Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gollakota, A.R.K.; Guatam, S.; Santosh, M.; Sudan, H.A.; Gandhi, R.; Jebadurai, V.S.; Shu, C.M. Bioaerosols: Characterization, pathways, sampling strategies, and challenges to geo-environment and health. Gondwana Res. 2021, 99, 178–203. [Google Scholar] [CrossRef]
- Roffey, R.; Lantorp, K.; Tegnell, A.; Elgh, F. Biological weapons and bioterrorism preparedness: Importance of public-health awareness and international cooperation. Clin. Microbiol. Infect. 2002, 8, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.P.; Pazdernik, N.J. Biological Warfare: Infectious Disease and Bioterrorism. In Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 687–719. [Google Scholar] [CrossRef]
- Lei, W.; Wuzhen, Q.; Yuanjie, L.; Desmond, E.; Qiang, Z.; Jianhan, L. Recent Advances on Bioaerosol Collection and Detection in Microfluidic Chips. Anal. Chem. 2021, 93, 9013–9022. [Google Scholar]
- Jonsson, P.; Kullander, F. Bioaerosol Detection with Fluorescence Spectroscopy. In Bioaerosol Detection Technologies; Springer: New York, NY, USA, 2014; pp. 111–141. [Google Scholar]
- Sivaprakasam, V.; Lin, H.B.; Huston, A.L.; Eversole, J.D. Spectral Characterization of Biological Aerosol Particles Using Two-Wavelength Excited Laser-Induced Fluorescence and Elastic Scattering Measurements. Opt. Express 2011, 19, 6191–6208. [Google Scholar] [CrossRef] [PubMed]
- Jeys, T.H.; Herzog, W.D.; Hybl, J.D.; Czerwinski, R.N.; Sanchez, A. Advanced Trigger Development. Linc. Lab. J. 2007, 17, 29–62. [Google Scholar]
- Jeong, Y.S.; Lee, J.M.; Park, J.; Chong, E.; Choi, K. Development of a real-time handheld bioaerosol monitoring system using ultraviolet-light emitting diode induced fluorescence. Instrum. Sci. Technol. 2022, 28, 417–430. [Google Scholar] [CrossRef]
- Park, J.; Jeong, Y.S.; Nam, H.; Choi, K. Optimizing the Sensitivity of Biological Particle Detectors through Atmospheric Particle Analysis According to Climatic Characteristics in South Korea. IEEE Sens. J. 2020, 20, 13471–13479. [Google Scholar] [CrossRef]
- Seo, H.; Choi, K.; Park, J. Outdoor environmental sensitivity test for the detection of biological aerosols. Instrum. Sci. Technol. 2021, 49, 642–657. [Google Scholar] [CrossRef]
- Greenwood, D.P.; Jeys, T.H.; Johnson, B.; Richardson, J.M.; Shatz, M.P. Optical techniques for detecting and identifying biological-warfare agents. Proc. IEEE 2009, 97, 971–989. [Google Scholar] [CrossRef]
- Kaye, P.H.; Stanley, W.; Hirst, E.; Foot, E.; Baxter, K.; Barrington, S. Single particle multichannel bio-aerosol fluorescence sensor. Opt. Express 2005, 13, 3583–3593. [Google Scholar] [CrossRef]
- Alsved, M.; Bourouiba, L.; Duchaune, C.; Londahl, J.; Marr, L.C.; Parker, S.T.; Prussin, A.J., II; Thomas, R.J. Natural sources and experimental generation of bioaerosols: Challenges and Perspectives. Aerosol Sci. Technol. 2019, 54, 547–574. [Google Scholar] [CrossRef]
- Turgeon, N.; Toulouse, M.-J.; Martel, B.; Moineau, S.; Duchaine, C. Comparison of five bacteriophages as models for viral aerosol studies. Appl. Environ. Microbiol. 2014, 80, 4242–4250. [Google Scholar] [CrossRef]
- Zhen, H.; Han, T.; Fennell, D.E.; Mainelis, G. A systematic comparison of four bioaerosol generators: Affect on culturability and cell membrane integrity when aerosolizing Escherichia coli bacteria. J. Aerosol Sci. 2014, 70, 67–79. [Google Scholar] [CrossRef]
- Najlah, M.; Parveen, I.; Alhnan, M.A.; Ahmed, W.; Faheem, A.; Phoenix, D.A.; Taylor, K.M.; Elhissi, A. The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulizers. Int. J. Pharm. 2014, 461, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Romay, F.J.; Li, C.; Naqwi, A.; Deng, W.; Liu, B.Y.H. Generation of monodisperse aerosols by combining aerodynamic flow-focusing and mechanical perturbation. Aerosol Sci. Technol. 2016, 50, 17–25. [Google Scholar] [CrossRef]
- Biddiscombe, M.F.; Barnes, P.J.; Usmani, O.S. Generating monodisperse pharmacological aerosols using the spinning-top aerosol generator. J. Aerosol Med. 2006, 19, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, S.; Si, T.; Gai, M.; Frueh, J.; He, Q. Hydrodynamic electrospray ionization jetting of calcium alginate particles: Effect of spray-mode, spraying distance and concentration. RSC Adv. 2018, 8, 24243–24249. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Watts, A.B.; Peters, J.I.; Liu, S.; Batra, A.; Williams, R.O. In vitro and in vivo performance of dry powder inhalation formulations: Comparison of particles prepared by thin film freezing and micronization. AAPS PharmSciTech 2014, 15, 981–993. [Google Scholar] [CrossRef]
- Tsai, C.-J.; Lin, G.-Y.; Liu, C.-N.; He, C.-E.; Chen, C.-W. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods. J. Nanopart. Res. 2012, 14, 777. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Seo, H.; Han, S.; Koh, Y.J.; Choi, K. A Simple Method for Generating Narrowly-dispersed Bioaerosols in Various Sizes. Aerosol Air Qual. Res. 2023, 23, 220218. [Google Scholar] [CrossRef]
- Kesavan, J.; Bottiger, J.; Schepers, D.; McFarland, A. Comparison of particle number counts measured with an ink jet aerosol generator and an aerodynamic particle sizer. Aerosol Sci. Technol. 2014, 48, 219–227. [Google Scholar] [CrossRef]
- Torrisi, L.; Guglielmino, S.; Silipigni, L.; De Plano, L.M.; Kovacik, L.; Lavrentiev, V.; Torrisi, A.; Fazio, M.; Fazio, B.; Di Marco, G. M13 Phages Uptake of Gold Nanoparticles for Radio- and Thermal-Therapy and Contrast Imaging Improvement. Gold Bull. 2019, 52, 135–144. [Google Scholar] [CrossRef]
- Hairston, P.P.; Ho, J.; Quant, F.R. Design of an Instrument for Real-Time Detection of Bioaerosols Using Simultaneous Measurement of Particle Aerodynamic Size and Intrinsic Fluorescence. J. Aerosol Sci. 1997, 28, 471–482. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, H.; Jeong, Y.-S.; Bae, J.; Choi, K.; Seo, M.-H. Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System. Biosensors 2024, 14, 27. https://doi.org/10.3390/bios14010027
Seo H, Jeong Y-S, Bae J, Choi K, Seo M-H. Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System. Biosensors. 2024; 14(1):27. https://doi.org/10.3390/bios14010027
Chicago/Turabian StyleSeo, Hyunsoo, Young-Su Jeong, Jaekyung Bae, Kibong Choi, and Moon-Hyeong Seo. 2024. "Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System" Biosensors 14, no. 1: 27. https://doi.org/10.3390/bios14010027
APA StyleSeo, H., Jeong, Y. -S., Bae, J., Choi, K., & Seo, M. -H. (2024). Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System. Biosensors, 14(1), 27. https://doi.org/10.3390/bios14010027