Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole Salmonella typhimurium Based on Bioluminescence and Fluorescence Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instrument
2.2. The Preparation of M-P1 and P2-S Probes
2.3. Plaque Experiments Using M-P1 and P2-S Probes
2.4. Discrimination of Live and Dead S.T by the Dual-Mode Biosensor
2.5. Real Samples Pretreatment and Detection
3. Results and Discussion
3.1. Characterization of MB, M-P1 and P2-S Probes
3.2. The Feasibility of Detection of Live and Dead S.T by the Assay
3.3. The Mechanism of the Assay
3.4. Condition Optimization
3.5. Detection of the Dual-Mode Biosensor
3.6. The Fabrication of the Portable FL Detector
3.7. Specificity of the Biosensor
3.8. The Comparison with Other Assays
3.9. Real Sample Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, T.; Luo, Z.; Bewal, T.; Li, L.; Xu, Y.; Jafari, S.M.; Lin, X. When smartphone enters food safety: A review in on-site analysis for foodborne pathogens using smartphone-assisted biosensors. Food Chem. 2022, 394, 133534. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, M.; Zhang, Q.; Zhu, Z.; Guo, Z.; Li, J.; Xu, W.; Zhu, J.; Yao, Y.; Li, Z.; et al. An autonomous synthetic DNA machine for ultrasensitive detection of Salmonella typhimurium based on bidirectional primers exchange reaction cascades. Talanta 2023, 252, 123833. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M.; Studies International Collaboration on Enteric Disease ’Burden of Illness. The Global Burden of Nontyphoidal Salmonella Gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, T.R.; Martucci, D.H.; Faria, R.C. Simple disposable microfluidic device for Salmonella typhimurium detection by magneto-immunoassay. Sens. Actuators B Chem. 2018, 255, 684–691. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, H.; Li, X.; Ma, S.; Men, S.; Wei, H.; Cui, J.; Wang, H. A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters. Biosens. Bioelectron. 2017, 87, 1044–1049. [Google Scholar] [CrossRef]
- Chapman, B.; Gunter, C. Local Food Systems Food Safety Concerns. Microbiol. Spectr. 2018, 6, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Zhang, X.; Yao, M.; Yang, Q.; Wu, W. Aptamer-guided luminous microsphere for anchoring and lightening Salmonella enterica serovar Typhimurium. Sens. Actuators B Chem. 2022, 366, 131938. [Google Scholar] [CrossRef]
- Dufour, N.; Delattre, R.; Ricard, J.D.; Debarbieux, L. The Lysis of Pathogenic Escherichia Coli by Bacteriophages Releases Less Endotoxin Than by Beta-Lactams. Clin. Infect. Dis. 2017, 64, 1582–1588. [Google Scholar] [CrossRef]
- Yin, W.; Zhu, L.; Xu, H.; Tang, Q.; Ma, Y.; Chou, S.-H.; He, J. Bio-hybrid nanoarchitectonics of nanoflower-based ELISA method for the detection of Staphylococcus aureus. Sens. Actuators B Chem. 2022, 366, 132005. [Google Scholar] [CrossRef]
- Kumaragurubaran, N.; Arul, P.; Huang, S.-T.; Huang, C.-H.; Fang, S.-B.; Lin, Y.-H. Nanocatalyst coupled with a latent-ratiometric electrochemical switch for label-free zero-tolerance rapid detection of live Salmonella in whole blood samples. Sens. Actuators B Chem. 2023, 381, 133428. [Google Scholar] [CrossRef]
- Chen, F.-E.; Trick, A.Y.; Hasnain, A.C.; Hsieh, K.; Chen, L.; Shin, D.J.; Wang, T.-H. Ratiometric PCR in a Portable Sample-to-Result Device for Broad-Based Pathogen Identification. Anal. Chem. 2022, 94, 9372–9379. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Wang, Y.; He, D.; Xu, E.; Chai, Q.; Jin, Z.; Wu, Z.; Cui, B. Iproving the sensitivity of lateral flow immunoassay for Salmonella typhimurium detection via flow-rate regulation. Food Chem. 2022, 397, 133756. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Yang, H.; Liang, S.; Pan, J.; Zou, Y.; Li, S.; Li, Q.; Zhao, S. Versatile Au@Ru nanocomposites for the rapid detection of Salmonella typhimurium and photothermal sterilization. J. Colloid Interface Sci. 2022, 621, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.U.; Jo, E.-J.; Noh, Y.; Mun, H.; Ahn, Y.-D.; Kim, M.-G. Adenosine Triphosphate Bioluminescence-Based Bacteria Detection Using Targeted Photothermal Lysis by Gold Nanorods. Anal. Chem. 2018, 90, 10171–10178. [Google Scholar] [CrossRef]
- Finger, S.; Wiegand, C.; Buschmann, H.-J.; Hipler, U.-C. Antibacterial properties of cyclodextrin–antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int. J. Pharm. 2013, 452, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.-W.; Liu, Y.-J. Bioluminescence of Firefly Squid via Mechanism of Single Electron-Transfer Oxygenation and Charge-Transfer-Induced Luminescence. J. Am. Chem. Soc. 2017, 139, 1106–1119. [Google Scholar] [CrossRef]
- Chen, F.; Warnock, R.L.; Van Der Meer, J.R.; Wegner, S.V. Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury. ACS Sens. 2020, 5, 2205–2210. [Google Scholar] [CrossRef]
- He, Y.; Wang, M.; Fan, E.; Ouyang, H.; Yue, H.; Su, X.; Liao, G.; Wang, L.; Lu, S.; Fu, Z. Highly Specific Bacteriophage-Affinity Strategy for Rapid Separation and Sensitive Detection of Viable Pseudomonas aeruginosa. Anal. Chem. 2017, 89, 1916–1921. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, F.; Huang, S.-Q.; Tang, B.; Zhang, C.-Y. Nucleic Acid Amplification-Free Bioluminescent Detection of MicroRNAs with High Sensitivity and Accuracy Based on Controlled Target Degradation. Anal. Chem. 2017, 89, 7077–7083. [Google Scholar] [CrossRef]
- Gregor, C.; Pape, J.K.; Gwosch, K.C.; Gilat, T.; Sahl, S.J.; Hell, S.W. Autonomous bioluminescence imaging of single mammalian cells with the bacterial bioluminescence system. Proc. Natl. Acad. Sci. USA 2019, 116, 26491–26496. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zeng, G.; Liu, Y.; Zhang, X.; Cheng, J.; Zhang, J.; Ma, Z.; Miao, M.; Zhang, D.; Wei, Y. Monitoring mitochondrial ATP in live cells: An ATP multisite-binding fluorescence turn-on probe. Dye. Pigment. 2018, 163, 559–563. [Google Scholar] [CrossRef]
- Ertürk, G.; Lood, R. Bacteriophages as biorecognition elements in capacitive biosensors: Phage and host bacteria detection. Sens. Actuators B Chem. 2018, 258, 535–543. [Google Scholar] [CrossRef]
- Richter, Ł.; Janczuk-Richter, M.; Niedziółka-Jönsson, J.; Paczesny, J.; Hołyst, R. Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov. Today 2018, 23, 448–455. [Google Scholar] [CrossRef]
- Imai, M.; Mine, K.; Tomonari, H.; Uchiyama, J.; Matsuzaki, S.; Niko, Y.; Hadano, S.; Watanabe, S. Dark-Field Microscopic Detection of Bacteria using Bacteriophage-Immobilized SiO2@AuNP Core–Shell Nanoparticles. Anal. Chem. 2019, 91, 12352–12357. [Google Scholar] [CrossRef]
- Chen, J.; Alcaine, S.D.; Jiang, Z.; Rotello, V.M.; Nugen, S.R. Detection of Escherichia coli in Drinking Water Using T7 Bacteriophage-Conjugated Magnetic Probe. Anal. Chem. 2015, 87, 8977–8984. [Google Scholar] [CrossRef]
- Cao, C.; Wang, M.; Zhang, D.; Yu, S.; Xie, H.; Wang, Q.; Yu, Z.; Gan, N. Portable ATP bioluminescence sensor with high specificity for live Escherichia coli O157:H7 strain synergistically enhanced by orientated phage-modified stir bar extraction and bio-proliferation. Biosens. Bioelectron. 2023, 220, 114852. [Google Scholar] [CrossRef]
- Fu, L.; Qian, Y.; Zhou, J.; Zheng, L.; Wang, Y. Fluorescence-based quantitative platform for ultrasensitive food allergen detection: From immunoassays to DNA sensors. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3343–3364. [Google Scholar] [CrossRef]
- Zhu, K.; Qin, T.; Zhao, C.; Luo, Z.; Huang, Y.; Liu, B.; Wang, L. A novel fluorescent turn-on probe for highly selective detection of nitroreductase in tumor cells. Sens. Actuators B Chem. 2018, 276, 397–403. [Google Scholar] [CrossRef]
- Chen, M.; Han, L.; Zhou, D.; Kong, L.; Pan, L.; Tu, K. Amplified UCNPs-Mitoxantrone dihydrochloride fluorescence PCR sensor based on inner filter for ultrasensitive and rapid determination of Salmonella typhimurium. Sens. Actuators B Chem. 2022, 355, 131287. [Google Scholar] [CrossRef]
- Bu, S.-J.; Wang, K.-Y.; Liu, X.; Ma, L.; Wei, H.-G.; Zhang, W.-G.; Liu, W.-S.; Wan, J.-Y. Ferrocene-functionalized nanocomposites as signal amplification probes for electrochemical immunoassay of Salmonella typhimurium. Microchim. Acta 2020, 187, 1–8. [Google Scholar] [CrossRef]
- Wei, S.; Su, Z.; Bu, X.; Shi, X.; Pang, B.; Zhang, L.; Li, J.; Zhao, C. On-site colorimetric detection of Salmonella typhimurium. NPJ Sci. Food 2022, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.Q.; He, S.B.; Jiang, Y.C.; Huang, K.Y.; Xu, Y.Y.; Peng, H.P.; Deng, H.H.; Chen, W. Immunofluorescent-Aggregation Assay Based on Anti-Salmonella Typhimurium Igg-Auncs, for Rapid Detection of Salmonella Typhimurium. Mikrochim. Acta 2022, 189, 160. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xu, X.; Liu, W.; Xie, J.; Zhang, H.; Du, S. A sensitive multimode dot-filtration strip for the detection of Salmonella typhimurium using MoS2@Fe3O4. Microchim. Acta 2022, 189, 1–11. [Google Scholar] [CrossRef] [PubMed]
Methods | LOD a (CFU·mL−1) | Linear Range (CFU·mL−1) | Time (min) | Identifications of Live/Dead Bacteria | Ref. |
---|---|---|---|---|---|
multimode dot-filtration immunoassay | 10 | 101~106 | 20 | No | [33] |
UCNPs PCR fluorescence sensor | 11 | 11~1.14 × 109 | 90 | No | [29] |
Electrochemical immunoassay | 3 | 10~107 | 90 | No | [30] |
Fluorescence biosensor | 103 | 7.0 × 103~3.0 × 108 | 3 | No | [32] |
Colorimetric | 7 | 10~107 | 45 | No | [31] |
Fluorescence and Bioluminescence | 50 | 101~108 | 20 | Yes | This work |
Method | Sample | Added (CFU·mL−1) | Measured (CFU·mL−1) | Clive (CFU·mL−1) | Cdead (CFU·mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|---|
FL | Milk 1 | 0 | - | - | - | ||
103 | (0.927 ± 0.055) × 103 | 1.202 × 10−5 | 9.120 × 10−14 | 92.8 | 5.5 | ||
106 | (0.946 ± 0.032) × 106 | 0.096 | 2.799 × 102 | 94.6 | 3.4 | ||
Milk 2 | 0 | 59 ± 10 | 1.585 × 10−9 | 3.715 × 10−18 | - | 5.4 | |
103 | (1.045 ± 0.068) × 103 | 1.202 × 10−5 | 1.888 × 10−13 | 104.5 | 6.8 | ||
106 | (1.096 ± 0.025) × 106 | 0.096 | 6.918 × 102 | 109.6 | 2.5 | ||
Water 1 | 0 | - | - | - | |||
103 | (0.932 ± 0.047) × 103 | 1.202 × 10−5 | 9.333 × 10−14 | 93.2 | 4.7 | ||
106 | (0.958 ± 0.061) × 106 | 0.096 | 3.013 × 102 | 95.8 | 6.1 | ||
Water 2 | 0 | - | - | - | |||
103 | (0.951 ± 0.048) × 103 | 1.202 × 10−5 | 1.059 × 10−13 | 95.1 | 4.8 | ||
106 | (0.979 ± 0.064) × 106 | 0.096 | 3.467 × 102 | 98.0 | 6.4 |
Method | Sample | Added (CFU·mL−1) | Measured (CFU·mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
BL | Milk 1 | 0 | - | - | - |
103 | (0.966 ± 0.035) × 103 | 96.5 | 3.5 | ||
106 | (0.948 ± 0.071) × 106 | 94.8 | 7.1 | ||
Milk 2 | 0 | 43 ± 6 | - | 4.9 | |
103 | (0.974 ± 0.023) × 103 | 97.4 | 2.3 | ||
106 | (0.983 ± 0.076) × 106 | 98.3 | 7.6 | ||
Water 1 | 0 | - | - | - | |
103 | (0.992 ± 0.077) × 103 | 99.2 | 7.7 | ||
106 | (1.014 ± 0.052) × 106 | 101.4 | 5.2 | ||
Water 2 | 0 | - | - | - | |
103 | (1.027 ± 0.059) × 103 | 102.7 | 5.9 | ||
106 | (0.988 ± 0.038) × 106 | 98.8 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Liu, B.; Li, D.; Yu, Z.; Gan, N. Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole Salmonella typhimurium Based on Bioluminescence and Fluorescence Detection. Biosensors 2023, 13, 401. https://doi.org/10.3390/bios13030401
Xu Z, Liu B, Li D, Yu Z, Gan N. Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole Salmonella typhimurium Based on Bioluminescence and Fluorescence Detection. Biosensors. 2023; 13(3):401. https://doi.org/10.3390/bios13030401
Chicago/Turabian StyleXu, Zhenli, Bailu Liu, Dengfeng Li, Zhenzhong Yu, and Ning Gan. 2023. "Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole Salmonella typhimurium Based on Bioluminescence and Fluorescence Detection" Biosensors 13, no. 3: 401. https://doi.org/10.3390/bios13030401
APA StyleXu, Z., Liu, B., Li, D., Yu, Z., & Gan, N. (2023). Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole Salmonella typhimurium Based on Bioluminescence and Fluorescence Detection. Biosensors, 13(3), 401. https://doi.org/10.3390/bios13030401