity vs. Neuroprotection; Springer: Singapore, 2021; pp. 159–185. [Google Scholar] [CrossRef]
- Baron, E.P. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science. Headache J. Head Face Pain 2018, 58, 1139–1186. [Google Scholar] [CrossRef]
- Sampson, P.B. Phytocannabinoid pharmacology: Medicinal properties of Cannabis sativa constituents aside from the “Big Two”. J. Nat. Prod. 2020, 84, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Teoh, L.; Moses, G.; McCullough, M.J. Oral manifestations of illicit drug use. Aust. Dent. J. 2019, 64, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N. Drug and opioid-involved overdose deaths—United States, 2017–2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 290–297. [Google Scholar] [CrossRef]
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef]
- Meyer, J.S. 3,4-methylenedioxymethamphetamine (MDMA): Current perspectives. Subst. Abus. Rehabil. 2013, 4, 83–99. [Google Scholar] [CrossRef]
- Parrott, A.C. Human psychobiology of MDMA or ‘Ecstasy’: An overview of 25 years of empirical research. Hum. Psychopharmacol. Clin. Exp. 2013, 28, 289–307. [Google Scholar] [CrossRef]
- Jerome, L.; Schuster, S.; Klosinski, B.B. Can MDMA play a role in the treatment of substance abuse? Curr. Drug Abus. Rev. 2013, 6, 54–62. [Google Scholar] [CrossRef]
- Papaseit, E.; Pérez-Mañá, C.; Torrens, M.; Farré, A.; Poyatos, L.; Hladun, O.; Sanvisens, A.; Muga, R.; Farré, M. MDMA interactions with pharmaceuticals and drugs of abuse. Expert Opin. Drug Metab. Toxicol. 2020, 16, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Altamimi, M.J.; Hachem, M. State-of-the-art analytical approaches for illicit drug profiling in forensic investigations. Molecules 2022, 27, 6602. [Google Scholar] [CrossRef]
- Collins, M.; Doddridge, A.; Salouros, H. Cathinones: Isotopic profiling as an aid to linking seizures. Drug Test. Anal. 2016, 8, 903–909. [Google Scholar] [CrossRef]
- Nicolaou, A.G.; Stavrou, I.J.; Louppis, A.P.; Constantinou, M.S.; Kapnissi-Christodoulou, C. Application of an ultra-performance liquid chromatography-tandem mass spectrometric method for the detection and quantification of cannabis in cerumen samples. J. Chromatogr. A 2021, 1642, 462035. [Google Scholar] [CrossRef]
- Ferreira, A.B.; Lobo Castro, A.; Tarelho, S.; Domingues, P.; Franco, J.M. GC-MS–still standing for clinical and forensic analysis: Vali dation of a multidrug method to detect and quantify illicit drugs. Aust. J. Forensic Sci. 2023, 55, 107–128. [Google Scholar] [CrossRef]
- Strano-Rossi, S.; Bermejo, A.M.; De La Torre, X.; Botrè, F. Fast GC-MS method for the simultaneous screening of THC-COOH, cocaine, opiates and analogues including buprenorphine and fentanyl, and their metabolites in urine. Anal. Bioanal. Chem. 2011, 399, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Żubrycka, A.; Kwaśnica, A.; Haczkiewicz, M.; Sipa, K.; Rudnicki, K.; Skrzypek, S.; Poltorak, L. Illicit drugs street samples and their cutting agents. The result of the GC-MS based profiling define the guidelines for sensors development. Talanta 2022, 237, 122904. [Google Scholar] [CrossRef] [PubMed]
- Brettell, T.A.; Lum, B.J. Analysis of Drugs of Abuse by Gas Chromatography–Mass Spectrometry (GC-MS). In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2018; Volume 1810, pp. 29–42. [Google Scholar] [CrossRef]
- Büttner, A.; Mall, G.; Penning, R.; Weis, S. The neuropathology of heroin abuse. Forensic Sci. Int. 2000, 113, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Fahelelbom, K.M.; Saleh, A.; Al-Tabakha, M.M.; Ashames, A.A. Recent applications of quantitative analytical FTIR spectroscopy in pharmaceutical, biomedical, and clinical fields: A brief review. Rev. Anal. Chem. 2022, 41, 21–33. [Google Scholar] [CrossRef]
- Hughes, J.; Ayoko, G.; Collett, S.; Golding, G. Rapid quantification of methamphetamine: Using attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and chemometrics. PLoS ONE 2013, 8, e69609. [Google Scholar] [CrossRef]
- Materazzi, S.; Gregori, A.; Ripani, L.; Apriceno, A.; Risoluti, R. Cocaine profiling: Implementation of a predictive model by ATR-FTIR coupled with chemometrics in forensic chemistry. Talanta 2017, 166, 328–335. [Google Scholar] [CrossRef]
- Williams, S.F.; Stokes, R.; Tang, P.L.; Blanco-Rodriguez, A.M. Detection & identification of hazardous narcotics and new psychoactive substances using Fourier transform infrared spectroscopy (FTIR). Anal. Methods 2023, 15, 3225–3232. [Google Scholar]
- Ti, L.; Tobias, S.; Lysyshyn, M.; Laing, R.; Nosova, E.; Choi, J.; Arredondo, J.; McCrae, K.; Tupper, K.; Wood, E. Detecting fentanyl using point-of-care drug checking technologies: A validation study. Drug Alcohol Depend. 2020, 212, 108006. [Google Scholar] [CrossRef]
- Wolfender, J.L. HPLC in natural product analysis: The detection issue. Planta Medica 2009, 75, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Berset, J.D.; Brenneisen, R.; Mathieu, C. Analysis of llicit and illicit drugs in waste, surface and lake water samples using large volume direct injection high performance liquid chromatography–electrospray tandem mass spectrometry (HPLC–MS/MS). Chemosphere 2010, 81, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Bassan, D.M.; Erdmann, F.; Krüll, R. Quantitative determination of 43 common drugs and drugs of abuse in human serum by HPLC-MS/MS. Anal. Bioanal. Chem. 2011, 400, 43–50. [Google Scholar] [CrossRef]
- Bilko, J.; Deng, Y. Determination of cocaine on banknotes using innovative sample preparation coupled with multiple calibration techniques. Drug Test. Anal. 2022, 14, 1665–1671. [Google Scholar] [CrossRef]
- Hempel, G. Strategies to improve the sensitivity in capillary electrophoresis for the analysis of drugs in biological fluids. Electrophor. Int. J. 2000, 21, 691–698. [Google Scholar] [CrossRef]
- Alnajjar, A.; Butcher, J.A.; McCord, B. Determination of multiple drugs of abuse in human urine using capillary electrophoresis with fluorescence detection. Electrophoresis 2004, 25, 1592–1600. [Google Scholar] [CrossRef]
- Anzar, N.; Suleman, S.; Parvez, S.; Narang, J. A review on Illicit drugs and biosensing advances for its rapid detection. Process Biochem. 2022, 113, 113–124. [Google Scholar] [CrossRef]
- Philp, M.; Fu, S. A review of chemical ‘spot’tests: A presumptive illicit drug identification technique. Drug Test. Anal. 2018, 10, 95–108. [Google Scholar] [CrossRef]
- Cristea, C.; Florea, A.; Tertiș, M.; Săndulescu, R. Immunosensors. In Biosensors-Micro and Nanoscale Applications; IntechOpen: London, UK, 2015. [Google Scholar]
- Karunakaran, C.; Pandiaraj, M.; Santharaman, P. Immunosensors. In Biosensors and Bioelectronics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 205–245. [Google Scholar]
- Gandhi, S.; Suman, P.; Kumar, A.; Sharma, P.; Capalash, N.; Raman Suri, C. Recent advances in immunosensor for narcotic drug detection. BioImpacts 2015, 5, 207–213. [Google Scholar] [CrossRef]
- Xiao, D.; Jiang, Y.; Bi, Y. Molecularly imprinted polymers for the detection of illegal drugs and additives: A review. Microchim. Acta 2018, 185, 247. [Google Scholar] [CrossRef]
- Chang, T.C.; Chiang, C.Y.; Lin, M.H.; Chen, I.K.; Chau, L.K.; Hsu, D.S.; Shieh, S.S.; Kuo, C.J.; Wang, S.C.; Chen, Y.F. Fiber optic particle plasmon resonance immunosensor for rapid and sensitive detection of methamphetamine based on competitive inhibition. Microchem. J. 2020, 157, 105026. [Google Scholar] [CrossRef]
- Lal, K.; Noble, F.; Arif, K.M. Methamphetamine detection using nanoparticle-based biosensors: A comprehensive review. Sens. Biosensing Res. 2022, 38, 100538. [Google Scholar] [CrossRef]
- Abdelshafi, N.A.; Bell, J.; Rurack, K.; Schneider, R.J. Microfluidic electrochemical immunosensor for the trace analysis of cocaine in water and body fluids. Drug Test. Anal. 2019, 11, 492–500. [Google Scholar] [CrossRef]
- Rodrigues, E.S.; e Silva, G.N.; de Macêdo, I.Y.; dos Santos, W.T.; de Souza, G.R.; Santos, G.H.; Wastowski, I.J.; Ates, H.C.; Dincer, C.; de Souza Gil, E. Impedimetric Immunosensor for On-Site Measurement of Rituximab from Invasive and Non-Invasive Samples. J. Electrochem. Soc. 2022, 169, 057529. [Google Scholar] [CrossRef]
- Aydin, E.B.; Aydin, M.; Sezgintürk, M.K. Advances in electrochemical immunosensors. In Advances in Clinical Chemistry; Academic Press Inc.: Cambridge, MA, USA, 2019; Volume 92, pp. 1–57. [Google Scholar] [CrossRef]
- Singh, S.; Mishra, P.; Banga, I.; Parmar, A.S.; Tripathi, P.P.; Gandhi, S. Chemiluminescence based immunoassay for the detection of heroin and its metabolites. BioImpacts BI 2018, 8, 53. [Google Scholar] [CrossRef]
- Xue, W.; Tan, X.; Oo, M.K.; Kulkarni, G.; Ilgen, M.A.; Fan, X. Rapid and sensitive detection of drugs of abuse in sweat by multiplexed capillary based immuno-biosensors. Analyst 2020, 145, 1346–1354. [Google Scholar] [CrossRef]
- Sengel, T.Y.; Guler, E.; Gumus, Z.P.; Aldemir, E.; Coskunol, H.; Akbulut, H.; Colak, D.G.; Cianga, I.; Yamada, S.; Timur, S.; et al. An immunoelectrochemical platform for the biosensing of ‘Cocaine use’. Sens. Actuators B Chem. 2017, 246, 310–318. [Google Scholar] [CrossRef]
- Beduk, D.; Beduk, T.; de Oliveira Filho, J.I.; Ait Lahcen, A.; Aldemir, E.; Guler Celik, E.; Salama, K.N.; Timur, S. Smart multiplex point-of-care platform for simultaneous drug monitoring. ACS Appl. Mater. Interfaces 2023, 15, 37247–37258. [Google Scholar] [CrossRef]
- Mincu, N.B.; Lazar, V.; Stan, D.; Mihailescu, C.M.; Iosub, R.; Mateescu, A.L. Screen-Printed Electrodes (SPE) for in vitro diagnostic purpose. Diagnostics 2020, 10, 517. [Google Scholar] [CrossRef]
- Lopes, F.; Pacheco, J.G.; Rebelo, P.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection. Sens. Actuators B Chem. 2017, 243, 745–752. [Google Scholar] [CrossRef]
- Wanklyn, C.; Burton, D.; Enston, E.; Bartlett, C.A.; Taylor, S.; Raniczkowska, A.; Black, M.; Murphy, L. Disposable screen printed sensor for the electrochemical detection of delta-9-tetrahydrocannabinol in undiluted saliva. Chem. Cent. J. 2016, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Almthen, R.A.; Zourob, M. Disposable electrochemical immunosensor array for the multiplexed detection of the drug metabolites morphine, tetrahydrocannabinol and benzoylecgonine. Microchim. Acta 2019, 186, 523. [Google Scholar] [CrossRef] [PubMed]
- Barfidokht, A.; Mishra, R.K.; Seenivasan, R.; Liu, S.; Hubble, L.J.; Wang, J.; Hall, D.A. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sens. Actuators B Chem. 2019, 296, 126422. [Google Scholar] [CrossRef]
- Bisbing, R.E. The forensic identification and association of human hair. In Forensic Science Handbook; CRC Press: Boca Raton, FL, USA, 2020; Volume I, pp. 151–200. [Google Scholar]
- Yang, Y.; Zhai, S.; Liu, C.; Wang, X.; Tu, Y. Disposable Immunosensor Based on Electrochemiluminescence for Ultrasensitive Detection of Ketamine in Human Hair. ACS Omega 2019, 4, 801–809. [Google Scholar] [CrossRef]
- Balahura, L.R.; Stefan-Van Staden, R.I.; Van Staden, J.F.; Aboul-Enein, H.Y. Advances in immunosensors for clinical applications. J. Immunoassay Immunochem. 2019, 40, 40–51. [Google Scholar] [CrossRef]
- Zhang, Y.; Bunes, B.R.; Wu, N.; Ansari, A.; Rajabali, S.; Zang, L. Sensing methamphetamine with chemiresistive sensors based on polythiophene-blended single-walled carbon nanotubes. Sens. Actuators B Chem. 2018, 255, 1814–1818. [Google Scholar] [CrossRef]
- Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Mikladal, B.F.; Zhang, Q.; Jiang, H.; Sainio, S.; Nordlund, D.; et al. Single-walled carbon nanotube network electrodes for the detection of fentanyl citrate. ACS Appl. Nano Mater. 2020, 3, 1203–1212. [Google Scholar] [CrossRef]
- Zuber, A.A.; Klantsataya, E.; Bachhuka, A. Biosensing. In Comprehensive Nanoscience and Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; Volumes 1–5, pp. 105–126. [Google Scholar] [CrossRef]
- Costanzo, H.; Gooch, J.; Frascione, N. Nanomaterials for optical biosensors in forensic analysis. Talanta 2023, 253, 123945. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, K.; Leelahakorn, N.; Almeida, A.; Zhao, Y.; Hansen, L.R.; Nikolajsen, I.E.; Andersen, J.B.; Givskov, M.; Staerk, D.; Bak, S.; et al. A GPCR-based yeast biosensor for biomedical, biotechnological, and point-of-use cannabinoid determination. Nat. Commun. 2022, 13, 3664. [Google Scholar] [CrossRef]
- Malekzad, H.; Zangabad, P.S.; Mohammadi, H.; Sadroddini, M.; Jafari, Z.; Mahlooji, N.; Abbaspour, S.; Gholami, S.; Houshangi, M.G.; Pashazadeh, R.; et al. Noble metal nanostructures in optical biosensors: Basics, and their introduction to anti-doping detection. TrAC Trends Anal. Chem. 2018, 100, 116–135. [Google Scholar] [CrossRef]
- Cao, F.; Xu, J.; Yan, S.; Yuan, X.; Yang, F.; Hou, L.; Zhao, L.; Zeng, L.; Liu, W.; Zhu, L.; et al. A surface plasmon resonance-based inhibition immunoassay for forensic determination of methamphetamine in human serum. Forensic Chem. 2018, 8, 21–27. [Google Scholar] [CrossRef]
- Solin, K.; Vuoriluoto, M.; Khakalo, A.; Tammelin, T. Cannabis detection with solid sensors and paper-based immunoassays by conjugating antibodies to nanocellulose. Carbohydr. Polym. 2023, 304, 120517. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Wang, B.; Wu, Y.; Wang, J.; Xu, Z.; Meng, F.; Wang, P. Rapid Determination of Methamphetamine and Cocaine in Saliva by Portable Surface Plasmon Resonance (SPR). Anal. Lett. 2022, 55, 2944–2953. [Google Scholar] [CrossRef]
- Li, X.; Pang, T.; Xiong, B.; Liu, W.; Liang, P.; Wang, T. Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–11. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Kling, A.; Dittrich, P.S.; Urban, G.A. Multiplexed Point-of-Care Testing–xPOCT. Trends Biotechnol. 2017, 35, 728–742. [Google Scholar] [CrossRef]
- Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors 2015, 15, 30011–30031. [Google Scholar] [CrossRef]
- Bruijns, B.; Veciana, A.; Tiggelaar, R.; Gardeniers, H. Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications. Biosensors 2019, 9, 85. [Google Scholar] [CrossRef]
- Chen, Y.T.; Lee, Y.C.; Lai, Y.H.; Lim, J.C.; Huang, N.T.; Lin, C.T.; Huang, J.J. Review of integrated optical biosensors for point-of-care applications. Biosensors 2020, 10, 209. [Google Scholar] [CrossRef]
- Chen, C.H.; Wang, C.C.; Ko, P.Y.; Chen, Y.L. Nanomaterial-based adsorbents and optical sensors for illicit drug analysis. J. Food Drug Anal. 2020, 28, 654–676. [Google Scholar] [CrossRef] [PubMed]
- Khorablou, Z.; Shahdost-fard, F.; Razmi, H.; Yola, M.L.; Karimi-Maleh, H. Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. Chemosphere 2021, 278, 130393. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, X.; Huang, J.; Zhang, X.; Sun, J.; Yang, L. Point-of-care testing of methylamphetamine with a portable optical fiber immunosensor. Anal. Chim. Acta 2022, 1192, 339345. [Google Scholar] [CrossRef]
- Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 2018, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Valles, E.G.; Rodríguez-Pulido, A.; Barraza-Salas, M.; Martínez-Velis, I.; Meneses-Morales, I.; Ayala-García, V.M.; Alba-Fierro, C.A. A Quest for New Cancer Diagnosis, Prognosis and Prediction Biomarkers and Their Use in Biosensors Development. Technol. Cancer Res. Treat. 2020, 19, 1533033820957033. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, R.D.; Guilbault, G.G. Piezoelectric immunosensors. In Piezoelectric Sensors; Springer: Berlin/Heidelberg, Germany, 2007; pp. 237–280. [Google Scholar]
- Yang, Y.; Tu, Y.; Wang, X.; Pan, J.; Ding, Y. A label-free immunosensor for ultrasensitive detection of ketamine based on quartz crystal microbalance. Sensors 2015, 15, 8540–8549. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Xu, S.; Xie, L. Terahertz metamaterial immunosensor based on nano Au film structure for detecting trace of chloramphenicol in milk. J. Food Meas. Charact. 2024, 18, 4108–4119. [Google Scholar] [CrossRef]
- Soltanabadi, Z.; Esmaeili, A.; Bambai, B. Fabrication of morphine detector based on quartz@Au-layer biosensor. Microchem. J. 2022, 175, 107127. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Mistewicz, K.; In-na, P.; Sahu, M.; Rajaitha, P.M.; Kim, H.J. Piezoelectric energy harvesting systems for biomedical applications. Nano Energy 2022, 100, 107514. [Google Scholar] [CrossRef]
- Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S.A. The role of electrochemical immunosensors in clinical analysis. Biosensors 2019, 9, 86. [Google Scholar] [CrossRef]
- Felix, F.S.; Angnes, L. Electrochemical immunosensors—A powerful tool for analytical applications. Biosens. Bioelectron. 2018, 102, 470–478. [Google Scholar] [CrossRef]
- Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent advances in electrochemical immunosensors. Anal. Chem. 2017, 89, 138–156. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, M.A.; Puchades, R.; Maquieira, A. Optical immunosensors for environmental monitoring: How far have we come? Anal. Bioanal. Chem. 2007, 387, 205–218. [Google Scholar] [CrossRef]
- Lee, D.; Hwang, J.; Seo, Y.; Gilad, A.A.; Choi, J. Optical immunosensors for the efficient detection of target biomolecules. Biotechnol. Bioprocess Eng. 2018, 23, 123–133. [Google Scholar] [CrossRef]
- Ermolaeva, T.; Kalmykova, E. Capabilities of piezoelectric immunosensors for detecting infections and for early clinical diagnostics. Adv. Immunoass. Technol. 2012, 81, 35630. [Google Scholar]
- Medyantseva, E.P.; Khaldeeva, E.V.; Budnikov, G.K. Immunosensors in biology and medicine: Analytical capabilities, problems, and prospects. J. Anal. Chem. 2001, 56, 886–900. [Google Scholar] [CrossRef]
- Montoya, A.; Ocampo, A.; March, C. Fundamentals of piezoelectric immunosensors. In Piezoelectric Transducers and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 289–306. [Google Scholar]
- Vidal, J.C.; Bertolín, J.R.; Bonel, L.; Asturias, L.; Arcos-Martínez, M.J.; Castillo, J.R. A Multi-electrochemical Competitive Immunosensor for Sensitive Cocaine Determination in Biological Samples. Electroanalysis 2016, 28, 685–694. [Google Scholar] [CrossRef]
- Paul, M.; Tannenberg, R.; Tscheuschner, G.; Ponader, M.; Weller, M.G. Cocaine Detection by a Laser-Induced Immunofluorometric Biosensor. Biosensors 2021, 11, 313. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.R.B.; Natarajan, A. Molecularly imprinted polymer-based optical immunosensors. Luminescence 2022, 38, 834–844. [Google Scholar] [CrossRef]
- Chantada-Vázquez, M.P.; de-Becerra-Sánchez, C.; Fernández-del-Río, A.; Sánchez-González, J.; Bermejo, A.M.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Development and application of molecularly imprinted polymer–Mn-doped ZnS quantum dot fluorescent optosensing for cocaine screening in oral fluid and serum. Talanta 2018, 181, 232–238. [Google Scholar] [CrossRef]
- Eissa, S.; Zourob, M. Competitive voltammetric morphine immunosensor using a gold nanoparticle decorated graphene electrode. Microchim. Acta 2017, 184, 2281–2289. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Da, Q.; Jiang, L.; Tu, Y. Label-free immunosensor for morphine based on the electrochemiluminescence of luminol on indium-tin oxide coated glass functionalized with gold nanoparticles. Anal. Methods 2015, 7, 4502–4507. [Google Scholar] [CrossRef]
- Lei, X.; Xu, X.; Liu, L.; Kuang, H.; Xu, L.; Hao, C.; Xu, C. Rapid quantitative determination of fentanyl in human urine and serum using a gold-based immunochromatographic strip sensor. J. Mater. Chem. B 2020, 8, 8573–8584. [Google Scholar] [CrossRef]
- Tokranova, N.; Cady, N.; Lamphere, A.; Levitsky, I.A. Highly Sensitive Fentanyl Detection Based on Nanoporous Electrochemical Immunosensors. IEEE Sens. J. 2022, 22, 20165–20170. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Shen, Y.; Li, D.; Yang, Y.; Tu, Y. The Electrochemiluminescent Immunosensors for Point-of-Care Testing of Methamphetamine Using a Portable Meter. Electroanalysis 2022, 34, 423–431. [Google Scholar] [CrossRef]
- Ghorbanizamani, F.; Moulahoum, H.; Guler Celik, E.; Timur, S. Ionic liquid-hydrogel hybrid material for enhanced electron transfer and sensitivity towards electrochemical detection of methamphetamine. J. Mol. Liq. 2022, 361, 119627. [Google Scholar] [CrossRef]
- Lu, D.; Lu, F.; Pang, G. A novel tetrahydrocannabinol electrochemical nano immunosensor based on horseradish peroxidase and double-layer gold nanoparticles. Molecules 2016, 21, 1377. [Google Scholar] [CrossRef] [PubMed]
- Klimuntowski, M.; Alam, M.M.; Singh, G.; Howlader, M.M.R. Electrochemical Sensing of Cannabinoids in Biofluids: A Noninvasive Tool for Drug Detection. ACS Sens. 2020, 5, 620–636. [Google Scholar] [CrossRef]
- Li, Q.; Tang, W.; Wang, Y.; Di, J.; Yang, J.; Wu, Y. Electrochemiluminescence immunosensor for ketamine detection based on polyamidoamine-coated carbon dot film. J. Solid State Electrochem. 2015, 19, 2973–2980. [Google Scholar] [CrossRef]
- McCluskey, A.; Holdsworth, C.I.; Bowyer, M.C. Molecularly imprinted polymers (MIPs): Sensing, an explosive new opportunity? Org. Biomol. Chem. 2007, 5, 3233–3244. [Google Scholar] [CrossRef]
- Sorribes-Soriano, A.; Herrero-Martínez, J.M.; Esteve-Turrillas, F.A.; Armenta, S. Molecularly imprinted polymer-based device for field collection of oral fluid samples for cocaine identification. J. Chromatogr. A 2020, 1633, 461629. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Ma, J.; Li, X.; Yang, Z. Rapid duplexed detection of illicit drugs in wastewater using gold nanoparticle conjugated aptamer sensors. Sci. Total Environ. 2019, 688, 771–779. [Google Scholar] [CrossRef]
- Mao, K.; Yang, Z.; Du, P.; Xu, Z.; Wang, Z.; Li, X. G-quadruplex–hemin DNAzyme molecular beacon probe for the detection of methamphetamine. RSC Adv. 2016, 6, 62754–62759. [Google Scholar] [CrossRef]
- Shi, Q.; Shi, Y.; Pan, Y.; Yue, Z.; Zhang, H.; Yi, C. Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim. Acta 2015, 182, 505–511. [Google Scholar] [CrossRef]
- Roncancio, D.; Yu, H.; Xu, X.; Wu, S.; Liu, R.; Debord, J.; Lou, X.; Xiao, Y. A label-free aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids. Anal. Chem. 2014, 86, 11100–11106. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anzar, N.; Suleman, S.; Singh, Y.; Kumari, S.; Parvez, S.; Pilloton, R.; Narang, J. The Evolution of Illicit-Drug Detection: From Conventional Approaches to Cutting-Edge Immunosensors—A Comprehensive Review. Biosensors 2024, 14, 477. https://doi.org/10.3390/bios14100477
Anzar N, Suleman S, Singh Y, Kumari S, Parvez S, Pilloton R, Narang J. The Evolution of Illicit-Drug Detection: From Conventional Approaches to Cutting-Edge Immunosensors—A Comprehensive Review. Biosensors. 2024; 14(10):477. https://doi.org/10.3390/bios14100477
Chicago/Turabian StyleAnzar, Nigar, Shariq Suleman, Yashda Singh, Supriya Kumari, Suhel Parvez, Roberto Pilloton, and Jagriti Narang. 2024. "The Evolution of Illicit-Drug Detection: From Conventional Approaches to Cutting-Edge Immunosensors—A Comprehensive Review" Biosensors 14, no. 10: 477. https://doi.org/10.3390/bios14100477
APA StyleAnzar, N., Suleman, S., Singh, Y., Kumari, S., Parvez, S., Pilloton, R., & Narang, J. (2024). The Evolution of Illicit-Drug Detection: From Conventional Approaches to Cutting-Edge Immunosensors—A Comprehensive Review. Biosensors, 14(10), 477. https://doi.org/10.3390/bios14100477