Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring
Abstract
:1. Introduction
2. Enzymatic Electrochemical Biosensors for Food Bioprocess Monitoring
2.1. Principle of Enzyme Electrochemical Biosensor Construction
2.2. Electrochemical Biosensors for Single-Enzyme Systems
2.2.1. Glucose Oxidase
2.2.2. Lactate Oxidase and Lactate Dehydrogenase
2.2.3. Other Enzymes for the Development of Electrochemical Biosensors
2.3. Electrochemical Biosensors for Multi-Enzyme Systems
Model Enzymes | Support Materials | Target Substance | Linear Reaction Range (μM) | Detection Limit (μM) | Application | References |
---|---|---|---|---|---|---|
HRP and GOx | G-IL/CNTs | glucose | 0.004–5 mm | 3.99 × 10−7 M | Determination in real samples | [97] |
INV and GOx | INVWM-GOx-Au/CuNPs-MFC-IGT/AuSPE | sucrose | 0.1 nM–10 μM | 0.1 nM | Direct sucrose snalysis in sweetened beverages | [98] |
GaOx and β-gal | P(Py-co-EDOT)-NaDBS | lactose | 0.2–2.3 mM | 1.4 × 10−5 M | Lactose Determination in milk samples | [99] |
GOx and β-gal | Chitosan/Enzyme(s)/Chitosan/GA | lactose | 5.83 × 10−3–1.65 × 10−2 M | 1.38 mM | Determination of lactose in dairy products | [100] |
GOx, β-gal, and mutarotase | PmPD | lactose | 0.01–1.25 mM | 0.005 mM | Determination of lactose in dairy products | [101] |
HRP and LOx | Electrosynthesis PPy film | lactose | 1 × 10−6–1 × 10−4 M | 5.2 × 10−7 M | Monitor malolactic fermentation for winemaking | [102] |
GK and GPO | GK/GPO/CHIT/TA/NPG/AuE | glycerol | 0.1–5 mM | 77.08 μM | Control of wine quality | [103] |
GOx and LOx | Flexible electrode array with gold nanoparticles and Prussian blue | glucose lactose | 60–1000 μM 5–20 mM | / | Medical diagnosis | [104] |
GOx, CO, and HRP | MIPs/MWCNTs-IL/GCE | glucose cholesterol | 1–18 pM 0.5–15 pM | 0.81 pM 0.23 pM | Medical diagnosis | [105] |
GA-bacteria and GDH-bacteria | MWNTs/GCE | Maltose Glucose | 0.2–10 mM 0.1–2.0 mM | 0.1 mM 0.04 mM | Monitoring of food production and fermentation processes | [106] |
HRP and GOx | Polynoradrenalin/Polyaniline electrode | Glucose H2O2Cr(III) Cr(VI) | 0.50 μM–0.42 mM 50–3.02 × 104 0.01~3.8 5.0 × 10−4~6.0 × 10−3 | 0.08 10 0.01 2.0 × 10−4 | Determination in real samples | [107] |
2.4. Electrochemical Biosensors for Nano-Enzymatic Systems
Enzyme Mimicked | Nanomaterials | Target Substance | Linear Range | Detection Limit | Application | References |
---|---|---|---|---|---|---|
Oxidase | His@AuNCs/RGO | Nitrites | 2.5–5700 μM | 0.5 μM | Detection of nitrite in sausage samples | [129] |
Oxidase | FeMnzyme | AA | 8 μM–56 μM | 0.88 μM | Determination of AA in actual kiwi fruit | [130] |
Oxidase | Dex-FeMnzyme | TAC | 1 μM–30 μM | 1.17 μM | Practical applications in fruit and vegetable foods | [131] |
Oxidase | MnO2 NRs | Pb2+ | 0.8–2500 nM | 0.54 nM | Detection in actual sample oils, wines, and spirits | [132] |
Peroxidase | AuPd@UiO-67 | Hg2+ | 1.0 nM–1.0 mM | 0.16 nM | Actual measurements of tap water and lake water | [133] |
Peroxidase | Au2Pt NPs | TAC | / | <0.2 μM | Determination of TAC in real samples (milk, green tea, and orange juice) | [134] |
Peroxidase | S-rGO | H2O2 glucose | 0.1–1 μM 1–100 μM | 0.042 μM 0.38 μM | Determination of glucose in real samples | [135] |
Peroxidase | AgNPs/MoS2-MF | Glucose | 1–15 mM | 1.0 mM | Detection of glucose concentration in real samples | [136] |
Peroxidase | Fe1−xS | Glucose AA | 200–700 μM 10–500 μM | 37 μM 53 μM | Detection of glucose and AA in actual beverages | [137] |
Peroxidase | FeCo NCs | Histamine | 1–5000 nM | 0.79 nM | Detection of histamine in actual crab samples | [138] |
Peroxidase | MOF-919-NH2@γ-CD | α-amylase activity | 0–200 U L−1 | 0.12 U L−1 | Determination of alpha-amylase activity in real distillers yeast samples | [139] |
Peroxidase | PBA-CP@MOF | VP | 102–108 CFU mL−1 10–108 CFU mL−1 | 30 CFU mL−1 5 CFU mL−1 | Detection of VP in actual shrimp samples | [140] |
3. Nanomaterials for Enzyme Immobilization
3.1. Metal-Based Nanomaterials Modified Electrodes
3.2. Graphene Nanomaterials Modified Electrodes
3.3. Metal-Organic Framework Modified Electrodes
3.4. Carbon Nanotube-Modified Electrodes
3.5. Polymer Modified Electrodes
4. Challenges and Future Trends of Enzyme Electrochemical Biosensors
4.1. Challenges
- (1)
- The major hindrances to the widespread usage of enzyme electrochemical biosensors are still the reusability and stability of these biosensors. Moreover, the complexity of food matrices, harsh environments, and their interference with biorecognition elements can significantly impact the reproducibility and selectivity of biosensors. Henceforth, scientists must prioritize the enhancement of sensor efficacy in forthcoming research endeavors. Specifically, rigorous investigation is necessary to address and resolve the issue of interferences encountered in authentic specimens, ensure the endurance of enzyme–chemical biosensors in adverse surroundings, and assess the impact of varying storage conditions on the biosensors’ lifespan [85].
- (2)
- The addition of multiple enzymes to a biosensor in multi-enzyme systems can create complications during biosensor fabrication. Furthermore, it can impose substantial limitations on the characterization and application possibilities of the biosensor. This arises due to variations in the sensitivity to substrates, effectiveness in storage, and conditions required for enzyme immobilization among different enzymes. Hence, a critical consideration in designing a multi-enzyme biosensor is the meticulous selection of enzyme systems. This selection aims to prevent their sensitization to substances other than the target substance and ensure the requisite stability of the biosensor.
- (3)
- Compared with natural enzymes, the catalytic activity of nano enzymes is still relatively low, and most nano enzymes are difficult to catalyze a specific substrate like biological enzymes. Therefore, despite all the advantages of nano enzymes, nano enzymes with high catalytic activity, excellent selectivity, and specificity for constructing nano enzymes-based biosensors still need to be further developed. In the future, integrating biological enzymes or nano enzymes into mesoporous nanomaterials to prepare integrated nano enzymes (INAzymes) or constructing a binding or synergistic mechanism between an enzyme and a nano-enzyme may be a promising strategy to obtain this type of problem [205].
- (4)
- Achieving high homogeneity, reproducibility, and chemical stability in electrode materials is a challenging task that cannot be accomplished by simple synthesis alone. Obtaining these desirable properties requires continuous efforts to advance advanced synthetic methods and their application to the analysis of real samples. Therefore, future prospective studies could prioritize the assessment of the stability of biosensor electrode materials in complex environments. In addition, it would be beneficial to explore more reliable modification strategies to enhance compatibility between biorecognition molecules and electrodes, as well as other potential avenues of exploration.
- (5)
- Enzyme orientation is an important influencing factor in the field of enzyme electrochemical biosensor construction, especially in terms of interfacial electron transfer. If the active sites of enzymes are used as binding sites to the electrode surface, then they cannot react with the target molecule and electron flow cannot be achieved. Therefore, before choosing the immobilization method, the enzyme can be controlled in the targeted distribution by focusing on the structural properties of the enzyme, the development of engineered enzymes with specific sites, as well as suitable surface modification techniques, or the use of (functionalized) nanoporous materials (noble metals, carbon nanomaterials, metal–organic frameworks, etc.) [18,150,206,207,208]. Additionally, enzyme orientation can also be performed by further in-depth studies of enzyme immobilization methods (e.g., random enzyme orientation due to physical adsorption, enzyme orientation resulting from the binding of functional groups in chemical cross-linking, and encapsulation of enzymes through the use of modified polymers, etc.) [18,40]. A recent study has shown that it is possible to regulate the orientation of the enzyme dipole moment by applying an external electric field (EF) to small molecules thereby enabling the correct orientation and deposition of biomolecules on surfaces [209].
4.2. Future Development Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Electrochemically Active Substances | EAS | Poly (meta-phenylenediamine) | PmPD |
Flavin adenine dinucleotide | FAD | glycerol kinase | GK |
Flavine adenine dinucleotide, reduced | FADH2 | glycerol-3-phosphate oxidase | GPO |
Acetaminophen | AP | chitosan | CHIT |
Ascorbic acid | AA | DL-Thioctic acid | TA |
Uric acid | UA | nanoporous gold | (NPG |
Mediated electron transfer | MET | multi-walled carbon nanotubes-ionic liquid | MWCNTs-IL |
Direct electron transfer | DET | cholesterol oxidase | CO |
Glucose oxidase | GOx | Glucoamylase-displayed bacteria | GA-bacteria |
Ferulic acid | FA | glucose dehydrogenase-displayed bacteria | GDH-bacteria |
Graphene oxide | GO | nano enzymes | NZs |
Nanoparticles | AuNP | Metal–organic frameworks | MOFs |
Multi-walled carbon nanotubes | MWCNTs | superoxide dismutase | SOD |
Dendritic gold nanostructures | DGNs | carbon microfibres | CFs |
p-coumaric acid | p-CA | platinum microparticles | PtMPs |
Vanadium dioxide | VO2 | Histidine | His |
Graphite fiber | GF | Gold nanoclusters | AuNCs |
Graphite fiber electrode | GFE | reduced graphene oxide | RGO |
Uric acid | UA | S-doped rGO | S-rGO |
Amperometry | CPA | hydrogen peroxide | H2O2 |
Pulsed amperometry | PA | γ-cyclodextrin | γ-CD |
differential pulse voltammetry | DPV | crosslinked MOF-919-NH2 nanozyme | MOF-919-NH2@γ-CD |
Glutaraldehyde | GA | Vibrio parahaemolyticus | VP |
lactate dehydrogenase | LDH | Phenylboronic acid | PBA |
lactate oxidase | LOx | CuO2 nanodot-mediated metal–organic framework nanozymes | CP@MOF |
Nicotinamide adenine dinucleotide | NAD+ | glutathione-modified Fe1−xS nanoparticles | Fe1−xS |
flow injection analysis | FIA | microflower molybdenum disulfide | MoS2-MF |
Lactase | LAC | Fe–Mn bimetallic nanozyme | FeMnzyme |
cellobiose dehydrogenase | CDH | MnO2 nanorods | MnO2 NRs |
Biogenic amines | BA | Fe-Mn bimetallic nanozyme | Dex-FeMnzyme |
diamine oxidase | DAO | Total antioxidant capacity | TAC |
Monoamine oxidase | MAO | edge-functionalized graphene | FG |
chitosan | CH | polyaniline | PANI |
carbon nanofibers | CNFs | metal–organic frameworks | MOFs |
horseradish peroxidase | HRP | microfibrillated cellulose | MFC |
β-galactosidase | β-gal | Indian gum Tragacanth | IGT |
galactose oxidase | GaOx | Ionic liquid functionalized graphene with 1-methylimidazole | G-IL |
sodium dodecyl benzene sulfonate | NaDBS | carbon nanotubes | CNTs |
invertase | INV |
References
- Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Mishra, G.; Barfidokht, A.; Tehrani, F.; Mishra, R. Food Safety Analysis Using Electrochemical Biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef]
- Majdinasab, M.; Mishra, R.K.; Tang, X.; Marty, J.L. Detection of Antibiotics in Food: New Achievements in the Development of Biosensors. TrAC Trends Anal. Chem. 2020, 127, 115883. [Google Scholar] [CrossRef]
- Ding, J.; Qin, W. Recent Advances in Potentiometric Biosensors. TrAC Trends Anal. Chem. 2020, 124, 115803. [Google Scholar] [CrossRef]
- Bankole, O.E.; Verma, D.K.; González, M.L.C.; Ceferino, J.G.; Sandoval-Cortés, J.; Aguilar, C.N. Recent Trends and Technical Advancements in Biosensors and Their Emerging Applications in Food and Bioscience. Food Biosci. 2022, 47, 101695. [Google Scholar] [CrossRef]
- Purohit, B.; Vernekar, P.R.; Shetti, N.P.; Chandra, P. Biosensor Nanoengineering: Design, Operation, and Implementation for Biomolecular Analysis. Sens. Int. 2020, 1, 100040. [Google Scholar] [CrossRef]
- Yao, B.; Yao, J.; Fan, Z.; Zhao, J.; Zhang, K.; Huang, W. Rapid Advances of Versatile MXenes for Electrochemical Enzyme-Based Biosensors, Immunosensors, and Nucleic Acid-Based Biosensors. ChemElectroChem 2022, 9, e202200103. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Cui, Y. Transdermal Amperometric Biosensors for Continuous Glucose Monitoring in Diabetes. Talanta 2023, 253, 124033. [Google Scholar] [CrossRef]
- Pérez-González, C.; Salvo-Comino, C.; Martín-Pedrosa, F.; García-Cabezón, C.; Rodríguez-Méndez, M.L. Bioelectronic Tongue Dedicated to the Analysis of Milk Using Enzymes Linked to Carboxylated-PVC Membranes Modified with Gold Nanoparticles. Food Control 2023, 145, 109425. [Google Scholar] [CrossRef]
- Hooda, V.; Kumar, V.; Gahlaut, A.; Hooda, V. Alcohol Quantification: Recent Insights into Amperometric Enzyme Biosensors. Artif. Cell Nanomed. B 2018, 46, 398–410. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef]
- Kucherenko, I.S.; Soldatkin, O.O.; Dzyadevych, S.V.; Soldatkin, A.P. Electrochemical Biosensors Based on Multienzyme Systems: Main Groups, Advantages and Limitations—A Review. Anal. Chim. Acta 2020, 1111, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Erkmen, C.; Uslu, B. Frontiers in Electrochemical Enzyme Based Biosensors for Food and Drug Analysis. TrAC Trends Anal. Chem. 2020, 124, 115809. [Google Scholar] [CrossRef]
- Nery, E.W.; Kundys, M.; Jeleń, P.S.; Jönsson-Niedziółka, M. Electrochemical Glucose Sensing: Is There Still Room for Improvement? Anal. Chem. 2016, 88, 11271–11282. [Google Scholar] [CrossRef]
- Ray, S.; Biswas, R.; Banerjee, R.; Biswas, P. A Gold Nanoparticle-Intercalated Mesoporous Silica-Based Nanozyme for the Selective Colorimetric Detection of Dopamine. Nanoscale Adv. 2020, 2, 734–745. [Google Scholar] [CrossRef]
- Mohammadi, Z.B.; Zhang, F.; Kharazmi, M.S.; Jafari, S.M. Nano-Biocatalysts for Food Applications; Immobilized Enzymes within Different Nanostructures. Crit. Rev. Food Sci. 2022, 62, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zeng, J. Rational Surface Modification of Carbon Nanomaterials for Improved Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes. Catalysts 2020, 10, 1447. [Google Scholar] [CrossRef]
- Gupta, R.; Raza, N.; Bhardwaj, S.K.; Vikrant, K.; Kim, K.-H.; Bhardwaj, N. Advances in Nanomaterial-Based Electrochemical Biosensors for the Detection of Microbial Toxins, Pathogenic Bacteria in Food Matrices. J. Hazard. Mater. 2021, 401, 123379. [Google Scholar] [CrossRef]
- Kucherenko, I.S.; Soldatkin, O.O.; Kucherenko, D.Y.; Soldatkina, O.V.; Dzyadevych, S.V. Advances in Nanomaterial Application in Enzyme-Based Electrochemical Biosensors: A Review. Nanoscale Adv. 2019, 1, 4560–4577. [Google Scholar] [CrossRef] [PubMed]
- Mohd Razib, M.S.; Latip, W.; Abdul Rashid, J.I.; Knight, V.F.; Wan Yunus, W.M.Z.; Ong, K.K.; Mohd Kasim, N.A.; Mohd Noor, S.A. An Enzyme-Based Biosensor for the Detection of Organophosphate Compounds Using Mutant Phosphotriesterase Immobilized onto Reduced Graphene Oxide. J. Chem. 2021, 2021, 2231089. [Google Scholar] [CrossRef]
- Yoo, E.-H.; Lee, S.-Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef]
- Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors 2017, 17, 1866. [Google Scholar] [CrossRef]
- Vaddiraju, S.; Burgess, D.J.; Tomazos, I.; Jain, F.C.; Papadimitrakopoulos, F. Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises. J. Diabetes Sci. Technol. 2010, 4, 1540–1562. [Google Scholar] [CrossRef]
- Wang, J.; Lu, F. Oxygen-Rich Oxidase Enzyme Electrodes for Operation in Oxygen-Free Solutions. J. Am. Chem. Soc. 1998, 120, 1048–1050. [Google Scholar] [CrossRef]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef]
- Çevik, E.; Şenel, M.; Abasıyanık, M.F. Construction of Biosensor for Determination of Galactose with Galactose Oxidase Immobilized on Polymeric Mediator Contains Ferrocene. Curr. Appl. Phys. 2010, 10, 1313–1316. [Google Scholar] [CrossRef]
- Vostiar, I.; Tkac, J.; Sturdik, E.; Gemeiner, P. Amperometric Urea Biosensor Based on Urease and Electropolymerized Toluidine Blue Dye as a pH-Sensitive Redox Probe. Bioelectrochemistry 2002, 56, 113–115. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Q.; Hu, Z.; Zhang, Y.; Wu, C.; Yang, M.; Wang, P. A Novel Electrochemical Biosensor Based on Dynamic Polymerase-Extending Hybridization for E. coli O157:H7 DNA Detection. Talanta 2009, 78, 647–652. [Google Scholar] [CrossRef]
- Mayorga Martinez, C.C.; Treo, E.F.; Madrid, R.E.; Felice, C.C. Real-Time Measurement of Glucose Using Chrono-Impedance Technique on a Second Generation Biosensor. Biosens. Bioelectron. 2011, 29, 200–203. [Google Scholar] [CrossRef]
- Pundir, C.S.; Lata, S.; Narwal, V. Biosensors for Determination of D and L- Amino Acids: A Review. Biosens. Bioelectron. 2018, 117, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, T.; Almeida, M.G. Electrochemical Enzyme Biosensors Revisited: Old Solutions for New Problems. Crit. Rev. Anal. Chem. 2019, 49, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Prestgard, M.; Tiwari, A. A Review of Recent Advances in Nonenzymatic Glucose Sensors. Mater. Sci. Eng. C 2014, 41, 100–118. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Huang, Y.; Wang, T.; Ma, J. Nanomaterials for Electrochemical Non-Enzymatic Glucose Biosensors. RSC Adv. 2013, 3, 3487. [Google Scholar] [CrossRef]
- Muguruma, H. Biosensors: Enzyme Immobilization Chemistry. In Encyclopedia of Interfacial Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 64–71. ISBN 978-0-12-809894-3. [Google Scholar]
- Li, J.; Chang, H.; Zhang, N.; He, Y.; Zhang, D.; Liu, B.; Fang, Y. Recent Advances in Enzyme Inhibition Based-Electrochemical Biosensors for Pharmaceutical and Environmental Analysis. Talanta 2023, 253, 124092. [Google Scholar] [CrossRef]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme Immobilization by Adsorption: A Review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization Strategies to Develop Enzymatic Biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors—A Review. Nanomaterials 2023, 13, 760. [Google Scholar] [CrossRef]
- Liang, S.; Wu, X.-L.; Xiong, J.; Zong, M.-H.; Lou, W.-Y. Metal-Organic Frameworks as Novel Matrices for Efficient Enzyme Immobilization: An Update Review. Coord. Chem. Rev. 2020, 406, 213149. [Google Scholar] [CrossRef]
- Smutok, O.; Katz, E. Biosensors: Electrochemical Devices—General Concepts and Performance. Biosensors 2022, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Probst, D.; Klonoff, D.; Sode, K. Continuous Glucose Monitoring Systems—Current Status and Future Perspectives of the Flagship Technologies in Biosensor Research. Biosens. Bioelectron. 2021, 181, 113054. [Google Scholar] [CrossRef] [PubMed]
- Alp, B.; Mutlu, S.; Mutlu, M. Glow-Discharge-Treated Cellulose Acetate (CA) Membrane for a High Linearity Single-Layer Glucose Electrode in the Food Industry. Food Res. Int. 2000, 33, 107–112. [Google Scholar] [CrossRef]
- Valdés-Ramírez, G.; Galicia, L. Biosensing Membrane Base on Ferulic Acid and Glucose Oxidase for an Amperometric Glucose Biosensor. Molecules 2021, 26, 3757. [Google Scholar] [CrossRef]
- Vieira, N.S.; De Souza, F.A.; Da Rocha, R.C.F.; Cestarolli, D.T.; Guerra, E.M. Development of Amperometric Biosensors Using VO2/GOx Films for Detection of Glucose. Mater. Sci. Semicond. Process. 2021, 121, 105337. [Google Scholar] [CrossRef]
- Valdés-Ramírez, G.; Galicia, L. Glucose Oxidase Captured into Electropolymerized P-Coumaric Acid towards the Development of a Glucose Biosensor. Chemosensors 2023, 11, 345. [Google Scholar] [CrossRef]
- Jayakumar, K.; Bennett, R.; Leech, D. Electrochemical Glucose Biosensor Based on an Osmium Redox Polymer and Glucose Oxidase Grafted to Carbon Nanotubes: A Design-of-Experiments Optimisation of Current Density and Stability. Electrochim. Acta 2021, 371, 137845. [Google Scholar] [CrossRef]
- Estrada-Osorio, D.V.; Escalona-Villalpando, R.A.; Gutiérrez, A.; Arriaga, L.G.; Ledesma-García, J. Poly-L-Lysine-Modified with Ferrocene to Obtain a Redox Polymer for Mediated Glucose Biosensor Application. Bioelectrochemistry 2022, 146, 108147. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gong, W.; Wang, L.; Chen, Z. Enhanced Amperometric Response of a Glucose Oxidase and Horseradish Peroxidase Based Bienzyme Glucose Biosensor Modified with a Film of Polymerized Toluidine Blue Containing Reduced Graphene Oxide. Microchim. Acta 2015, 182, 1949–1956. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, X.; Yuan, H.; Li, Z.; Li, G.; Zhang, H.; Tan, Y. Graphene Oxide/Gold Nanoparticle/Graphite Fiber Microelectrodes for Directing Electron Transfer of Glucose Oxidase and Glucose Detection. J. Power Sources 2022, 521, 230956. [Google Scholar] [CrossRef]
- Singh, A.K.; Jaiswal, N.; Tiwari, I.; Ahmad, M.; Silva, S.R.P. Electrochemical Biosensors Based on in Situ Grown Carbon Nanotubes on Gold Microelectrode Array Fabricated on Glass Substrate for Glucose Determination. Microchim. Acta 2023, 190, 55. [Google Scholar] [CrossRef] [PubMed]
- Ramanaviciene, A.; German, N.; Kausaite-Minkstimiene, A.; Ramanavicius, A. Glucose Biosensor Based on Dendritic Gold Nanostructures Electrodeposited on Graphite Electrode by Different Electrochemical Methods. Chemosensors 2021, 9, 188. [Google Scholar] [CrossRef]
- Sakalauskiene, L.; Popov, A.; Kausaite-Minkstimiene, A.; Ramanavicius, A.; Ramanaviciene, A. The Impact of Glucose Oxidase Immobilization on Dendritic Gold Nanostructures on the Performance of Glucose Biosensors. Biosensors 2022, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- German, N.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. Development and Practical Application of Glucose Biosensor Based on Dendritic Gold Nanostructures Modified by Conducting Polymers. Biosensors 2022, 12, 641. [Google Scholar] [CrossRef]
- Kamel, K.S.; Oh, M.S.; Halperin, M.L. L-Lactic Acidosis: Pathophysiology, Classification, and Causes; Emphasis on Biochemical and Metabolic Basis. Kidney Int. 2020, 97, 75–88. [Google Scholar] [CrossRef]
- Teusink, B.; Molenaar, D. Systems Biology of Lactic Acid Bacteria: For Food and Thought. Curr. Opin. Syst. Biol. 2017, 6, 7–13. [Google Scholar] [CrossRef]
- Elshaghabee, F.M.F.; Rokana, N.; Panwar, H.; Heller, K.J.; Schrezenmeir, J. Probiotics for Dietary Management of Non-Alcoholic Fatty Liver Disease. Env. Chem. Lett. 2019, 17, 1553–1563. [Google Scholar] [CrossRef]
- Kucherenko, I.S.; Topolnikova, Y.V.; Soldatkin, O.O. Advances in the Biosensors for Lactate and Pyruvate Detection for Medical Applications: A Review. TrAC Trends Anal. Chem. 2019, 110, 160–172. [Google Scholar] [CrossRef]
- Yata, V.K. Engineered Nanostructured Materials: Benefits and Risks. Environ. Chem. Lett. 2019, 17, 1523–1527. [Google Scholar] [CrossRef]
- Narayanan, J.S.; Slaughter, G. Lactic Acid Biosensor Based on Lactate Dehydrogenase Immobilized on Au Nanoparticle Modified Microwire Electrode. IEEE Sens. J. 2020, 20, 4034–4040. [Google Scholar] [CrossRef]
- Istrate, O.-M.; Rotariu, L.; Bala, C. Amperometric L-Lactate Biosensor Based upon a Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Modified Screen-Printed Graphite Electrode. Chemosensors 2021, 9, 74. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shiddiky, M.J.A.; Rahman, M.A.; Shim, Y.-B. A Lactate Biosensor Based on Lactate Dehydrogenase/Nictotinamide Adenine Dinucleotide (Oxidized Form) Immobilized on a Conducting Polymer/Multiwall Carbon Nanotube Composite Film. Anal. Biochem. 2009, 384, 159–165. [Google Scholar] [CrossRef]
- Nikolaus, N.; Strehlitz, B. Amperometric Lactate Biosensors and Their Application in (Sports) Medicine, for Life Quality and Wellbeing. Microchim. Acta 2008, 160, 15–55. [Google Scholar] [CrossRef]
- Tvorynska, S.; Barek, J.; Josypcuk, B. High-Performance Amperometric Biosensor for Flow Injection Analysis Consisting of a Replaceable Lactate Oxidase-Based Mini-Reactor and a Silver Amalgam Screen-Printed Electrode. Electrochim. Acta 2023, 445, 142033. [Google Scholar] [CrossRef]
- Ozoglu, O.; Uzunoglu, A.; Unal, M.A.; Gumustas, M.; Ozkan, S.A.; Korukluoglu, M.; Altuntas, E.G. Electrochemical Detection of Lactate Produced by Foodborne Presumptive Lactic Acid Bacteria. J. Biosci. Bioeng. 2023, 135, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Zaccheria, F.; Mariani, M.; Scotti, N.; Psaro, R.; Ravasio, N. Catalytic Upgrading of Lactose: A Rest Raw Material from the Dairy Industry. Green Chem. 2017, 19, 1904–1910. [Google Scholar] [CrossRef]
- Nasiri, H.; Baghban, H.; Teimuri-Mofrad, R.; Mokhtarzadeh, A. Graphitic Carbon Nitride/Magnetic Chitosan Composite for Rapid Electrochemical Detection of Lactose. Int. Dairy J. 2023, 136, 105489. [Google Scholar] [CrossRef]
- de Brito, A.R.; dos Santos Reis, N.; Oliveira, P.C.; Rezende, D.V.B.; Monteiro, G.P.; Soares, G.A.; de Jesus, R.S.; Santos, A.S.; Salay, L.C.; de Oliveira, J.R.; et al. Development of Amperometric Biosensor in Modified Carbon Paste with Enzymatic Preparation Based on Lactase Immobilized on Carbon Nanotubes. J. Food Sci. Technol. 2020, 57, 1342–1350. [Google Scholar] [CrossRef]
- De Brito, A.R.; De Jesus, R.S.; Tavares, I.M.D.C.; Silva, F.N.; Santana, N.B.; Barbosa Ferrão, S.P.; Bilal, M.; De Santana Santos, A.; Salay, L.C.; De Oliveira, J.R.; et al. Application of the Electrochemical Biosensor in the Detection of Lactose in Skimmed Milk. Surf. Interfaces 2021, 22, 100839. [Google Scholar] [CrossRef]
- Villalonga, A.; Sánchez, A.; Mayol, B.; Reviejo, J.; Villalonga, R. Electrochemical Biosensors for Food Bioprocess Monitoring. Curr. Opin. Food Sci. 2022, 43, 18–26. [Google Scholar] [CrossRef]
- Bollella, P.; Gorton, L. Enzyme Based Amperometric Biosensors. Curr. Opin. Electrochem. 2018, 10, 157–173. [Google Scholar] [CrossRef]
- Tian, X.; Liu, H.; Liu, H.; Wang, X. Immobilizing Diamine Oxidase on Electroactive Phase-Change Microcapsules to Construct Thermoregulatory Smart Biosensor for Enhancing Detection of Histamine in Foods. Food Chem. 2022, 397, 133759. [Google Scholar] [CrossRef] [PubMed]
- Erden, P.E.; Kaçar Selvi, C.; Kılıç, E. A Novel Tyramine Biosensor Based on Carbon Nanofibers, 1-Butyl-3-Methylimidazolium Tetrafluoroborate and Gold Nanoparticles. Microchem. J. 2021, 170, 106729. [Google Scholar] [CrossRef]
- Wu, L.; Pu, H.; Sun, D.-W. Novel Techniques for Evaluating Freshness Quality Attributes of Fish: A Review of Recent Developments. Trends Food Sci. Technol. 2019, 83, 259–273. [Google Scholar] [CrossRef]
- Maddaloni, L.; Grasso, S.; De Gara, L.; Pennazza, G.; Zompanti, A.; Rapa, M.; Ruggieri, R.; Vinci, G.; Santonico, M. An Electrochemical Sensor for Monitoring Biogenic Amines in Anchovies as Quality and Safety Index. Sens. Actuators B Chem. 2021, 347, 130648. [Google Scholar] [CrossRef]
- Ahangari, H.; Kurbanoglu, S.; Ehsani, A.; Uslu, B. Latest Trends for Biogenic Amines Detection in Foods: Enzymatic Biosensors and Nanozymes Applications. Trends Food Sci. Technol. 2021, 112, 75–87. [Google Scholar] [CrossRef]
- Kaçar, C.; Erden, P.E.; Dalkiran, B.; İnal, E.K.; Kiliç, E. Amperometric Biogenic Amine Biosensors Based on Prussian Blue, Indium Tin Oxide Nanoparticles and Diamine Oxidase– or Monoamine Oxidase–Modified Electrodes. Anal. Bioanal. Chem. 2020, 412, 1933–1946. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Li, H.; Jia, D.; Fu, L.; Chen, J.; Zhang, D.; Wang, Y. Biogenic Amines Detection in Meat and Meat Products: The Mechanisms, Applications, and Future Trends. J. Future Foods 2024, 4, 21–36. [Google Scholar] [CrossRef]
- Li, B.; Lu, S. The Importance of Amine-Degrading Enzymes on the Biogenic Amine Degradation in Fermented Foods: A Review. Process Biochem. 2020, 99, 331–339. [Google Scholar] [CrossRef]
- Gao, X.; Li, C.; He, R.; Zhang, Y.; Wang, B.; Zhang, Z.-H.; Ho, C.-T. Research Advances on Biogenic Amines in Traditional Fermented Foods: Emphasis on Formation Mechanism, Detection and Control Methods. Food Chem. 2023, 405, 134911. [Google Scholar] [CrossRef]
- Kumar, S.P.; Parashuram, L.; Suhas, D.P.; Krishnaiah, P. Carboxylated Graphene-Alcohol Oxidase Thin Films Modified Graphite Electrode as an Electrochemical Sensor for Electro-Catalytic Detection of Ethanol. Mater. Sci. Energy Technol. 2020, 3, 159–166. [Google Scholar] [CrossRef]
- Pham, T.-T.D.; Phan, L.M.T.; Park, J.; Cho, S. Review—Electrochemical Aptasensor for Pathogenic Bacteria Detection. J. Electrochem. Soc. 2022, 169, 087501. [Google Scholar] [CrossRef]
- Shan, X.; Kuang, D.; Feng, Q.; Wu, M.; Yang, J. A Dual-Mode Ratiometric Aptasensor for Accurate Detection of Pathogenic Bacteria Based on Recycling of DNAzyme Activation. Food Chem. 2023, 423, 136287. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Tan, Y.; Mubango, E.; Shi, C.; Regenstein, J.M.; Yang, Q.; Hong, H.; Luo, Y. Rapid Freshness and Survival Monitoring Biosensors of Fish: Progress, Challenge, and Future Perspective. Trends Food Sci. Technol. 2022, 129, 61–73. [Google Scholar] [CrossRef]
- Yang, L.; Bai, R.; Xie, B.; Zhuang, N.; Lv, Z.; Chen, M.; Dong, W.; Zhou, J.; Jiang, M. A Biosensor Based on Oriented Immobilization of an Engineered L-Glutamate Oxidase on a Screen-Printed Microchip for Detection of l-Glutamate in Fermentation Processes. Food Chem. 2023, 405, 134792. [Google Scholar] [CrossRef] [PubMed]
- Backes, E.; Kato, C.G.; Corrêa, R.C.G.; Peralta Muniz Moreira, R.D.F.; Peralta, R.A.; Barros, L.; Ferreira, I.C.F.R.; Zanin, G.M.; Bracht, A.; Peralta, R.M. Laccases in Food Processing: Current Status, Bottlenecks and Perspectives. Trends Food Sci. Technol. 2021, 115, 445–460. [Google Scholar] [CrossRef]
- Yang, L.; Guo, X.-Y.; Zheng, Q.-H.; Zhang, Y.; Yao, L.; Xu, Q.-X.; Chen, J.-C.; He, S.-B.; Chen, W. Construction of Platinum Nanozyme by Using Carboxymethylcellulose with Improved Laccase-like Activity for Phenolic Compounds Detection. Sens. Actuators B Chem. 2023, 393, 134165. [Google Scholar] [CrossRef]
- Li, Z.; Li, F.; Cai, L.; Chen, Z.; Qin, L.; Gao, X.-D. One-Pot Multienzyme Synthesis of Rare Ketoses from Glycerol. J. Agric. Food Chem. 2020, 68, 1347–1353. [Google Scholar] [CrossRef]
- Yang, K.; Li, F.; Qiao, Y.; Zhou, Q.; Hu, Z.; He, Y.; Yan, Y.; Xu, L.; Madzak, C.; Yan, J. Design of a New Multienzyme Complex Synthesis System Based on Yarrowia lipolytica Simultaneously Secreted and Surface Displayed Fusion Proteins for Sustainable Production of Fatty Acid-Derived Hydrocarbons. ACS Sustain. Chem. Eng. 2018, 6, 17035–17043. [Google Scholar] [CrossRef]
- Monošík, R.; Ukropcová, D.; Streďanský, M.; Šturdík, E. Multienzymatic Amperometric Biosensor Based on Gold and Nanocomposite Planar Electrodes for Glycerol Determination in Wine. Anal. Biochem. 2012, 421, 256–261. [Google Scholar] [CrossRef]
- Alvarado-Ramírez, L.; Rostro-Alanis, M.; Rodríguez-Rodríguez, J.; Sosa-Hernández, J.E.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. Biosensors 2021, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Li, M.; Luo, Z.; Qi, L.; Yu, L.; Zhang, S.; Liu, H. Designed Synthesis of Compartmented Bienzyme Biocatalysts Based on Core–Shell Zeolitic Imidazole Framework Nanostructures. Small 2023, 19, 2206606. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Shen, H.; Zhou, Z.; Huang, Z.; Chao, H.; Song, J.; Su, P.; Yang, Y. Janus DNA Bridges Metal-Organic Frameworks and Graphene Oxide for Convenient and Efficient Multienzyme Co-Immobilization with Boosted Activity. Appl. Surf. Sci. 2021, 570, 151242. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Carballares, D.; Morellon-Sterlling, R.; Berenguer-Murcia, Á.; Alcántara, A.R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Enzyme Co-Immobilization: Always the Biocatalyst Designers’ Choice…or Not? Biotechnol. Adv. 2021, 51, 107584. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Chen, X.; Zheng, R.; Zheng, Y. Immobilization of Multi-Enzymes on Support Materials for Efficient Biocatalysis. Front. Bioeng. Biotechnol. 2020, 8, 660. [Google Scholar] [CrossRef]
- Zou, L.; Wang, S.; Qiu, J. Preparation and Properties of a Glucose Biosensor Based on an Ionic Liquid-Functionalized Graphene/Carbon Nanotube Composite. New Carbon Mater. 2020, 35, 12–19. [Google Scholar] [CrossRef]
- Bagal-Kestwal, D.R.; Chiang, B.-H. Electrochemical Invertase Probes with Nanocomposite of Microfibrillated Cellulose-Tragacanth Gum-Metal Nanoparticles for Direct Sucrose Analysis in Sweetened Beverages. J. Electrochem. Soc. 2019, 166, B720–B727. [Google Scholar] [CrossRef]
- Gursoy, O.; Sen Gursoy, S.; Cogal, S.; Celik Cogal, G. Development of a New Two-Enzyme Biosensor Based on Poly(Pyrrole-Co-3,4-Ethylenedioxythiophene) for Lactose Determination in Milk. Polym. Eng. Sci. 2018, 58, 839–848. [Google Scholar] [CrossRef]
- Halpin, G.; McEntee, S.; Dwyer, C.; Lawless, F.; Dempsey, E. Lactose Biosensor Development and Deployment in Dairy Product Analysis. J. Electrochem. Soc. 2022, 169, 037528. [Google Scholar] [CrossRef]
- Pyeshkova, V.M.; Dudchenko, O.Y.; Soldatkin, O.O.; Alekseev, S.A.; Seker, T.; Kurc, B.A.; Dzyadevych, S.V. Development of Three-Enzyme Lactose Amperometric Biosensor Modified by Nanosized Poly (Meta-Phenylenediamine) Film. Appl. Nanosci. 2022, 12, 1267–1274. [Google Scholar] [CrossRef]
- Giménez-Gómez, P.; Gutiérrez-Capitán, M.; Capdevila, F.; Puig-Pujol, A.; Fernández-Sánchez, C.; Jiménez-Jorquera, C. Monitoring of Malolactic Fermentation in Wine Using an Electrochemical Bienzymatic Biosensor for L-Lactate with Long Term Stability. Anal. Chim. Acta 2016, 905, 126–133. [Google Scholar] [CrossRef]
- Yan, C.; Jin, K.; Luo, X.; Piao, J.; Wang, F. Electrochemical Biosensor Based on Chitosan- and Thioctic-Acid-Modified Nanoporous Gold Co-Immobilization Enzyme for Glycerol Determination. Chemosensors 2022, 10, 258. [Google Scholar] [CrossRef]
- Yokus, M.A.; Songkakul, T.; Pozdin, V.A.; Bozkurt, A.; Daniele, M.A. Wearable Multiplexed Biosensor System toward Continuous Monitoring of Metabolites. Biosens. Bioelectron. 2020, 153, 112038. [Google Scholar] [CrossRef] [PubMed]
- Jalalvand, A.R. An Intelligent and Novel Electrochemical Biosensor for Simultaneous Enzymatic Biosensing of Cholesterol and Glucose in the Presence of Uric Acid Based on First-and Second-Order Calibration Methods. Microchem. J. 2023, 191, 108824. [Google Scholar] [CrossRef]
- Liu, A.; Lang, Q.; Liang, B.; Shi, J. Sensitive Detection of Maltose and Glucose Based on Dual Enzyme-Displayed Bacteria Electrochemical Biosensor. Biosens. Bioelectron. 2017, 87, 25–30. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.; Chen, C.; Kang, X.; Zhang, H.; Tao, Y.; Xie, Q.; Yao, S. Poly(Noradrenalin) Based Bi-Enzyme Biosensor for Ultrasensitive Multi-Analyte Determination. Talanta 2019, 194, 343–349. [Google Scholar] [CrossRef]
- Mahmudunnabi, R.G.; Farhana, F.Z.; Kashaninejad, N.; Firoz, S.H.; Shim, Y.-B.; Shiddiky, M.J.A. Nanozyme-Based Electrochemical Biosensors for Disease Biomarker Detection. Analyst 2020, 145, 4398–4420. [Google Scholar] [CrossRef]
- Wong, E.L.S.; Vuong, K.Q.; Chow, E. Nanozymes for Environmental Pollutant Monitoring and Remediation. Sensors 2021, 21, 408. [Google Scholar] [CrossRef]
- Arshad, F.; Mohd-Naim, N.F.; Chandrawati, R.; Cozzolino, D.; Ahmed, M.U. Nanozyme-Based Sensors for Detection of Food Biomarkers: A Review. RSC Adv. 2022, 12, 26160–26175. [Google Scholar] [CrossRef]
- Castillo, N.E.T.; Melchor-Martínez, E.M.; Sierra, J.S.O.; Ramírez-Torres, N.M.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Parra-Saldívar, R. Enzyme Mimics In-Focus: Redefining the Catalytic Attributes of Artificial Enzymes for Renewable Energy Production. Int. J. Biol. Macromol. 2021, 179, 80–89. [Google Scholar] [CrossRef]
- Huang, Y.; Mu, X.; Wang, J.; Wang, Y.; Xie, J.; Ying, R.; Su, E. The Recent Development of Nanozymes for Food Quality and Safety Detection. J. Mater. Chem. B 2022, 10, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Stasyuk, N.; Smutok, O.; Demkiv, O.; Prokopiv, T.; Gayda, G.; Nisnevitch, M.; Gonchar, M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. Sensors 2020, 20, 4509. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles. Nat. Nanotech. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Kurup, C.P.; Ahmed, M.U. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. Biosensors 2023, 13, 461. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Zhuang, Y.; Li, S.; Zhang, X.; Chai, H.; Huang, Y. High Peroxidase-like Activity of Metallic Cobalt Nanoparticles Encapsulated in Metal–Organic Frameworks Derived Carbon for Biosensing. Sens. Actuators B Chem. 2018, 255, 2050–2057. [Google Scholar] [CrossRef]
- Wang, X.; Lan, P.C.; Ma, S. Metal–Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials. ACS Cent. Sci. 2020, 6, 1497–1506. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Wang, W.; Gunasekaran, S. Nanozymes-Based Biosensors for Food Quality and Safety. TrAC Trends Anal. Chem. 2020, 126, 115841. [Google Scholar] [CrossRef]
- Chong, Y.; Liu, Q.; Ge, C. Advances in Oxidase-Mimicking Nanozymes: Classification, Activity Regulation and Biomedical Applications. Nano Today 2021, 37, 101076. [Google Scholar] [CrossRef]
- Su, Z.; Du, T.; Liang, X.; Wang, X.; Zhao, L.; Sun, J.; Wang, J.; Zhang, W. Nanozymes for Foodborne Microbial Contaminants Detection: Mechanisms, Recent Advances, and Challenges. Food Control 2022, 141, 109165. [Google Scholar] [CrossRef]
- Smutok, O.; Kavetskyy, T.; Prokopiv, T.; Serkiz, R.; Šauša, O.; Novák, I.; Švajdlenková, H.; Maťko, I.; Gonchar, M.; Katz, E. Biosensor Based on Peroxidase-Mimetic Nanozyme and Lactate Oxidase for Accurate L-Lactate Analysis in Beverages. Biosensors 2022, 12, 1042. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.-Y.; Wan, C.-Q.; Wang, Y.-X.; Shen, X.-F.; Pang, Y.-H. Bismuth-Based Metal-Organic Framework Peroxidase-Mimic Nanozyme: Preparation and Mechanism for Colorimetric-Converted Ultra-Trace Electrochemical Sensing of Chromium Ion. J. Hazard. Mater. 2023, 451, 131148. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Z.; Guan, J. Single-Atom Nanozyme-Based Electrochemical Sensors for Health and Food Safety Monitoring. Food Chem. 2023, 425, 136518. [Google Scholar] [CrossRef] [PubMed]
- Stasyuk, N.; Gayda, G.; Zakalskiy, A.; Zakalska, O.; Serkiz, R.; Gonchar, M. Amperometric Biosensors Based on Oxidases and PtRu Nanoparticles as Artificial Peroxidase. Food Chem. 2019, 285, 213–220. [Google Scholar] [CrossRef]
- Stasyuk, N.; Gayda, G.; Demkiv, O.; Darmohray, L.; Gonchar, M.; Nisnevitch, M. Amperometric Biosensors for L-Arginine Determination Based on L-Arginine Oxidase and Peroxidase-Like Nanozymes. Appl. Sci. 2021, 11, 7024. [Google Scholar] [CrossRef]
- Song, G.; Zhang, J.; Huang, H.; Wang, X.; He, X.; Luo, Y.; Li, J.; Huang, K.; Cheng, N. Single-Atom Ce-N-C Nanozyme Bioactive Paper with a 3D-Printed Platform for Rapid Detection of Organophosphorus and Carbamate Pesticide Residues. Food Chem. 2022, 387, 132896. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Q.; Pang, X.; Luo, Y.; Huang, K.; He, X.; Yao, Z.; Li, J.-C.; Cheng, N. Fe-N-C Nanozyme Mediated Bioactive Paper-3D Printing Integration Technology Enables Portable Detection of Lactose in Milk. Sens. Actuators B Chem. 2022, 368, 132111. [Google Scholar] [CrossRef]
- Liu, L.; Du, J.; Liu, W.; Guo, Y.; Wu, G.; Qi, W.; Lu, X. Enhanced His@AuNCs Oxidase-like Activity by Reduced Graphene Oxide and Its Application for Colorimetric and Electrochemical Detection of Nitrite. Anal. Bioanal. Chem. 2019, 411, 2189–2200. [Google Scholar] [CrossRef]
- Han, Y.; Luo, L.; Zhang, L.; Kang, Y.; Sun, H.; Dan, J.; Sun, J.; Zhang, W.; Yue, T.; Wang, J. Oxidase-like Fe–Mn Bimetallic Nanozymes for Colorimetric Detection of Ascorbic Acid in Kiwi Fruit. LWT 2022, 154, 112821. [Google Scholar] [CrossRef]
- Han, X.; Liu, L.; Gong, H.; Luo, L.; Han, Y.; Fan, J.; Xu, C.; Yue, T.; Wang, J.; Zhang, W. Dextran-Stabilized Fe-Mn Bimetallic Oxidase-like Nanozyme for Total Antioxidant Capacity Assay of Fruit and Vegetable Food. Food Chem. 2022, 371, 131115. [Google Scholar] [CrossRef]
- Xu, S.; Wang, S.; Guo, L.; Tong, Y.; Wu, L.; Huang, X. Nanozyme-Catalysed CRISPR-Cas12a System for the Preamplification-Free Colorimetric Detection of Lead Ion. Anal. Chim. Acta 2023, 1243, 340827. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Wang, F.; Chi, H.; Zhao, G.; Zhang, Y.; Li, T.; Wei, Q. Electrochemical Aptasensor Based on Gold Modified Thiol Graphene as Sensing Platform and Gold-Palladium Modified Zirconium Metal-Organic Frameworks Nanozyme as Signal Enhancer for Ultrasensitive Detection of Mercury Ions. J. Colloid Interface Sci. 2022, 606, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, H.; Lv, J.; Shi, X.; Wu, L.; Niu, X. Colorimetric Sensor Array Based on Au2Pt Nanozymes for Antioxidant Nutrition Quality Evaluation in Food. Biosens. Bioelectron. 2023, 236, 115417. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Feng, Y.; Li, Y.; Li, L.; Liu, R.; Zhu, L. S-Doped Reduced Graphene Oxide: A Novel Peroxidase Mimetic and Its Application in Sensitive Detection of Hydrogen Peroxide and Glucose. Anal. Bioanal. Chem. 2020, 412, 5477–5487. [Google Scholar] [CrossRef] [PubMed]
- Dinh Van, T.; Dang Thi Thuy, N.; Dao Vu Phuong, T.; Nguyen Thi, N.; Nguyen Thi, T.; Nguyen Phuong, T.; Vu Van, T.; Vuong-Pham, H.; Phuong Dinh, T. High-Performance Nonenzymatic Electrochemical Glucose Biosensor Based on AgNP-Decorated MoS2 Microflowers. Curr. Appl. Phys. 2022, 43, 116–123. [Google Scholar] [CrossRef]
- Cao, B.; Gao, G.; Zhang, J.; Zhang, Z.; Sun, T. A Smartphone-Assisted Colorimetric Sensor Based on Fe1-xS Nanozyme for Detection of Glucose and Ascorbic-Acid in Soft Drinks. Microchem. J. 2023, 193, 109018. [Google Scholar] [CrossRef]
- Xu, S.; Wu, F.; Mu, F.; Dai, B. The Preparation of Fe-Based Peroxidase Mimetic Nanozymes and for the Electrochemical Detection of Histamine. J. Electroanal. Chem. 2022, 908, 116088. [Google Scholar] [CrossRef]
- Chen, L.; Huang, W.; Hao, M.; Yang, F.; Shen, H.; Yu, S.; Wang, L. Rapid and Ultrasensitive Activity Detection of α-Amylase Based on γ-Cyclodextrin Crosslinked Metal-Organic Framework Nanozyme. Int. J. Biol. Macromol. 2023, 242, 124881. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, S.; Zeng, M.; Xie, H.; Gan, N. Dual-Mode Colorimetric-Electrochemical Biosensor for Vibrio Parahaemolyticus Detection Based on CuO2 Nanodot-Encapsulated Metal-Organic Framework Nanozymes. Sens. Actuators B Chem. 2023, 387, 133835. [Google Scholar] [CrossRef]
- Reyes-De-Corcuera, J.I.; Olstad, H.E.; García-Torres, R. Stability and Stabilization of Enzyme Biosensors: The Key to Successful Application and Commercialization. Annu. Rev. Food Sci. Technol. 2018, 9, 293–322. [Google Scholar] [CrossRef]
- Hitaishi, V.; Clement, R.; Bourassin, N.; Baaden, M.; De Poulpiquet, A.; Sacquin-Mora, S.; Ciaccafava, A.; Lojou, E. Controlling Redox Enzyme Orientation at Planar Electrodes. Catalysts 2018, 8, 192. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Enzyme Immobilized Nanomaterials as Electrochemical Biosensors for Detection of Biomolecules. Enzym. Microb. Technol. 2022, 156, 110006. [Google Scholar] [CrossRef] [PubMed]
- Nor, N.M.; Ridhuan, N.S.; Razak, K.A. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors 2022, 12, 1136. [Google Scholar] [CrossRef]
- Kilic, N.M.; Singh, S.; Keles, G.; Cinti, S.; Kurbanoglu, S.; Odaci, D. Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors. Biosensors 2023, 13, 622. [Google Scholar] [CrossRef] [PubMed]
- Martinkova, P.; Kostelnik, A.; Valek, T.; Pohanka, M. >Main Streams in the Construction of Biosensors and Their Applications. Int. J. Electrochem. Sci. 2017, 12, 7386–7403. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Sheng, K.; Jiang, H.; Fang, Y.; Wang, L.; Jiang, D. Emerging Electrochemical Biosensing Approaches for Detection of Allergen in Food Samples: A Review. Trends Food Sci. Technol. 2022, 121, 93–104. [Google Scholar] [CrossRef]
- Cerrato-Alvarez, M.; Bernalte, E.; Bernalte-García, M.J.; Pinilla-Gil, E. Fast and Direct Amperometric Analysis of Polyphenols in Beers Using Tyrosinase-Modified Screen-Printed Gold Nanoparticles Biosensors. Talanta 2019, 193, 93–99. [Google Scholar] [CrossRef]
- Salvo-Comino, C.; Martín-Bartolomé, P.; Pura, J.L.; Perez-Gonzalez, C.; Martin-Pedrosa, F.; García-Cabezón, C.; Rodríguez-Méndez, M.L. Improving the Performance of a Bioelectronic Tongue Using Silver Nanowires: Application to Milk Analysis. Sens. Actuators B Chem. 2022, 364, 131877. [Google Scholar] [CrossRef]
- Sadak, O. One-Pot Scalable Synthesis of rGO/AuNPs Nanocomposite and Its Application in Enzymatic Glucose Biosensor. Nanocomposites 2021, 7, 44–52. [Google Scholar] [CrossRef]
- Liu, J.-X.; Ding, S.-N. Non-Enzymatic Amperometric Determination of Cellular Hydrogen Peroxide Using Dendrimer-Encapsulated Pt Nanoclusters/Carbon Nanotubes Hybrid Composites Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2017, 251, 200–207. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Nejad, F.G.; Safaei, M. Recent Advances in ZnO Nanostructure-Based Electrochemical Sensors and Biosensors. J. Mater. Chem. B 2020, 8, 5826–5844. [Google Scholar] [CrossRef] [PubMed]
- Baruah, S.; Maibam, B.; Borah, C.K.; Agarkar, T.; Kumar, A.; Kumar, S. A Highly Receptive ZnO-Based Enzymatic Electrochemical Sensor for Glucose Sensing. IEEE Sens. J. 2021, 21, 14601–14608. [Google Scholar] [CrossRef]
- Liu, J.-X.; Liang, X.-L.; Chen, F.; Ding, S.-N. Ultrasensitive Amperometric Cytosensor for Drug Evaluation with Monitoring Early Cell Apoptosis Based on Cu2O@PtPd Nanocomposite as Signal Amplified Label. Sens. Actuators B Chem. 2019, 300, 127046. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Zhao, H.; Ma, X.; Yang, S.; Qiao, X.; Sheng, Q.; Yue, T. DNA Walker-Assisted Aptasensor for Highly Sensitive Determination of Ochratoxin A. Biosens. Bioelectron. 2021, 182, 113171. [Google Scholar] [CrossRef]
- Hui, Y.; Peng, H.; Zhang, F.; Zhang, L.; Liu, Y.; Jia, R.; Song, Y.; Wang, B. An Ultrasensitive Sandwich-Type Electrochemical Aptasensor Using Silver Nanoparticle/Titanium Carbide Nanocomposites for the Determination of Staphylococcus Aureus in Milk. Microchim. Acta 2022, 189, 276. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Q.; Yang, N. Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. Small 2019, 15, 1903780. [Google Scholar] [CrossRef]
- Taniselass, S.; Arshad, M.K.M.; Gopinath, S.C.B. Graphene-Based Electrochemical Biosensors for Monitoring Noncommunicable Disease Biomarkers. Biosens. Bioelectron. 2019, 130, 276–292. [Google Scholar] [CrossRef]
- Fu, L.; Lai, G.; Yu, A. Electroanalysis of Dopamine Using Polydopamine Functionalized Reduced Graphene Oxide-Gold Nanocomposite. In Proceedings of the 1st International Electronic Conference on Materials, Online, 26 May–10 June 2014. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, Q.; Chu, M.; Liu, S.; Zhang, Y. Structure Effect on Graphene-Modified Enzyme Electrode Glucose Sensors. Biosens. Bioelectron. 2014, 52, 281–287. [Google Scholar] [CrossRef]
- Gong, H.; Hu, X.; Zeng, R.; Li, Y.; Xu, J.; Li, M.; Tang, D. CRISPR/Cas12a-Based Photoelectrochemical Sensing of microRNA on Reduced Graphene Oxide-Anchored Bi2WO6 Coupling with Catalytic Hairpin Assembly. Sens. Actuators B Chem. 2022, 369, 132307. [Google Scholar] [CrossRef]
- Zewdu, M.; Sandhu, T.; Kaur, N.; Abebe, M.; Olu, F.; Sabherwal, P. Synergetic Effect of Three-in-One Nanocomposite Based on AuNPs and rGO-MWCNTs for Ultrasensitive Electrochemical Bio-Diagnostic Applications. J. Electrochem. Soc. 2023, 170, 047513. [Google Scholar] [CrossRef]
- Bisht, N.; Patel, M.; Dwivedi, N.; Kumar, P.; Mondal, D.P.; Srivastava, A.K.; Dhand, C. Bio-Inspired Polynorepinephrine Based Nanocoatings for Reduced Graphene Oxide/Gold Nanoparticles Composite for High-Performance Biosensing of Mycobacterium Tuberculosis. Environ. Res. 2023, 227, 115684. [Google Scholar] [CrossRef]
- Fang, M.; Hao, Y.; Ying, Z.; Wang, H.; Cheng, H.-M.; Zeng, Y. Controllable Edge Modification of Multi-Layer Graphene for Improved Dispersion Stability and High Electrical Conductivity. Appl. Nanosci. 2019, 9, 469–477. [Google Scholar] [CrossRef]
- Hao, Y.; Fang, M.; Xu, C.; Ying, Z.; Wang, H.; Zhang, R.; Cheng, H.-M.; Zeng, Y. A Graphene-Laminated Electrode with High Glucose Oxidase Loading for Highly-Sensitive Glucose Detection. J. Mater. Sci. Technol. 2021, 66, 57–63. [Google Scholar] [CrossRef]
- Reddy, Y.V.M.; Shin, J.H.; Palakollu, V.N.; Sravani, B.; Choi, C.-H.; Park, K.; Kim, S.-K.; Madhavi, G.; Park, J.P.; Shetti, N.P. Strategies, Advances, and Challenges Associated with the Use of Graphene-Based Nanocomposites for Electrochemical Biosensors. Adv. Colloid Interface Sci. 2022, 304, 102664. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.; Aukstakojyte, R.; Gaidukevic, J.; Lisyte, V.; Kausaite-Minkstimiene, A.; Barkauskas, J.; Ramanaviciene, A. Reduced Graphene Oxide and Polyaniline Nanofibers Nanocomposite for the Development of an Amperometric Glucose Biosensor. Sensors 2021, 21, 948. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications. Adv. Funct. Mater. 2018, 28, 1804950. [Google Scholar] [CrossRef]
- Fan, M.; Liao, D.; Aboud, M.F.A.; Shakir, I.; Xu, Y. A Universal Strategy toward Ultrasmall Hollow Nanostructures with Remarkable Electrochemical Performance. Angew. Chem. Int. Ed. 2020, 59, 8247–8254. [Google Scholar] [CrossRef]
- Bu, F.; Chen, W.; Aboud, M.F.A.; Shakir, I.; Gu, J.; Xu, Y. Microwave-Assisted Ultrafast Synthesis of Adjustable Bimetal Phosphide/Graphene Heterostructures from MOFs for Efficient Electrochemical Water Splitting. J. Mater. Chem. A 2019, 7, 14526–14535. [Google Scholar] [CrossRef]
- Palakollu, V.N.; Chen, D.; Tang, J.-N.; Wang, L.; Liu, C. Recent Advancements in Metal-Organic Frameworks Composites Based Electrochemical (Bio)Sensors. Microchim. Acta 2022, 189, 161. [Google Scholar] [CrossRef]
- Dong, J.; Han, X.; Liu, Y.; Li, H.; Cui, Y. Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2020, 59, 13722–13733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lou, Y.; Guo, C.; Jia, Q.; Song, Y.; Tian, J.-Y.; Zhang, S.; Wang, M.; He, L.; Du, M. Metal–Organic Frameworks (MOFs) Based Chemosensors/Biosensors for Analysis of Food Contaminants. Trends Food Sci. Technol. 2021, 118, 569–588. [Google Scholar] [CrossRef]
- Sharanyakanth, P.S.; Radhakrishnan, M. Synthesis of Metal-Organic Frameworks (MOFs) and Its Application in Food Packaging: A Critical Review. Trends Food Sci. Technol. 2020, 104, 102–116. [Google Scholar] [CrossRef]
- Cheng, W.; Tang, X.; Zhang, Y.; Wu, D.; Yang, W. Applications of Metal-Organic Framework (MOF)-Based Sensors for Food Safety: Enhancing Mechanisms and Recent Advances. Trends Food Sci. Technol. 2021, 112, 268–282. [Google Scholar] [CrossRef]
- Du, T.; Huang, L.; Wang, J.; Sun, J.; Zhang, W.; Wang, J. Luminescent Metal-Organic Frameworks (LMOFs): An Emerging Sensing Platform for Food Quality and Safety Control. Trends Food Sci. Technol. 2021, 111, 716–730. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Zhu, N.; Wu, Y.; Li, G. Antibacterial Mechanisms and Applications of Metal-Organic Frameworks and Their Derived Nanomaterials. Trends Food Sci. Technol. 2021, 109, 413–434. [Google Scholar] [CrossRef]
- Xiao, J.; Fan, C.; Xu, T.; Su, L.; Zhang, X. An Electrochemical Wearable Sensor for Levodopa Quantification in Sweat Based on a Metal–Organic Framework/Graphene Oxide Composite with Integrated Enzymes. Sens. Actuators B Chem. 2022, 359, 131586. [Google Scholar] [CrossRef]
- Chen, C.; Xu, H.; Zhan, Q.; Zhang, Y.; Wang, B.; Chen, C.; Tang, H.; Xie, Q. Preparation of Novel HKUST-1-Glucose Oxidase Composites and Their Application in Biosensing. Microchim. Acta 2023, 190, 10. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Lian, M.; Chen, X.; Lu, Y.; Yang, W. Enzyme Immobilization on ZIF-67/MWCNT Composite Engenders High Sensitivity Electrochemical Sensing. J. Electroanal. Chem. 2019, 833, 505–511. [Google Scholar] [CrossRef]
- Ge, D.; Li, M.; Wei, D.; Zhu, N.; Wang, Y.; Li, M.; Zhang, Z.; Zhao, H. Enhanced Activity of Enzyme Encapsulated in Hydrophilic Metal-Organic Framework for Biosensing. Chem. Eng. J. 2023, 469, 144067. [Google Scholar] [CrossRef]
- Liang, W.; Xu, H.; Carraro, F.; Maddigan, N.K.; Li, Q.; Bell, S.G.; Huang, D.M.; Tarzia, A.; Solomon, M.B.; Amenitsch, H.; et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 2348–2355. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Gao, W.; Zhang, S.; Li, B.; Huang, H.; Zhang, X. Confining Natural/Mimetic Enzyme Cascade in an Amorphous Metal-Organic Framework for the Construction of Recyclable Biomaterials with Catalytic Activity. Langmuir 2022, 38, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, Q.; Zhangsun, H.; Zhao, S.; Zhao, Y.; Wang, L. Carbon Cloth-Supported Nanorod-like Conductive Ni/Co Bimetal MOF: A Stable and High-Performance Enzyme-Free Electrochemical Sensor for Determination of Glucose in Serum and Beverage. Food Chem. 2021, 349, 129202. [Google Scholar] [CrossRef] [PubMed]
- Pundir, M.; Prasher, P.; Vasić, K.; Leitgeb, M.; Kumar, A.; Prakash, R.; Knez, Ž.; Pandey, J.K.; Kumar, S. Enzyme Modified CNTs for Biosensing Application: Opportunities and Challenges. Colloid Interface Sci. Commun. 2021, 44, 100506. [Google Scholar] [CrossRef]
- Kumari, A.; Rajeev, R.; Benny, L.; Sudhakar, Y.N.; Varghese, A.; Hegde, G. Recent Advances in Carbon Nanotubes-Based Biocatalysts and Their Applications. Adv. Colloid Interface Sci. 2021, 297, 102542. [Google Scholar] [CrossRef]
- Song, H.; Gao, G.; Ma, C.; Li, Y.; Shi, J.; Zhou, X.; Zhu, Z. A Hybrid System Integrating Xylose Dehydrogenase and NAD+ Coupled with PtNPs@MWCNTs Composite for the Real-Time Biosensing of Xylose. Analyst 2020, 145, 5563–5570. [Google Scholar] [CrossRef]
- Maity, D.; Minitha, C.R.; Kumar, R.T.F. Glucose Oxidase Immobilized Amine Terminated Multiwall Carbon Nanotubes/Reduced Graphene Oxide/Polyaniline/Gold Nanoparticles Modified Screen-Printed Carbon Electrode for Highly Sensitive Amperometric Glucose Detection. Mater. Sci. Eng. C 2019, 105, 110075. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Ahmad, R.; Mousa, H.M.; Kim, I.-G.; Kim, J.I.; Neupane, M.P.; Park, C.H.; Kim, C.S. High-Performance Glucose Biosensor Based on Chitosan-Glucose Oxidase Immobilized Polypyrrole/Nafion/Functionalized Multi-Walled Carbon Nanotubes Bio-Nanohybrid Film. J. Colloid Interface Sci. 2016, 482, 39–47. [Google Scholar] [CrossRef]
- Karim, M.R.; Alam, M.M.; Aijaz, M.O.; Asiri, A.M.; Dar, M.A.; Rahman, M.M. Fabrication of 1,4-Dioxane Sensor Based on Microwave Assisted PAni-SiO2 Nanocomposites. Talanta 2019, 193, 64–69. [Google Scholar] [CrossRef]
- Gerard, M. Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345–359. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Rekertaitė, A.I.; Valiūnas, R.; Valiūnienė, A. Single-Step Procedure for the Modification of Graphite Electrode by Composite Layer Based on Polypyrrole, Prussian Blue and Glucose Oxidase. Sens. Actuators B Chem. 2017, 240, 220–223. [Google Scholar] [CrossRef]
- Shen, F.; Arshi, S.; Magner, E.; Ulstrup, J.; Xiao, X. One-Step Electrochemical Approach of Enzyme Immobilization for Bioelectrochemical Applications. Synth. Met. 2022, 291, 117205. [Google Scholar] [CrossRef]
- Li, J.; Bi, X.; Tamulevičius, S.; Erts, D.; Chang, C.-F.; Gu, Y. Fabrication of a Biocompatible and Continuous Glucose Biosensor with the Poly(3,4-Ethylenedioxythiophene) Modified Electrode. J. Taiwan Inst. Chem. Eng. 2019, 104, 1–7. [Google Scholar] [CrossRef]
- Senel, M.; Dervisevic, M.; Esser, L.; Dervisevic, E.; Dyson, J.; Easton, C.D.; Cadarso, V.J.; Voelcker, N.H. Enhanced Electrochemical Sensing Performance by In Situ Electrocopolymerization of Pyrrole and Thiophene-Grafted Chitosan. Int. J. Biol. Macromol. 2020, 143, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Ma, J.; Wang, F.; Li, W.; Fang, X.; Lei, S.; Amirfazli, A. Unexpected Superhydrophobic Polydopamine on Cotton Fabric. Prog. Org. Coat. 2020, 147, 105777. [Google Scholar] [CrossRef]
- Prabhakar, P.; Sen, R.K.; Patel, M.; Shruti; Dwivedi, N.; Singh, S.; Kumar, P.; Chouhan, M.; Yadav, A.K.; Mondal, D.P.; et al. Development of Copper Impregnated Bio-Inspired Hydrophobic Antibacterial Nanocoatings for Textiles. Colloids Surf. B Biointerfaces 2022, 220, 112913. [Google Scholar] [CrossRef]
- Lee, M.; Kim, S.; Jang, M.; Park, H.S.; Lee, J.Y. One-Pot Electrochemical Fabrication of High Performance Amperometric Enzymatic Biosensors Using Polypyrrole and Polydopamine. J. Ind. Eng. Chem. 2021, 97, 316–325. [Google Scholar] [CrossRef]
- Patel, M.; Bisht, N.; Prabhakar, P.; Sen, R.K.; Kumar, P.; Dwivedi, N.; Ashiq, M.; Mondal, D.P.; Srivastava, A.K.; Dhand, C. Ternary Nanocomposite-Based Smart Sensor: Reduced Graphene Oxide/Polydopamine/Alanine Nanocomposite for Simultaneous Electrochemical Detection of Cd2+, Pb2+, Fe2+, and Cu2+ Ions. Environ. Res. 2023, 221, 115317. [Google Scholar] [CrossRef]
- Jeon, W.-Y.; Kim, H.-H.; Choi, Y.-B. Development of a Glucose Sensor Based on Glucose Dehydrogenase Using Polydopamine-Functionalized Nanotubes. Membranes 2021, 11, 384. [Google Scholar] [CrossRef]
- Liu, Y.; Nan, X.; Shi, W.; Liu, X.; He, Z.; Sun, Y.; Ge, D. A Glucose Biosensor Based on the Immobilization of Glucose Oxidase and Au Nanocomposites with Polynorepinephrine. RSC Adv. 2019, 9, 16439–16446. [Google Scholar] [CrossRef]
- Baldoneschi, V.; Palladino, P.; Banchini, M.; Minunni, M.; Scarano, S. Norepinephrine as New Functional Monomer for Molecular Imprinting: An Applicative Study for the Optical Sensing of Cardiac Biomarkers. Biosens. Bioelectron. 2020, 157, 112161. [Google Scholar] [CrossRef]
- Lu, Z.; Teo, B.M.; Tabor, R.F. Recent Developments in Polynorepinephrine: An Innovative Material for Bioinspired Coatings and Colloids. J. Mat. Chem. B 2022, 10, 7895–7904. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, X.; Yang, L.; Cai, A.; Zhou, X.; Zhou, C.; Li, G.; Wang, Q.; Wu, M.; Wu, L.; et al. A Highly Sensitive Electrochemical Cytosensor Based on a Triple Signal Amplification Strategy Using Both Nanozyme and DNAzyme. J. Mater. Chem. B 2022, 10, 700–706. [Google Scholar] [CrossRef]
- Dimcheva, N. Nanostructures of Noble Metals as Functional Materials in Biosensors. Curr. Opin. Electrochem. 2020, 19, 35–41. [Google Scholar] [CrossRef]
- Algov, I.; Feiertag, A.; Alfonta, L. Site-Specifically Wired and Oriented Glucose Dehydrogenase Fused to a Minimal Cytochrome with High Glucose Sensing Sensitivity. Biosens. Bioelectron. 2021, 180, 113117. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Ma, S.; Tang, J.; Tanner, D.; Ulstrup, J.; Xiao, X.; Zhang, J. Direct Electron Transfer of Fructose Dehydrogenase Immobilized on Thiol-Gold Electrodes. Electrochim. Acta 2021, 392, 138946. [Google Scholar] [CrossRef]
- Yoon, T.; Park, W.; Kim, Y.; Na, S. Electric Field-Mediated Regulation of Enzyme Orientation for Efficient Electron Transfer at the Bioelectrode Surface: A Molecular Dynamics Study. Appl. Surf. Sci. 2023, 608, 155124. [Google Scholar] [CrossRef]
- Forouzanfar, S.; Alam, F.; Khakpour, I.; Baboukani, A.R.; Pala, N.; Wang, C. Highly Sensitive Lactic Acid Biosensors Based on Photoresist Derived Carbon. IEEE Sens. J. 2020, 20, 8965–8972. [Google Scholar] [CrossRef]
- Katz, E.; Bückmann, A.F.; Willner, I. Self-Powered Enzyme-Based Biosensors. J. Am. Chem. Soc. 2001, 123, 10752–10753. [Google Scholar] [CrossRef]
- Pinyou, P.; Blay, V.; Muresan, L.M.; Noguer, T. Enzyme-Modified Electrodes for Biosensors and Biofuel Cells. Mater. Horiz. 2019, 6, 1336–1358. [Google Scholar] [CrossRef]
- Kim, T.H.; Hahn, Y.K.; Kim, M.S. Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays. Micromachines 2020, 11, 269. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, D.; Li, W.; Li, X.; Chang, Y.; Zhang, Q.; Liu, M. An Origami Paper-Based Analytical Device for Rapid and Sensitive Analysis of Acrylamide in Foods. Micromachines 2021, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Z.; Wang, X. A Microfluidic PET-Based Electrochemical Glucose Sensor. Micromachines 2022, 13, 552. [Google Scholar] [CrossRef] [PubMed]
- Pagkali, V.; Soulis, D.; Kokkinos, C.; Economou, A. Fully Drawn Electrochemical Paper-Based Glucose Biosensors Fabricated by a High-Throughput Dual-Step Pen-on-Paper Approach with Commercial Writing Stationery. Sens. Actuators B Chem. 2022, 358, 131546. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, G.; Wei, X.; Zhang, D.; Huang, L.; Liu, H.; Fang, H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. Biosensors 2023, 13, 886. https://doi.org/10.3390/bios13090886
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. Biosensors. 2023; 13(9):886. https://doi.org/10.3390/bios13090886
Chicago/Turabian StyleSun, Ganchao, Xiaobo Wei, Dianping Zhang, Liben Huang, Huiyan Liu, and Haitian Fang. 2023. "Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring" Biosensors 13, no. 9: 886. https://doi.org/10.3390/bios13090886
APA StyleSun, G., Wei, X., Zhang, D., Huang, L., Liu, H., & Fang, H. (2023). Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. Biosensors, 13(9), 886. https://doi.org/10.3390/bios13090886