Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gollakota, A.R.K.; Guatam, S.; Santosh, M.; Sudan, H.A.; Gandhi, R.; Jebadurai, V.S.; Shu, C.M. Bioaerosols: Characterization, pathways, sampling strategies, and challenges to geo-environment and health. Gondwana Res. 2021, 99, 178–203. [Google Scholar] [CrossRef]
- Roffey, R.; Lantorp, K.; Tegnell, A.; Elgh, F. Biological weapons and bioterrorism preparedness: Importance of public-health awareness and international cooperation. Clin. Microbiol. Infect. 2002, 8, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.P.; Pazdernik, N.J. Biological Warfare: Infectious Disease and Bioterrorism. In Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 687–719. [Google Scholar] [CrossRef]
- Lei, W.; Wuzhen, Q.; Yuanjie, L.; Desmond, E.; Qiang, Z.; Jianhan, L. Recent Advances on Bioaerosol Collection and Detection in Microfluidic Chips. Anal. Chem. 2021, 93, 9013–9022. [Google Scholar]
- Jonsson, P.; Kullander, F. Bioaerosol Detection with Fluorescence Spectroscopy. In Bioaerosol Detection Technologies; Springer: New York, NY, USA, 2014; pp. 111–141. [Google Scholar]
- Sivaprakasam, V.; Lin, H.B.; Huston, A.L.; Eversole, J.D. Spectral Characterization of Biological Aerosol Particles Using Two-Wavelength Excited Laser-Induced Fluorescence and Elastic Scattering Measurements. Opt. Express 2011, 19, 6191–6208. [Google Scholar] [CrossRef] [PubMed]
- Jeys, T.H.; Herzog, W.D.; Hybl, J.D.; Czerwinski, R.N.; Sanchez, A. Advanced Trigger Development. Linc. Lab. J. 2007, 17, 29–62. [Google Scholar]
- Jeong, Y.S.; Lee, J.M.; Park, J.; Chong, E.; Choi, K. Development of a real-time handheld bioaerosol monitoring system using ultraviolet-light emitting diode induced fluorescence. Instrum. Sci. Technol. 2022, 28, 417–430. [Google Scholar] [CrossRef]
- Park, J.; Jeong, Y.S.; Nam, H.; Choi, K. Optimizing the Sensitivity of Biological Particle Detectors through Atmospheric Particle Analysis According to Climatic Characteristics in South Korea. IEEE Sens. J. 2020, 20, 13471–13479. [Google Scholar] [CrossRef]
- Seo, H.; Choi, K.; Park, J. Outdoor environmental sensitivity test for the detection of biological aerosols. Instrum. Sci. Technol. 2021, 49, 642–657. [Google Scholar] [CrossRef]
- Greenwood, D.P.; Jeys, T.H.; Johnson, B.; Richardson, J.M.; Shatz, M.P. Optical techniques for detecting and identifying biological-warfare agents. Proc. IEEE 2009, 97, 971–989. [Google Scholar] [CrossRef]
- Kaye, P.H.; Stanley, W.; Hirst, E.; Foot, E.; Baxter, K.; Barrington, S. Single particle multichannel bio-aerosol fluorescence sensor. Opt. Express 2005, 13, 3583–3593. [Google Scholar] [CrossRef]
- Alsved, M.; Bourouiba, L.; Duchaune, C.; Londahl, J.; Marr, L.C.; Parker, S.T.; Prussin, A.J., II; Thomas, R.J. Natural sources and experimental generation of bioaerosols: Challenges and Perspectives. Aerosol Sci. Technol. 2019, 54, 547–574. [Google Scholar] [CrossRef]
- Turgeon, N.; Toulouse, M.-J.; Martel, B.; Moineau, S.; Duchaine, C. Comparison of five bacteriophages as models for viral aerosol studies. Appl. Environ. Microbiol. 2014, 80, 4242–4250. [Google Scholar] [CrossRef]
- Zhen, H.; Han, T.; Fennell, D.E.; Mainelis, G. A systematic comparison of four bioaerosol generators: Affect on culturability and cell membrane integrity when aerosolizing Escherichia coli bacteria. J. Aerosol Sci. 2014, 70, 67–79. [Google Scholar] [CrossRef]
- Najlah, M.; Parveen, I.; Alhnan, M.A.; Ahmed, W.; Faheem, A.; Phoenix, D.A.; Taylor, K.M.; Elhissi, A. The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulizers. Int. J. Pharm. 2014, 461, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Romay, F.J.; Li, C.; Naqwi, A.; Deng, W.; Liu, B.Y.H. Generation of monodisperse aerosols by combining aerodynamic flow-focusing and mechanical perturbation. Aerosol Sci. Technol. 2016, 50, 17–25. [Google Scholar] [CrossRef]
- Biddiscombe, M.F.; Barnes, P.J.; Usmani, O.S. Generating monodisperse pharmacological aerosols using the spinning-top aerosol generator. J. Aerosol Med. 2006, 19, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, S.; Si, T.; Gai, M.; Frueh, J.; He, Q. Hydrodynamic electrospray ionization jetting of calcium alginate particles: Effect of spray-mode, spraying distance and concentration. RSC Adv. 2018, 8, 24243–24249. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Watts, A.B.; Peters, J.I.; Liu, S.; Batra, A.; Williams, R.O. In vitro and in vivo performance of dry powder inhalation formulations: Comparison of particles prepared by thin film freezing and micronization. AAPS PharmSciTech 2014, 15, 981–993. [Google Scholar] [CrossRef]
- Tsai, C.-J.; Lin, G.-Y.; Liu, C.-N.; He, C.-E.; Chen, C.-W. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods. J. Nanopart. Res. 2012, 14, 777. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Seo, H.; Han, S.; Koh, Y.J.; Choi, K. A Simple Method for Generating Narrowly-dispersed Bioaerosols in Various Sizes. Aerosol Air Qual. Res. 2023, 23, 220218. [Google Scholar] [CrossRef]
- Kesavan, J.; Bottiger, J.; Schepers, D.; McFarland, A. Comparison of particle number counts measured with an ink jet aerosol generator and an aerodynamic particle sizer. Aerosol Sci. Technol. 2014, 48, 219–227. [Google Scholar] [CrossRef]
- Torrisi, L.; Guglielmino, S.; Silipigni, L.; De Plano, L.M.; Kovacik, L.; Lavrentiev, V.; Torrisi, A.; Fazio, M.; Fazio, B.; Di Marco, G. M13 Phages Uptake of Gold Nanoparticles for Radio- and Thermal-Therapy and Contrast Imaging Improvement. Gold Bull. 2019, 52, 135–144. [Google Scholar] [CrossRef]
- Hairston, P.P.; Ho, J.; Quant, F.R. Design of an Instrument for Real-Time Detection of Bioaerosols Using Simultaneous Measurement of Particle Aerodynamic Size and Intrinsic Fluorescence. J. Aerosol Sci. 1997, 28, 471–482. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, H.; Jeong, Y.-S.; Bae, J.; Choi, K.; Seo, M.-H. Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System. Biosensors 2024, 14, 27. https://doi.org/10.3390/bios14010027
Seo H, Jeong Y-S, Bae J, Choi K, Seo M-H. Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System. Biosensors. 2024; 14(1):27. https://doi.org/10.3390/bios14010027
Chicago/Turabian StyleSeo, Hyunsoo, Young-Su Jeong, Jaekyung Bae, Kibong Choi, and Moon-Hyeong Seo. 2024. "Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System" Biosensors 14, no. 1: 27. https://doi.org/10.3390/bios14010027
APA StyleSeo, H., Jeong, Y.-S., Bae, J., Choi, K., & Seo, M.-H. (2024). Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System. Biosensors, 14(1), 27. https://doi.org/10.3390/bios14010027