Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence
Abstract
:1. Introduction
2. Targeting Enzymes for Senescence Sensing
2.1. Sensors Targeting SA-β-Gal
2.2. Sensors Targeting Other Hydrolases and Oxidases
3. Targeted Sensing Senescence with Antibody-Functionalized and Antibody-Mimetic Nanoparticles
4. Peptide-Guided Fluorescence Imaging of Cellular Senescence
5. Dual-Targeting Fluorescent Sensors for Precisely Tracking Cellular Senescence
Types of Markers | Recognition Elements | Probes | Performance Constants | Fluorescent Reporters | Detection Approach and Signal | Imaging Applications | Refs |
---|---|---|---|---|---|---|---|
β-Gal and pH | β-D-galactose | KSA01 KSA02 | LOD = 8.3 × 10−3 U mL−1 LOD = 6.8 × 10−3 U mL−1 | Merocyanine | Ratiometric Turn-on | Cells Tissues | [23] |
β-Gal | Acetylated galactose | AcGQCy7 | Quinone-cyanine-7 | Turn-on | Cells | [30] | |
β-D-galactopyranoside | βGal-1 | LOD = 4.62 ± 0.46 × 10−5 U mL−1 | 6-amino-styryl-benzothiazole | Turn-on | Cells | [33] | |
β-D-galactose | TC-gal | LOD = 8.4 × 10−5 U mL−1 Km = 18.4 μM | Tetraphenylethylene and coumarin | Turn-on | Cells | [34] | |
β-D-galactose | TPh-PyBz-β-gal | LOD = 0.22 U mL−1 | Tetraphenylethylene | Turn-on | Cells | [35] | |
Acetylated galactose | AHGa | Naphthalimide | Turn-on Two-Photon | Cells Tumors (in vivo) | [38] | ||
β-D-galactopyranoside | MB-βgal | LOD = 0.156 mU mL−1 | Methylene blue | Turn-on NIR | Cells | [44] | |
Acetylated galactose | NBGal | LOD = 2.33 U mL−1 | Nile blue | Turn-on NIR | Cells Tumors (in vivo) Tissues | [45] | |
β-D-galactopyranoside | DSL-Gal | Km = 78.75 μM Vmax = 4.17 μM s−1 LOD = 0.036 U mL−1 | Dual-state luminophores | Turn-on NIR | Cells Tissues Tumors (in vivo) | [47] | |
β-D-galactose | Gal-HCy-Biotin | Km = 4.60 μM–1 s–1 LOD = 3.7 × 10−3 U mL−1 | Hemicyanine dye | Turn-on NIR | Cells Tumors (in vivo) | [48] | |
β-D-galactose | BOD-L-βGal | Km = 34.6 μM Vm = 13.52 μM s−1 LOD = 0.014 U mL−1 | Boron dipyrromethene | Ratiometric Turn-on NIR | Cells Tissues Senescent mice (in vivo) | [49] | |
β-D-galactose | KSL0608-Se | LOD = 8.96 × 10−2 U mL−1 | Dicyanomethylene-4H-pyran | Turn-on NIR | Cells Senescent mice (in vivo) | [50] | |
α-L-fucosidase | α-fucopyranoside | QM-NHαfuc | LOD = 1.0 × 10−2 U mL−1 | Quinoline-malononitrile | Turn-on | Cells Tumors (in vivo) | [65] |
sialidase | Sialic acid | Sia-RQ | Rhodamine-X | Turn-on | Cells | [66] | |
MAO-B | Propanamide | MitoCy-NH2 MitoHCy-NH2 | Km = 10.13 ± 0.28 μM Vmax = 3.55 nmol mg–1 min–1 | Heptamethine cyanine | Turn-on Ratiometric NIR | Cells Brains (in vivo) | [76] |
VCAM-1 | Antibody | NC-VCAM-1 (nanosensors) | NR668 Cy 5.5-TPB | Cells | [84] | ||
CD9 | Antibody | CD9-HMSN@RSV | Cy 5.5 | Cells Tissues | [85] | ||
B2MG | Antibody | aB2MG-TPP@CSNRs | Cy 5.5 | Cells Senescent mice (in vivo) | [91] | ||
B2MG | Antibody | D-CuxCoyS (NPs) | Penicillamine | Cells | [92] | ||
B2MG | Antibody | UAuTe(NPs) | Cy 5.5 | Cells Tissues Senescent mice (in vivo) | [93] | ||
B2MG | Antibody mimetic MIP | QD@cMIPs | Kd = 1.63 ± 0.34 × 10–8 M | FITC | Cells Tumor (in vivo) | [102] | |
B2M | Antibody mimetic MIP | B2M nanoMIPs | DyLight 800 NHS ester, Alexa Fluor 647 | Cells Senescent mice (in vivo) | [105] | ||
α-Klotho | Peptide (KB2) | KB2-TAMRA | Kd = 90 ± 31 nM | TAMRA | Turn-on | Cells | [120] |
CD47 | Peptide (4N1Ks) | SNs-Ks(NPs) | TopFluor®-SM | Turn-on | Cells | [121] | |
β-Gal and FA | β-D-galactose and hydrazonic acid | PGal-FA | Coumarin-hydrazonate | Turn-on | Cells Senescent mice (in vivo) | [126] | |
β-Gal and MAO-A | β-D-galactose and propylamine replaces m-chlorophenol | Pβgal-MAO-A | Compound 6 | Turn-on | Cells | [127] | |
β-Gal and HSA | β-D-galactose and merocyanine | NpG | Km = 4.34 μM Vmax = 23.37 nM s−1 LOD = 6.1 × 10–4 U mL−1 Kd = 27.34 ± 1.93 μM(HSA) | Merocyanine | Turn-on | Cells | [128] |
6. Summary and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Campisi, J.; d’Adda di Fagagna, F. Cellular Senescence: When Bad Things Happen to Good Cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Hayflick, L. The Limited In Vitro Lifetime of Human Diploid Cell Strains. Exp. Cell Res. 1965, 37, 614–636. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.S.; Lee, R.T.; Garbern, J.C. Senescence Mechanisms and Targets in the Heart. Cardiovasc. Res. 2022, 118, 1173–1187. [Google Scholar] [CrossRef] [PubMed]
- Marcozzi, S.; Beltrami, A.P.; Malavolta, M. Molecular Mechanisms to Target Cellular Senescence in Aging and Disease. Cell 2022, 11, 3732. [Google Scholar] [CrossRef]
- di Micco, R.; Krizhanovsky, V.; Baker, D.; d’Adda di Fagagna, F. Cellular Senescence in Ageing: From Mechanisms to Therapeutic Opportunities. Nat. Rev. Mol. Cell Biol. 2021, 22, 75–95. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y.; Kim, J.H.; Kim, H.; Park, T. Senescent Tumor Cells: An Overlooked Adversary in the Battle Against Cancer. Exp. Mol. Med. 2021, 53, 1834–1841. [Google Scholar] [CrossRef]
- Wiley, C.D.; Campisi, J. The Metabolic Roots of Senescence: Mechanisms and Opportunities for Intervention. Nat. Metab. 2021, 3, 1290–1301. [Google Scholar] [CrossRef]
- Collado, M.; Gil, J.; Efeyan, A.; Guerra, C.; Schuhmacher, A.J.; Barradas, M.; Benguria, A.; Zaballos, A.; Flores, J.M.; Barbacid, M.; et al. Tumour Biology: Senescence in Premalignant Tumours. Nature 2005, 436, 642. [Google Scholar] [CrossRef]
- Tian, M.; Ma, Y.; Lin, W. Fluorescent Probes for the Visualization of Cell Viability. Acc. Chem. Res. 2019, 52, 2147–2157. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Q.; Wang, Y.; Zhang, N.; Zhang, Q.; Hu, H. Rapid Differentiation between Bacterial Infections and Cancer Using a Near-Infrared Fluorogenic Probe. Chem. Sci. 2020, 11, 3141–3145. [Google Scholar] [CrossRef]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent Chemosensors: The Past, Present and Future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, G.; Zhao, R.; Zhang, D. Tetraphenylethene-Based cis/trans Isomers for Targeted Fluorescence Sensing and Biomedical Applications. Chem. Eur. J. 2023, 29, e202300539. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wei, R.; Chen, Z.; Ma, P.; Qiang, G.; Peng, H.; Hu, H. Lipid Droplet Formation and Dynamics: Tracking by Time-Resolved Fluorescence Imaging. Mater. Chem. Front. 2022, 6, 3691–3697. [Google Scholar] [CrossRef]
- Huang, Y.; Zhan, C.; Yang, Y.; Wang, L.; Zhong, H.; Yu, Y.; Zhang, X.; Li, C.; Jin, Y.; Zhang, G.; et al. Tuning Proapoptotic Activity of a Phosphoric-Acid-Tethered Tetraphenylethene by Visible-Light-Triggered Isomerization and Switchable Protein Interactions for Cancer Therapy. Angew. Chem. Int. Ed. 2022, 61, e2022083. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Qi, G.; Duo Mao, K.; Zhou, S.; Wu, M.; Wu, W.; Liu, B. Visualization and In Situ Ablation of Intracellular Bacterial Pathogen Through Metabolic Labeling. Angew. Chem. Int. Ed. 2020, 59, 9288–9292. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Yan, C.; Zhu, W.H.; Guo, Z. Enzyme-Activatable Fluorescent Probes for Bgalactosidase: From Design to Biological Applications. Chem. Sci. 2021, 12, 9885–9894. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, P.; Pu, K. Recent Advances of Molecular Optical Probes in Imaging of β-Galactosidase. Bioconjug. Chem. 2019, 30, 2089–2101. [Google Scholar] [CrossRef]
- Li, J.; Bi, Z.; Wang, L.; Xia, Y.; Xie, Y.; Liu, Y. Recent Advances in Strategies for Imaging Detection and Intervention of Cellular Senescence. Chembiochem 2023, 24, e202200364. [Google Scholar] [CrossRef]
- Nacarelli, T.; Azar, A.; Potnis, M.; Johannes, G.; Mell, J.; Johnson, F.B.; Brown-Borg, H.; Noguchi, E.; Sell, C. The Methyltransferase Enzymes, KMT2D, SETD1B, and ASH1L, are Key Mediators of both Metabolic and Epigenetic Changes during Cellular Senescence. Mol. Biol. Cell 2022, 33, 1–16. [Google Scholar] [CrossRef]
- Mohamad Kamal, N.S.; Safuan, S.; Shamsuddin, S.; Foroozandeh, P. Aging of the Cells: Insight into Cellular Senescence and Detection Methods. Eur. J. Cell Biol. 2020, 99, 151108. [Google Scholar] [CrossRef]
- Morsli, S.; Doherty, G.J.; Munoz-Espin, D. Activatable Senoprobes and Senolytics: Novel Strategies to Detect and Target Senescent Cells. Mech. Ageing Dev. 2022, 202, 111618. [Google Scholar] [CrossRef] [PubMed]
- Kurz, D.J.; Decary, S.; Hong, Y.; Erusalimsky, J.D. Senescence-Associated β-galactosidase Reflects an Increase in Lysosomal Mass during Replicative Ageing of Human Endothelial Cells. J. Cell Sci. 2000, 113, 3613–3622. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hu, Y.; Liu, Q.; Li, X.; Li, X.; Kim, C.Y.; James, T.D.; Li, J.; Chen, X.; Guo, Y. Two-Dimensional Design Strategy to Construct Smart Fluorescent Probes for the Precise Tracking of Senescence. Angew. Chem. Int. Ed. 2021, 60, 10756–10765. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wu, G.; Tian, X.; Liu, Z. Smart Fluorescent Probes for In Situ Imaging of Enzyme Activity: Design Strategies and Applications. Future Med. Chem. 2018, 10, 2729–2744. [Google Scholar] [CrossRef]
- Liu, H.W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.B.; Tan, W. Recent Progresses in Small-Molecule Enzymatic Fluorescent Probes for Cancer Imaging. Chem. Soc. Rev. 2018, 47, 7140–7180. [Google Scholar] [CrossRef]
- Kim, H.M.; Cho, B.R. Small-Molecule Two-Photon Probes for Bioimaging Applications. Chem. Rev. 2015, 115, 5014–5055. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Wu, L.; Han, H.H.; Bull, S.D.; He, X.P.; James, T.D.; Sessler, J.L.; Tang, B.Z.; Tian, H.; Yoon, J. Excited-State Intramolecular Proton-Transfer (ESIPT) Based Fluorescence Sensors and Imaging Agents. Chem. Soc. Rev. 2018, 47, 8842–8880. [Google Scholar] [CrossRef]
- Razgulin, A.; Ma, N.; Rao, J. Strategies for In Vivo Imaging of Enzyme Activity: An Overview and Recent Advances. Chem. Soc. Rev. 2011, 40, 4186–4216. [Google Scholar] [CrossRef]
- Li, M.; Yang, M.; Zhu, W.H. Advances in Fluorescent Sensors for β-galactosidase. Mater. Chem. Front. 2021, 5, 763–774. [Google Scholar] [CrossRef]
- Han, J.; Han, M.S.; Tung, C.H. A Fluorogenic Probe for β-galactosidase Activity Imaging in Living Cells. Mol. Biosyst. 2013, 9, 3001–3008. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, H.; Huang, Y.; Zhao, R. Recent Advances in AIEgens for Metal Ion Biosensing and Bioimaging. Molecules 2019, 24, 4593. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Sun, Y.; Yang, X.; Zhang, L.; Zhang, Q.; Hu, Z.Q.; Hu, H.Y. Ratiometric Fluorescent Probes for Selective and Sensitive Visualization of Bacterial Microenvironment Protease Activity. Chem. Commun. 2019, 55, 5064–5067. [Google Scholar] [CrossRef]
- Filho, M.S.; Dao, P.; Gesson, M.; Martin, A.R.; Benhida, R. Development of Highly Sensitive Fluorescent Probes for the Detection of β-galactosidase Activity—Application to the Real-Time Monitoring of Senescence in Live Cells. Analyst 2018, 143, 2680–2688. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, H.; Wang, Y.; Feng, L. A “Turn-On” Fluorescent Probe for Ultra-Sensitive Detection of β-galactosidase. Microchem. J. 2021, 166, 106205. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Wang, X.; Wang, T.; Liao, W.; Yuan, Y.; Chen, G.; Jia, X. A Novel AIE Fluorescent Probe for β-galactosidase Detection and Imaging in Living Cells. Anal. Chim. Acta 2022, 1198, 339554. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, Z.; Chen, A.; Zhang, P.A. Turn On Fluorescent Assay for Real Time Determination of β-galactosidase and Its Application in Living Cell Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 265, 120345. [Google Scholar] [CrossRef]
- Zhen, Z.; Zhu, S.; Jin, J.; Wang, L.; Lu, W. A Water-Soluble Probe with p-hydroxybenzyl Quaternary Ammonium Linker for Selective Imaging in Senescent Cells. Anal. Chim. Acta 2020, 1133, 99–108. [Google Scholar] [CrossRef]
- Lozano-Torres, B.; Galiana, I.; Rovira, M.; Garrido, E.; Chaib, S.; Bernardos, A.; Munoz-Espin, D.; Serrano, M.; Martinez-Manez, R.; Sancenon, F. An OFF-ON Two-Photon Fluorescent Probe for Tracking Cell Senescence In Vivo. J. Am. Chem. Soc. 2017, 139, 8808–8811. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Li, P.; Tang, B.; James, T.D. Two-Photon Small-Molecule Fluorescence—Based Agents for Sensing, Imaging, and Therapy within Biological Systems. Chem. Soc. Rev. 2021, 50, 702–734. [Google Scholar] [CrossRef]
- Lozano-Torres, B.; Blandez, J.F.; Galiana, I.; Lopez-Dominguez, J.A.; Rovira, M.; Paez-Ribes, M.; Gonzalez-Gualda, E.; Munoz-Espin, D.; Serrano, M.; Sancenon, F.; et al. A Two-Photon Probe Based on Naphthalimide-Styrene Fluorophore for the In Vivo Tracking of Cellular Senescence. Anal. Chem. 2021, 93, 3052–3060. [Google Scholar] [CrossRef]
- Ding, C.; Ren, T. Near Infrared Fluorescent Probes for Detecting and Imaging Active Small Molecules. Coord. Chem. Rev. 2023, 482, 215080. [Google Scholar] [CrossRef]
- Xu, S.; Pan, W.; Song, Z.L.; Yuan, L. Molecular Engineering of Near-Infrared Fluorescent Probes for Cell Membrane Imaging. Molecules 2023, 28, 1906. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Li, X.; Shi, D.; Li, X.; Gao, Y.; Li, J.; Mao, F.; Guo, Y.; Li, J. A Rapid-Response Near-Infrared Fluorescent Probe with a Large Stokes Shift for Senescence-Associated β-galactosidase Activity Detection and Imaging of Senescent Cells. Dyes Pigm. 2020, 182, 108657. [Google Scholar] [CrossRef]
- Yang, L.; Liu, G.; Chen, Q.; Wan, Y.; Liu, Z.; Zhang, J.; Huang, C.; Xu, Z.; Li, S.; Lee, C.S.; et al. An Activatable NIR Probe for the Detection and Elimination of Senescent Cells. Anal. Chem. 2022, 94, 5425–5431. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Torres, B.; Garcia-Fernandez, A.; Dominguez, M.; Sancenon, F.; Blandez, J.F.; Martinez-Manez, R. β-Galactosidase-Activatable Nile Blue-Based NIR Senoprobe for the Real-Time Detection of Cellular Senescence. Anal. Chem. 2023, 95, 1643–1651. [Google Scholar] [CrossRef]
- Liu, J.; Ma, X.; Cui, C.; Chen, Z.; Wang, Y.; Deenik, P.R.; Cui, L. Noninvasive NIR Imaging of Senescence via In Situ Labeling. J. Med. Chem. 2021, 64, 17969–17978. [Google Scholar] [CrossRef]
- Liu, Y.; Teng, L.; Xu, C.; Ren, T.B.; Xu, S.; Lou, X.; Yuan, L.; Zhang, X.B. An Integration Strategy to DevelopDual-State Luminophores with Tunable Spectra, Large Stokes Shift, and Activatable Fluorescence for High-Contrast Imaging. CCS Chem. 2022, 4, 2153–2164. [Google Scholar] [CrossRef]
- Wu, F.; Liu, J.; Tao, M.; Wang, M.; Ren, X.; Hai, Z. β-Galactosidase-Activatable Fluorescent and Photoacoustic Imaging of Tumor Senescence. Anal. Chem. 2023, 95, 10481–10485. [Google Scholar] [CrossRef]
- Chen, J.A.; Guo, W.; Wang, Z.; Sun, N.; Pan, H.; Tan, J.; Ouyang, Z.; Fu, W.; Wang, Y.; Hu, W.; et al. In Vivo Imaging of Senescent Vascular Cells in Atherosclerotic Mice Using A β-Galactosidase-Activatable Nanoprobe. Anal. Chem. 2020, 92, 12613–12621. [Google Scholar] [CrossRef]
- Shi, D.; Liu, W.; Gao, Y.; Li, X.; Huang, Y.; Li, X.; James, T.D.; Guo, Y.; Li, J. Photoactivatable Senolysis with Single-Cell Resolution Delays Aging. Nat. Aging 2023, 3, 297–312. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Lu, C. Nanoparticle-Based Single Molecule Fluorescent Probes. Luminescence 2022, 37, 1808–1821. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Pu, K. Recent Advances of Activatable Molecular Probes Based on Semiconducting Polymer Nanoparticles in Sensing and Imaging. Adv. Sci. 2017, 4, 160081. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Z.; Zhang, J.; Wang, G.; Su, X. A Dual-Signal Fluorometric-Colorimetric Sensing Platform and Visual Detection with A Smartphone for the Determination of β-galactosidase Activity Based on Fluorescence Silicon Nanoparticles. Talanta 2022, 240, 123165. [Google Scholar] [CrossRef]
- Ilhan-Ayisigi, E.; Yesil-Celiktas, O. Silica-based Organic-Inorganic Hybrid Nanoparticles and Nanoconjugates for Improved Anticancer Drug Delivery. Eng. Life Sci. 2018, 18, 882–892. [Google Scholar] [CrossRef]
- Ma, X.; Feng, H.; Liang, C.; Liu, X.; Zeng, F.; Wang, Y. Mesoporous Silica as Micro/Nano-Carrier: From Passive to Active Cargo Delivery, A Mini Review. J. Mater. Sci. Technol. 2017, 33, 1067–1074. [Google Scholar] [CrossRef]
- Yu, L.; Chen, Y.; Lin, H.; Du, W.; Chen, H.; Shi, J. Ultrasmall Mesoporous Organosilica Nanoparticles: Morphology Modulations and Redox-Responsive Biodegradability for Tumor-Specific Drug Delivery. Biomaterials 2018, 161, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Torres, B.; Blandez, J.F.; Galiana, I.; Garcia-Fernandez, A.; Alfonso, M.; Marcos, M.D.; Orzaez, M.; Sancenon, F.; Martinez-Manez, R. Real-Time In Vivo Detection of Cellular Senescence through the Controlled Release of the NIR Fluorescent Dye Nile Blue. Angew. Chem. Int. Ed. 2020, 59, 15152–15156. [Google Scholar] [CrossRef]
- Hildebrand, D.; Lehle, S.; Borst, A.; Haferkamp, S.; Essmann, F.; Schulze-Osthoff, K. α-Fucosidase as a Novel Convenient Biomarker for Cellular Senescence. Cell Cycle 2013, 12, 1922–1927. [Google Scholar] [CrossRef]
- Knas, M.; Zalewska, A.; Kretowski, R.; Niczyporuk, M.; Waszkiewicz, N.; Cechowska-Pasko, M.; Waszkiel, D.; Zwierz, K. The Profile of Lysosomal Exoglycosidases in Replicative and Stress-Induced Senescence in Early Passage Human Fibroblasts. Folia Histochem. Cytobiol. 2012, 50, 220–227. [Google Scholar] [CrossRef]
- Stoka, V.; Turk, V.; Turk, B. Lysosomal Cathepsins and their Regulation in Aging and Neurodegeneration. Ageing Res. Rev. 2016, 32, 22–37. [Google Scholar] [CrossRef]
- Gall, J.Y.; Khoi, T.D.; Glaise, D.; Treut, A.; Brissot, P.; Guillouzo, A. Lysosomal Enzyme Activities during Ageing of Adult Human Liver Cell Lines. Mech. Ageing Dev. 1979, 11, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Panel, M.; Ghaleh, B.; Morin, D. Mitochondria and Aging: A Role for the Mitochondrial Transition Pore? Aging Cell 2018, 17, e12793. [Google Scholar] [CrossRef] [PubMed]
- Miwa, S.; Kashyap, S.; Chini, E.; von Zglinicki, T. Mitochondrial Dysfunction in Cell Senescence and Aging. J. Clin. Investig. 2022, 132, e158447. [Google Scholar] [CrossRef]
- Takeshita, H.; Yasuda, T.; Nadano, D.; Iida, R.; Nakanaga, M.; Tenjo, E.; Sawazaki, K.; Kishi, K. Genetically Polymorphic α-L-Fucosidase (FUCA1) Isozymes Detected in Blood Plasma. Hum. Genet. 1994, 94, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Won, M.; Li, H.; Kim, W.Y.; Li, M.; Yan, C.; Sharma, A.; Guo, Z.; Zhu, W.H.; Sessler, J.L.; et al. Harnessing α-L-Fucosidase for In Vivo Cellular Senescence Imaging. Chem. Sci. 2021, 12, 10054–10062. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, S.; Xue, Z.; Han, J.; Han, S. Senescence-Associated Sialidase Revealed by an Activatable Fluorescence-On Labeling Probe. Chem. Commun. 2018, 54, 11566–11569. [Google Scholar] [CrossRef]
- Macauley, M.S.; Crocker, P.R.; Paulson, J.C. Siglec-Mediated Regulation of Immune Cell Function in Disease. Nat. Rev. Immunol. 2014, 14, 653–666. [Google Scholar] [CrossRef]
- Pillai, S.; Netravali, I.A.; Cariappa, A.; Mattoo, H. Siglecs and Immune Regulation. Annu. Rev. Immunol. 2012, 30, 357–392. [Google Scholar] [CrossRef]
- Spinelli, J.B.; Haigis, M.C. The Multifaceted Contributions of Mitochondria to Cellular Metabolism. Nat. Cell Biol. 2018, 20, 745–754. [Google Scholar] [CrossRef]
- Huang, Y.; You, X.; Wang, L.; Zhang, G.; Gui, S.; Jin, Y.; Zhao, R.; Zhang, D. Pyridinium-Substituted Tetraphenylethylenes Functionalized with Alkyl Chains as Autophagy Modulators for Cancer Therapy. Angew. Chem. Int. Ed. 2020, 59, 10042–10051. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Zhang, X.; Zhang, S.; Zhu, T.; Garg, M.; Lobie, P.E.; Pandey, V. Mitochondria: The Metabolic Switch of Cellular Oncogenic Transformation. Biochim. Biophys. Acta-Rev. Cancer 2021, 1876, 188534. [Google Scholar] [CrossRef] [PubMed]
- de Colibus, L.D.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D.E.; Mattevi, A. Three-Dimensional Structure of Human Monoamine Oxidase A (MAO A): Relation to the Structures of Rat MAO A and Human MAO B. Proc. Natl. Acad. Sci. USA 2005, 102, 12684–12689. [Google Scholar] [CrossRef] [PubMed]
- Youdim, M.B.H.; Edmondson, D.; Tipton, K.F. The Therapeutic Potential of Monoamine Oxidase Inhibitors. Nat. Rev. Neurosci. 2006, 7, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative Diseases and Oxidative Stress. Nat. Rev. Drug Discov. 2004, 3, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Apoptosis in Neurodegenerative Disorders. Nat. Rev. Mol. Cell Biol. 2000, 1, 120–130. [Google Scholar] [CrossRef]
- Wang, R.; Han, X.; You, J.; Yu, F.; Chen, L. Ratiometric Near-Infrared Fluorescent Probe for Synergistic Detection of Monoamine Oxidase B and Its Contribution to Oxidative Stress in Cell and Mice Aging Models. Anal. Chem. 2018, 90, 4054–4061. [Google Scholar] [CrossRef]
- Walko, C.M.; West, H.J. Antibody Drug Conjugates for Cancer Treatment. JAMA Oncol. 2019, 5, 1648. [Google Scholar] [CrossRef]
- Bracaglia, S.; Ranallo, S.; Ricci, F. Electrochemical Cell-Free Biosensors for Antibody Detection. Angew. Chem. Int. Ed. 2022, 62, e202213512. [Google Scholar]
- Skottrup, P.; Nicolaisen, M.; Justesen, A.F. Towards On-Site Pathogen Detection Using Antibody—Based Sensors. Biosens. Bioelectron. 2008, 24, 339–348. [Google Scholar] [CrossRef]
- Lou, D.; Fan, L.; Cui, Y.; Zhu, Y.; Gu, N.; Zhang, Y. Fluorescent Nanoprobes with Oriented Modified Antibodies to Improve Lateral Flow Immunoassay of Cardiac Troponin I. Anal. Chem. 2018, 90, 6502–6508. [Google Scholar] [CrossRef]
- Mashayekhi, V.; Oliveira, S. Conjugation of IRDye Photosensitizers or Fluorophores to Nanobodies. Methods Mol. Biol. 2022, 2451, 495–503. [Google Scholar]
- Zhu, Y.; Huang, Y.; Yan, T.H.; Li, J.; Li, Y.; Drake, H.F.; Zhong, H.; Jin, Y.; Zhao, R.; Zhou, H.C. Metal-organic Framework-Based Nanoheater with Photo-Triggered Cascade Effects for On-Demand Suppression of Cellular Thermoresistance and Synergistic Cancer Therapy. Adv. Healthcare Mater. 2022, 11, 2200004. [Google Scholar] [CrossRef]
- Herrera, M.D.; Mingorance, C.; Rodríguez-Rodríguez, R.; de Sotomayor, M.A. Endothelial Dysfunction and Aging: An Update. Ageing Res. Rev. 2010, 9, 142–152. [Google Scholar] [CrossRef]
- Belcastro, E.; Rehman, A.U.; Remila, L.; Park, S.H.; Gong, D.S.; Anton, N.; Auger, C.; Lefebvre, O.; Goetz, J.G.; Collot, M.; et al. Fluorescent Nanocarriers Targeting VCAM-1 for Early Detection of Senescent Endothelial Cells. Nanomedicine 2021, 34, 102379. [Google Scholar] [CrossRef] [PubMed]
- Pham, L.M.; Kim, E.C.; Ou, W.; Phung, C.D.; Nguyen, T.T.; Pham, T.T.; Poudel, K.; Gautam, M.; Nguyen, H.T.; Jeong, J.H.; et al. Targeting and Clearance of Senescent Foamy Macrophages and Senescent Endothelial Cells by Antibody-Functionalized Mesoporous Silica Nanoparticles for Alleviating Aorta Atherosclerosis. Biomaterials 2021, 269, 120677. [Google Scholar] [CrossRef] [PubMed]
- Umeda, R.; Satouh, Y.; Takemoto, M.; Nakada-Nakura, Y.; Liu, K.; Yokoyama, T.; Shirouzu, M.; Iwata, S.; Nomura, N.; Sato, K.; et al. Structural Insights into Tetraspanin CD9 Function. Nat. Commun. 2020, 11, 1606. [Google Scholar] [CrossRef]
- Suwatthanarak, T.; Tanaka, M.; Miyamoto, Y.; Miyado, K.; Okochi, M. Inhibition of Cancer-Cell Migration by Tetraspanin CD9-binding Peptide. Chem. Commun. 2021, 57, 4906–4909. [Google Scholar] [CrossRef] [PubMed]
- Suwatthanarak, T.; Ito, K.; Tanaka, M.; Sugiura, K.; Hoshino, A.; Miyamoto, Y.; Miyado, K.; Okochi, M. A Peptide Binding to the Tetraspanin CD9 Reduces Cancer Metastasi. Biomater. Adv. 2023, 146, 213283. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, E.C.; Son, Y.; Lee, D.W.; Park, Y.S.; Choi, J.H.; Cho, K.H.; Kwon, K.S.; Kim, J.R. CD9 Induces Cellular Senescence and Aggravates Atherosclerotic Plaque Formation. Cell Death Differ. 2020, 27, 2681–2696. [Google Scholar] [CrossRef]
- Althubiti, M.; Lezina, L.; Carrera, S.; Jukesjones, R.; Giblett, S.M.; Antonov, A.; Barlev, N.; Saldanha, G.S.; Pritchard, C.A.; Cain, K.; et al. Characterization of Novel Markers of Senescence and Their Prognostic Potential in Cancer. Cell Death Dis. 2014, 5, e1528. [Google Scholar] [CrossRef]
- Lu, M.; Qu, A.; Li, S.; Sun, M.; Xu, L.; Kuang, H.; Xu, C. Mitochondria-Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells In Vivo. Angew. Chem. Int. Ed. 2020, 59, 8698–8705. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, M.; Hao, C.; Qu, A.; Wu, X.; Xu, L.; Xu, C.; Kuang, H. Chiral CuxCoyS Nanoparticles under Magnetic Field and NIR Light to Eliminate Senescent Cells. Angew. Chem. Int. Ed. 2020, 59, 13915–13922. [Google Scholar] [CrossRef] [PubMed]
- Qu, A.; Wu, X.; Li, S.; Sun, M.; Xu, L.; Kuang, H.; Xu, C. An NIR-Responsive DNA-Mediated Nanotetrahedron Enhances the Clearance of Senescent Cells. Adv. Mater. 2020, 32, 2000184. [Google Scholar] [CrossRef] [PubMed]
- Poma, A.; Guerreiro, A.; Whitcombe, M.J.; Piletska, E.V.; Turner, A.P.F.; Piletsky, S.A. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template—“Plastic Antibodies”. Adv. Funct. Mater. 2013, 23, 2821–2827. [Google Scholar] [CrossRef]
- Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-Phase Synthesis of Molecularly Imprinted Nanoparticles. Nat. Protoc. 2016, 11, 443–455. [Google Scholar] [CrossRef]
- Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly Imprinted Polymers as Receptor Mimics for Selective Cell Recognition. Chem. Soc. Rev. 2018, 47, 5574–5587. [Google Scholar] [CrossRef]
- Pan, G.; Shinde, S.; Yeung, S.Y.; Jakstaite, M.; Li, Q.; Wingren, A.G.; Sellergren, B. An Epitope-Imprinted Biointerface with Dynamic Bioactivity for Modulating Cell-Biomaterial Interactions. Angew. Chem. Int. Ed. 2017, 56, 15959–15963. [Google Scholar] [CrossRef]
- Vaneckova, T.; Bezdekova, J.; Han, G.; Adam, V.; Vaculovicova, M. Application of Molecularly Imprinted Polymers as Artificial Receptors for Imaging. Acta Biomater. 2020, 101, 444–458. [Google Scholar] [CrossRef]
- Bui, B.T.S.; Mier, A.; Haupt, K. Molecularly Imprinted Polymers as Synthetic Antibodies for Protein Recognition: The Next Generation. Small 2023, 19, 2203453. [Google Scholar]
- Ma, Y.; Li, W.; Xing, R.; Li, P.; Liu, Z. Epitope-Imprinted Magnetic Nanoparticles as a General Platform for Efficient In Vitro Evolution of Protein-Binding Aptamers. ACS Sens. 2020, 5, 2537–2544. [Google Scholar] [CrossRef]
- Xing, R.; Ma, Y.; Wang, Y.; Wen, Y.; Liu, Z. Specific Recognition of Proteins and Peptides Via Controllable Oriented Surface Imprinting of Boronate Affinity-Anchored Epitopes Xing. Chem. Sci. 2019, 10, 1831–1835. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xing, R.; Zhao, M.; Li, Y.; Lu, H.; Liu, Z. Controllable Engineering and Functionalizing of Nanoparticles for Targeting Specific Proteins towards Biomedical Applications. Adv. Sci. 2021, 8, 2101713. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.; Guo, Z.; Lu, H.; Zhang, Q.; Liu, Z. Molecular Imprinting and Cladding Produces Antibody Mimics with Significantly Improved Affinity and Specificity. Sci. Bull. 2022, 67, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Muhammad, T.; Yakup, B.; Piletsky, S.A. New Immobilisation Protocol for the Template Used in Solid-Phase Synthesis of MIP Nanoparticles. Appl. Surf. Sci. 2017, 406, 115–121. [Google Scholar] [CrossRef]
- Ekpenyong-Akiba, A.E.; Canfarotta, F.; Abd, H.B.; Poblocka, M.; Casulleras, M.; Castilla-Vallmanya, L.; Kocsis-Fodor, G.; Kelly, M.E.; Janus, J.; Althubiti, M.; et al. Detecting and Targeting Senescent Cells Using Molecularly Imprinted Nanoparticles. Nanoscale Horiz. 2019, 4, 757–768. [Google Scholar] [CrossRef]
- Fine, J.; Wijewardhane, P.R.; Mohideen, S.D.B.; Smith, K.; Bothe, J.R.; Krishnamachari, Y.; Andrews, A.; Liu, Y.; Chopra, G. Learning Relationships between Chemical and Physical Stability for Peptide Drug Development. Pharm. Res. 2023, 40, 701–710. [Google Scholar] [CrossRef]
- Bywater, R.P. Why Twenty Amino Acid Residue Types Suffice(d) to Support All Living Systems. PLoS ONE 2018, 13, e0204883. [Google Scholar] [CrossRef]
- Tan, P.; Sun, Z.; Tang, Q.; Xu, S.; Wang, T.; Ding, Y.; Fu, H.; Zhou, C.; Zhang, Y.; Yue, Z.; et al. Manipulation of Hydrophobic Motifs and Optimization of Sequence Patterns to Design High Stability Peptides Against Piglet Bacterial Infections. Nano Today 2023, 49, 101793. [Google Scholar] [CrossRef]
- Meng, B.; Grage, S.L.; Babii, O.; Takamiya, M.; MacKinnon, N.; Schober, T.; Hutskalov, I.; Nassar, O.; Afonin, S.; Koniev, S.; et al. Highly Fluorinated Peptide Probes with Enhanced In Vivo Stability for 19F-MRI. Small 2022, 18, e2107308. [Google Scholar] [CrossRef]
- Zhong, H.; Yuan, C.; He, J.; Yu, Y.; Jin, Y.; Huang, Y.; Zhao, R. Engineering Peptide-Functionalized Biomimetic Nanointerfaces for Synergetic Capture of Circulating Tumor Cells in an EpCAM-Independent Manner. Anal. Chem. 2021, 93, 9778–9787. [Google Scholar] [CrossRef]
- Dmitrovic, V.; Lenders, J.J.M.; Zope, H.R.; de With, G.; Kros, A.; Sommerdijk, N.A.J.M. Library of Random Copolypeptides by Solid Phase Synthesis. Biomacromolecules 2014, 15, 3687–3695. [Google Scholar] [CrossRef] [PubMed]
- Jung, G.; Breitmaier, E.; Voelter, W.; Bayer, E. Neuere Methoden zur Synthese An Fester Phase und zur Analytik von Polypeptiden. Angew. Chem. 1971, 83, 911–912. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, Q.; Guo, J.; Zhao, X.; Zhong, Z. Robust and Smart Polypeptide-Based Nanomedicines for Targeted Tumor Therapy. Adv. Drug Deliv. Rev. 2020, 160, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Noh, I.; Yoo, J.; Rejinold, N.S.; Kim, Y.C. pH-Controllable Cell-Penetrating Polypeptide that Exhibits Cancer Targeting. Acta Biomater. 2017, 57, 187–196. [Google Scholar] [CrossRef]
- Han, S.; Li, Z.Y.; Zhu, J.Y.; Han, K.; Zeng, Z.Y.; Hong, W.; Li, W.X.; Jia, H.Z.; Liu, Y.; Zhuo, R.X.; et al. Dual-pH Sensitive Charge-Reversal Polypeptide Micelles for Tumor-Triggered Targeting Uptake and Nuclear Drug Delivery. Small 2015, 11, 2543–2554. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Y.; Jin, Y.; Gui, S.; Zhao, R. Peptide-Guided System with Programmable Subcellular Translocation for Targeted Therapy and Bypassing Multidrug Resistance. Anal. Chem. 2019, 91, 1880–1886. [Google Scholar] [CrossRef]
- Gui, S.; Huang, Y.; Zhu, Y.; Jin, Y.; Zhao, R. Biomimetic Sensing System for Tracing Pb2+ Distribution in Living Cells Based on the Metal-Peptide Supramolecular Assembly. ACS Appl. Mater. Interfaces 2019, 11, 5804–5811. [Google Scholar] [CrossRef]
- Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent Advances in the Development of Protein-Protein Interactions Modulators: Mechanisms and Clinical Trials. Signal Transduc. Target. Ther. 2020, 5, 213. [Google Scholar] [CrossRef]
- Coyne, A.G.; Scott, D.E.; Abell, C. Drugging Challenging Targets Using Fragment-Based Approaches. Curr. Opin. Chem. Biol. 2010, 14, 299–307. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, P.; Wang, J.C.K.; Smith, C.L.; Sousa, S.; Loas, A.; Eaton, D.L.; Lo pez, M.P.; Pentelute, B.L. Branched Multimeric Peptides as Affinity Reagents for the Detection of α-Klotho Protein. Angew. Chem. Int. Ed. 2023, 62, e202300289. [Google Scholar] [CrossRef]
- Jatal, R.; Mendes Saraiva, S.; Vazquez-Vazquez, C.; Lelievre, E.; Coqueret, O.; Lopez-Lopez, R.; de la Fuente, M. Sphingomyelin Nanosystems Decorated with TSP-1 Derived Peptide Targeting Senescent Cells. Int. J. Pharm. 2022, 617, 121618. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Torres, B.; Blandez, J.F.; Garcia-Fernandez, A.; Sancenon, F.; Martinez-Manez, R. Lipofuscin Labeling through Biorthogonal Strain-Promoted Azide-Alkyne Cycloaddition for the Detection of Senescent Cells. FEBS J. 2023, 290, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulou, E.A.; Tsimaratou, K.; Evangelou, K.; Fernandez, M.P.J.; Zoumpourlis, V.; Trougakos, I.P.; Kletsas, D.; Bartek, J.; Serrano, M.; Gorgoulis, V.G. Specific Lipofuscin Staining as a Novel Biomarker to Detect Replicative and Stress-Induced Senescence. A Method Applicable in Cryo-preserved and Archival Tissues. Aging 2012, 5, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Szeto, H.H. First-in-Class Cardiolipin-Protective Compound as a Therapeutic Agent to Restore Mitochondrial Bioenergetics. Br. J. Pharmacol. 2014, 171, 2029–2050. [Google Scholar] [CrossRef] [PubMed]
- Szeto, H.H.; Liu, S. Cardiolipin-Targeted Peptides Rejuvenate Mitochondrial Function, Remodel Mitochondria, and Promote Tissue Regeneration during Aging. Arch. Biochem. Biophys. 2018, 660, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, X.; Dong, Y.; Pan, Y.; Li, J.; Zang, Y.; Li, X. A Tandemly Activated Fluorescence Probe for Detecting Senescent Cells with Improved Selectivity by Targeting a Biomarker Combination. ACS Sens. 2022, 7, 1958–1966. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Luo, X.; Xia, Y.; Xie, Y.; Liu, Y.; Tan, W. Dual-Parameter Recognition-Directed Design of the Activatable Fluorescence Probe for Precise Imaging of Cellular Senescence. Anal. Chem. 2023, 95, 3996–4004. [Google Scholar] [CrossRef]
- Chai, X.; Han, H.H.; Sedgwick, A.C.; Li, N.; Zang, Y.; James, T.D.; Zhang, J.; Hu, X.L.; Yu, Y.; Li, Y.; et al. Photochromic Fluorescent Probe Strategy for the Super-Resolution Imaging of Biologically Important Biomarkers. J. Am. Chem. Soc. 2020, 142, 18005–18013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Xu, K.; Li, Y.; Gao, H.; Miao, T.; Zhao, R.; Huang, Y. Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence. Biosensors 2023, 13, 838. https://doi.org/10.3390/bios13090838
He Z, Xu K, Li Y, Gao H, Miao T, Zhao R, Huang Y. Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence. Biosensors. 2023; 13(9):838. https://doi.org/10.3390/bios13090838
Chicago/Turabian StyleHe, Zhirong, Kun Xu, Yongming Li, Han Gao, Tingting Miao, Rui Zhao, and Yanyan Huang. 2023. "Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence" Biosensors 13, no. 9: 838. https://doi.org/10.3390/bios13090838
APA StyleHe, Z., Xu, K., Li, Y., Gao, H., Miao, T., Zhao, R., & Huang, Y. (2023). Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence. Biosensors, 13(9), 838. https://doi.org/10.3390/bios13090838