SAM-Support-Based Electrochemical Sensor for Aβ Biomarker Detection of Alzheimer’s Disease
Abstract
:1. Introduction
2. Overview of Electrochemical Sensors
2.1. Electrochemical Sensor Architecture
2.2. Operational Principle
3. Recent Research on Aβ Detection by Electrochemical Sensors
3.1. Electrochemical Sensors for Aβ Detection
3.2. Working Electrode Modification
3.2.1. Metal, Alloy, and Metal Oxide
3.2.2. Carbon-Based Materials
3.2.3. Composite Materials
3.2.4. Conductive Polymer
3.2.5. SAM-Support-Based Working Electrodes for Aβ Electrochemical Sensors
4. Conclusions and Future Perspectives
- Screening the organic substance for SAM formation to precisely tailor the surface properties down to the nanoscale. Relying on a specific purpose, SAM can be prepared on various substrates, e.g., silicon, Au, and metal oxide; therefore, the type of organic precursors should be chosen appropriately, then other factors, namely chain length and functional group, also should be considered for optimization.
- Reducing time processing by avoiding the activated step without utilizing the NHS/EDC. In aforementioned works, the functional groups must have been activated by NHS/EDC to graft suitably functional groups serving for antibody immobilization. Such work consumes time and makes progression complicated. Thus, utilization of the precursor with desired functional groups can shorten the processing time.
- Controlling the thickness of the layer by employing cutting-edge technologies. The design and fabrication of SAM on the working electrode surface can be performed by various methods, for instance, micro contact printing, scanning probe lithography, and photo-induced pattering. Each method generates its own SAM thickness, which significantly affects the electron transfer ability. Hence, for a specific organic precursor, the construction of SAM by employing the cantilever can contract SAM thickness compared to other method counterparts. However, the EFM machine is too pricey and must be operated by skilled operators.
- The reasonable design of defect-free SAMs and study at the molecular scale to enhance sensor performance. SAM construction on the specific surface usually produces structural defects, causing a reduction in the electrochemical sensor performance. Thus, the study of SAM formation at the nanoscale can make the structural defects controllable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, M.; Wang, X.-Y.; Wang, X.-B. Advances in Detection Methods of β-Amyloid Protein. Chin. J. Anal. Chem. 2018, 46, 1339–1349. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-Y.; Gu, B.-C.; Wang, G.-J.; Yang, Y.-H.; Wu, C.-C. Detection of Amyloid-β(1-42) Aggregation with a Nanostructured Electrochemical Sandwich Immunoassay Biosensor. Front. Bioeng. Biotechnol. 2022, 10, 853947. [Google Scholar] [CrossRef] [PubMed]
- Ngoc Le, H.T.; Park, J.; Chinnadayyala, S.R.; Cho, S. Sensitive electrochemical detection of amyloid beta peptide in human serum using an interdigitated chain-shaped electrode. Biosens. Bioelectron. 2019, 144, 111694. [Google Scholar] [CrossRef]
- Jamerlan, A.; An, S.S.A.; Hulme, J. Advances in amyloid beta oligomer detection applications in Alzheimer’s disease. TrAC Trends Anal. Chem. 2020, 129, 115919. [Google Scholar] [CrossRef]
- Chen, J.; Lin, K.-C.; Prasad, S.; Schmidtke, D.W. Label free impedance based acetylcholinesterase enzymatic biosensors for the detection of acetylcholine. Biosens. Bioelectron. 2023, 235, 115340. [Google Scholar] [CrossRef]
- Deshwal, A.; Gill, A.K.; Nain, S.; Patra, D.; Maiti, S. Inhibitory effect of nucleotides on acetylcholine esterase activity and its microflow-based actuation in blood plasma. Chem. Commun. 2022, 58, 3501–3504. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Wang, X. An overview of recent analysis and detection of acetylcholine. Anal. Biochem. 2021, 632, 114381. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, L.; Zhang, H.; Wang, P.; Li, H. A new optical fiber biosensor for acetylcholine detection based on pH sensitive fluorescent carbon quantum dots. Sens. Actuators B Chem. 2022, 369, 132268. [Google Scholar] [CrossRef]
- Chen, G.-F.; Xu, T.-H.; Yan, Y.; Zhou, Y.-R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef] [Green Version]
- Thal, D.R.; Beach, T.G.; Zanette, M.; Heurling, K.; Chakrabarty, A.; Ismail, A.; Smith, A.P.L.; Buckley, C. [18F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer’s disease: Specific detection of advanced phases of amyloid-β pathology. Alzheimer’s Dement. 2015, 11, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Sundgren-Andersson, A.K.; Svensson, S.P.S.; Swahn, B.-M.; Juréus, A.; Sandell, J.; Johnson, A.E.; Jeppsson, F.; Neelissen, J.A.M.; Halldin, C.; Johnström, P.; et al. AZD4694: Fluorinated Positron Emission Tomography (PET) radioligand for detection of β-amyloid deposits. Alzheimer’s Dement. 2009, 5, 57. [Google Scholar] [CrossRef]
- Geraldes, C.F.G.C.; Lacerda, S.; Tóth, É. Molecular Probes for Magnetic Resonance Imaging of Amyloid β Peptides. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Yanagisawa, D.; Amatsubo, T.; Morikawa, S.; Taguchi, H.; Urushitani, M.; Shirai, N.; Hirao, K.; Shiino, A.; Inubushi, T.; Tooyama, I. In vivo detection of amyloid β deposition using 19F magnetic resonance imaging with a 19F-containing curcumin derivative in a mouse model of Alzheimer’s disease. Neuroscience 2011, 184, 120–127. [Google Scholar] [CrossRef]
- Allsop, D.; Swanson, L.; Moore, S.; Davies, Y.; El Agnaf, O.; Soutar, I. Sensitive detection of β-amyloid aggregation by means of time-resolved fluorescence polarisation anisotropy. Neurobiol. Aging 2000, 21, 20–21. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Kang, J.; Ye, T.; Yang, Z.; Liu, Z.; Liu, Q.; Zhao, Y.; Liu, G.; Pan, J. Application of a novel coumarin-derivative near-infrared fluorescence probe to amyloid-β imaging and inhibition in Alzheimer’s disease. J. Lumin. 2023, 256, 119661. [Google Scholar] [CrossRef]
- Wang, Z.; Jiao, Y.; Ding, Q.; Song, Y.; Ma, Q.; Ren, H.; Lu, K.; Jia, S.; Cui, J. A bioinspired fluorescent probe based on metal–organic frameworks to selectively enrich and detect amyloid-β peptide. Chem. Eng. J. 2023, 470, 144124. [Google Scholar] [CrossRef]
- Yue, N.; Fu, H.; Chen, Y.; Gao, X.; Dai, J.; Cui, M. Rational design of molecular rotor-based fluorescent probes with bi-aromatic rings for efficient in vivo detection of amyloid-β plaques in Alzheimer’s disease. Eur. J. Med. Chem. 2022, 243, 114715. [Google Scholar] [CrossRef]
- Zhuo, C.; Li, Z.; Cui, J.; Song, Z.; Tang, Q.; Yin, Y.; Zhang, G.; Liao, X.; Liu, Z.; Gao, F. DNAzyme-driven bipedal DNA walker triggered to hybridize silver nanoparticle probes for electrochemical detection of amyloid-β oligomer. Anal. Chim. Acta 2023, 1246, 340889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhu, T.; Liu, L.; Yuan, L. In vitro electrochemical detection of the degradation of amyloid-β oligomers. J. Colloid Interface Sci. 2023, 629, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhang, C.; Shi, Z.; Shi, H.; Qian, Y.; Gao, F. Signal-on and label-free electrochemical detection of amyloid β oligomers based on dual amplification induced hemin/G-quadruplex formation. J. Electroanal. Chem. 2020, 878, 114604. [Google Scholar] [CrossRef]
- Yan, J.; Wen, X.; Yin, L.; Wang, Y.; Li, H.; Tu, Y. An electrochemiluminescence aptasensor for amyloid-β protein with signal enhancement from AuNPs/Fe-MOFs nanocomposite. J. Electroanal. Chem. 2023, 933, 117293. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, S.; Jia, Y.; Zhao, G.; Duan, X.; Wang, Y.; Zhang, D.; Wei, Q. Ultrasensitive electrochemiluminescence immunosensor based on Co-doped MoOx as co-reactant generator for the detection of amyloid β-protein. Microchem. J. 2022, 183, 108036. [Google Scholar] [CrossRef]
- Meng, S.; Qin, D.; Wu, Y.; Mo, G.; Jiang, X.; Deng, B. Electrochemiluminescence resonance energy transfer of MnCO3 for ultrasensitive amyloid-β protein detection. Talanta 2023, 253, 123993. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Yang, J.; Zhao, J.; Zhang, J.; Yuan, R.; Chen, S. A novel aptamer biosensor based on polydopamine quenched electrochemiluminescence of polyfluorene nanoparticles for amyloid-β oligomers detection. Sens. Actuators B Chem. 2022, 368, 132204. [Google Scholar] [CrossRef]
- Jandas, P.J.; Prabakaran, K.; Luo, J.; Derry, H.M.G. Effective utilization of quartz crystal microbalance as a tool for biosensing applications. Sens. Actuators A Phys. 2021, 331, 113020. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Zhang, D.; Li, P.; Wang, D.; Sun, S.; Wei, W. Detection of β-amyloid peptide aggregates by quartz crystal microbalance based on dual-aptamer assisted signal amplification. Anal. Chim. Acta 2023, 1244, 340857. [Google Scholar] [CrossRef]
- Hwang, S.S.; Chan, H.; Sorci, M.; Van Deventer, J.; Wittrup, D.; Belfort, G.; Walt, D. Detection of amyloid β oligomers toward early diagnosis of Alzheimer’s disease. Anal. Biochem. 2019, 566, 40–45. [Google Scholar] [CrossRef]
- Dickerson, B.C.; Bakkour, A.; Salat, D.H.; Feczko, E.; Pacheco, J.; Greve, D.N.; Grodstein, F.; Wright, C.I.; Blacker, D.; Rosas, H.D.; et al. The Cortical Signature of Alzheimer’s Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals. Cereb. Cortex 2009, 19, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Leng, H.; Chen, Q.; Su, J.; Shi, W.-j.; Xia, C.; Zhang, L.; Yan, J. Development of novel near-infrared GFP chromophore-based fluorescent probes for imaging of amyloid-β plaque and viscosity. Sens. Actuators B Chem. 2022, 372, 132648. [Google Scholar] [CrossRef]
- Park, Y.D.; Kinger, M.; Min, C.; Lee, S.Y.; Byun, Y.; Park, J.W.; Jeon, J. Synthesis and evaluation of curcumin-based near-infrared fluorescent probes for the in vivo optical imaging of amyloid-β plaques. Bioorgan. Chem. 2021, 115, 105167. [Google Scholar] [CrossRef] [PubMed]
- Bullich, S.; Seibyl, J.; Catafau, A.M.; Jovalekic, A.; Koglin, N.; Barthel, H.; Sabri, O.; De Santi, S. Optimized classification of 18F-Florbetaben PET scans as positive and negative using an SUVR quantitative approach and comparison to visual assessment. NeuroImage Clin. 2017, 15, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.; Chalkidou, A.; Hammers, A.; Peacock, J.; Summers, J.; Keevil, S. Diagnostic accuracy of 18F amyloid PET tracers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 374–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, H.T.N.; Kim, D.; Phan, L.M.T.; Cho, S. Ultrasensitive capacitance sensor to detect amyloid-beta 1-40 in human serum using supramolecular recognition of β-CD/RGO/ITO micro-disk electrode. Talanta 2022, 237, 122907. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Wu, J.; Chai, K.; Hu, X.; Hu, Y.; Shi, S.; Yao, T. A turn-on unlabeled colorimetric biosensor based on aptamer-AuNPs conjugates for amyloid-β oligomer detection. Talanta 2023, 260, 124649. [Google Scholar] [CrossRef]
- Devi, R.; Gogoi, S.; Dutta, H.S.; Saikia, P.J.; Singhal, A.; Khan, R. Boronic acid-functionalized tungsten disulfide quantum dots as a fluorescence probe for sensitive detection of dopamine. Biosens. Bioelectron. X 2022, 11, 100168. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Lee, D.H.; Nguyen, P.T.; Le, P.G.; Kim, M.I. Foldable paper microfluidic device based on single iron site-containing hydrogel nanozyme for efficient glucose biosensing. Chem. Eng. J. 2023, 454, 140541. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Xu, S.; Guo, S.; Xue, Q.; Wang, H. Efficient ratiometric fluorescence probe based on dual-emission luminescent lanthanide coordination polymer for amyloid β-peptide detection. Sens. Actuators B Chem. 2022, 352, 131052. [Google Scholar] [CrossRef]
- Tan, S.; Li, S.; Tang, C.; Bai, X.; Ran, X.; Qu, Q.; Li, L.; Yang, L. A regenerable and reducing false-positive fluorescent switch for detection of β-amyloid 1-42 oligomers. Talanta 2022, 246, 123461. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Siwal, S.S.; Saini, R.V.; Singh, N.; Thakur, V.K. Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS Nanosci. Au 2023, 3, 1–27. [Google Scholar] [CrossRef]
- Ranjan, P.; Khan, R. Electrochemical Immunosensor for Early Detection of β-Amyloid Alzheimer’s Disease Biomarker Based on Aligned Carbon Nanotubes Gold Nanocomposites. Biosensors 2022, 12, 1059. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, F.; Ma, F.; Zhang, L.; Yang, S.; Xia, N. Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ(1-16)-heme-modified gold nanoparticles. Biosens. Bioelectron. 2013, 49, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Gai, Z.; Li, F.; Yang, X. Electrochemiluinescence monitoring the interaction between human serum albumin and amyloid-β peptide. Bioelectrochemistry 2023, 149, 108315. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Dong, X.; Sun, Y. Composite of gold nanoclusters and basified human serum albumin significantly boosts the inhibition of Alzheimer’s β-amyloid by photo-oxygenation. Acta Biomater. 2022, 144, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Ashton, N.J.; Blennow, K.; Zetterberg, H. Spitting image: Can saliva biomarkers reflect Alzheimer’s disease? EBioMedicine 2021, 68, 103437. [Google Scholar] [CrossRef] [PubMed]
- Reale, M.; Gonzales-Portillo, I.; Borlongan, C.V. Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer’s Disease: Present and future applications. Brain Res. 2020, 1727, 146535. [Google Scholar] [CrossRef] [PubMed]
- Tachida, Y.; Miura, S.; Muto, Y.; Takuwa, H.; Sahara, N.; Shindo, A.; Matsuba, Y.; Saito, T.; Taniguchi, N.; Kawaguchi, Y.; et al. Endothelial expression of human amyloid precursor protein leads to amyloid β in the blood and induces cerebral amyloid angiopathy in knock-in mice. J. Biol. Chem. 2022, 298, 101880. [Google Scholar] [CrossRef]
- Kotiya, D.; Leibold, N.; Verma, N.; Jicha, G.A.; Goldstein, L.B.; Despa, F. Rapid, scalable assay of amylin-β amyloid co-aggregation in brain tissue and blood. J. Biol. Chem. 2023, 299, 104682. [Google Scholar] [CrossRef]
- Crosnier de Lassichère, C.; Duc Mai, T.; Taverna, M. Antibody-free detection of amyloid beta peptides biomarkers in cerebrospinal fluid using capillary isotachophoresis coupled with mass spectrometry. J. Chromatogr. A 2019, 1601, 350–356. [Google Scholar] [CrossRef]
- Chen, M.; Man, Y.; Xu, S.; Wu, H.; Ling, P.; Gao, F. A label-free dually-amplified aptamer sensor for the specific detection of amyloid-beta peptide oligomers in cerebrospinal fluids. Anal. Chim. Acta 2023, 1266, 341298. [Google Scholar] [CrossRef]
- Supraja, P.; Tripathy, S.; Singh, R.; Singh, V.; Chaudhury, G.; Singh, S.G. Towards point-of-care diagnosis of Alzheimer’s disease: Multi-analyte based portable chemiresistive platform for simultaneous detection of β-amyloid (1-40) and (1-42) in plasma. Biosens. Bioelectron. 2021, 186, 113294. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kim, E.-S.; Mishra, S.; Ganbold, E.; Seong, R.-S.; Kim, Y.M.; Jahng, G.-H.; Rhee, H.Y.; Han, H.-S.; Kim, D.H.; et al. Ultrasensitive probeless capacitive biosensor for amyloid beta (Aβ1-42) detection in human plasma using interdigitated electrodes. Biosens. Bioelectron. 2022, 212, 114365. [Google Scholar] [CrossRef] [PubMed]
- Supraja, P.; Tripathy, S.; Vanjari, S.R.K.; Singh, R.; Singh, V.; Singh, S.G. Label-free detection of β-Amyloid (1-42) in plasma using electrospun SnO2 nanofiber based electro-analytical sensor. Sens. Actuators B Chem. 2021, 346, 130522. [Google Scholar] [CrossRef]
- Yi, R.; Mao, Y.; Shen, Y.; Chen, L. Self-Assembled Monolayers for Batteries. J. Am. Chem. Soc. 2021, 143, 12897–12912. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Roldán-Carmona, C.; Sohail, M.; Nazeeruddin, M.K. Applications of Self-Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability. Adv. Energy Mater. 2020, 10, 2002989. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, N.; Comini, E. The role of self-assembled monolayers in electronic devices. J. Mater. Chem. C 2020, 8, 3938–3955. [Google Scholar] [CrossRef]
- Le, H.T.N.; Phan, L.M.T.; Cho, S. Removal of Thiol-SAM on a Gold Surface for Re-Use of an Interdigitated Chain-Shaped Electrode. Materials 2022, 15, 2218. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Khalid, H.; Opodi, E.M.; Song, X.; Wang, Z.; Li, B.; Tian, L.; Yu, X.; Hu, W. Modulated Structure and Rectification Properties of a Molecular Junction by a Mixed Self-Assembled Monolayer. Langmuir 2022, 38, 10893–10901. [Google Scholar] [CrossRef]
- Vestergaard, M.d.; Kerman, K.; Saito, M.; Nagatani, N.; Takamura, Y.; Tamiya, E. A Rapid Label-Free Electrochemical Detection and Kinetic Study of Alzheimer’s Amyloid Beta Aggregation. J. Am. Chem. Soc. 2005, 127, 11892–11893. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Jiang, M.; Cheng, J.; Li, X.; Liu, Z.; Zhang, W.; Mugo, S.M.; Jaffrezic-Renault, N.; Guo, Z. Single-layer exfoliated reduced graphene oxide-antibody Tau sensor for detection in human serum. Sens. Actuators B Chem. 2020, 308, 127692. [Google Scholar] [CrossRef]
- Lien, T.T.N.; Takamura, Y.; Tamiya, E.; Vestergaard, M.d.C. Modified screen printed electrode for development of a highly sensitive label-free impedimetric immunosensor to detect amyloid beta peptides. Anal. Chim. Acta 2015, 892, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, Q.; Zhang, Y.; Ren, B.; Huang, L.; Cai, H.; Xu, T.; Liu, Q.; Zhang, X. An electrochemical aptasensor based on AuPt alloy nanoparticles for ultrasensitive detection of amyloid-β oligomers. Talanta 2021, 231, 122360. [Google Scholar] [CrossRef] [PubMed]
- Sethi, J.; Van Bulck, M.; Suhail, A.; Safarzadeh, M.; Perez-Castillo, A.; Pan, G. A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Microchim. Acta 2020, 187, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Park, J.S.; Jo, D.G.; Cho, M.; Lee, Y. Curcumin-based electrochemical sensor of amyloid-β oligomer for the early detection of Alzheimer’s disease. Sens. Actuators B Chem. 2018, 273, 1593–1599. [Google Scholar] [CrossRef]
- Yoo, Y.K.; Kim, G.; Park, D.; Kim, J.; Kim, Y.; Yun Kim, H.; Yang, S.H.; Lee, J.H.; Hwang, K.S. Gold nanoparticles assisted sensitivity improvement of interdigitated microelectrodes biosensor for amyloid-β detection in plasma sample. Sens. Actuators B Chem. 2020, 308, 127710. [Google Scholar] [CrossRef]
- Chae, M.-S.; Kim, J.; Jeong, D.; Kim, Y.; Roh, J.H.; Lee, S.M.; Heo, Y.; Kang, J.Y.; Lee, J.H.; Yoon, D.S.; et al. Enhancing surface functionality of reduced graphene oxide biosensors by oxygen plasma treatment for Alzheimer’s disease diagnosis. Biosens. Bioelectron. 2017, 92, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Yang, R.; Zhao, Y.; Zang, C.; Miao, X.; Qu, B.; Lu, L. A fluorescent aptasensor for sensitive detection of isocarbophos based on AT-rich three-way junctions DNA templated copper nanoparticles and Fe3O4@GO. Sens. Actuators B Chem. 2020, 321, 128515. [Google Scholar] [CrossRef]
- Zhou, Y.; Lv, Y.; Dong, H.; Liu, L.; Mao, G.; Zhang, Y.; Xu, M. Ultrasensitive assay of amyloid-beta oligomers using Au-vertical graphene/carbon cloth electrode based on poly(thymine)-templated copper nanoparticles as probes. Sens. Actuators B Chem. 2021, 331, 129429. [Google Scholar] [CrossRef]
- Abbasi, H.Y.; Tehrani, Z.; Devadoss, A.; Ali, M.M.; Moradi-Bachiller, S.; Albani, D.; Guy, O.J. Graphene based electrochemical immunosensor for the ultra-sensitive label free detection of Alzheimer’s beta amyloid peptides Aβ (1-42). Nanoscale Adv. 2021, 3, 2295–2304. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Liu, X.; Feng, R.; Zhang, N.; Fan, D.; Ding, C.; Zhao, H.; Du, Y.; Wei, Q.; et al. Bifunctional pd-decorated polysulfide nanoparticle of Co9S8 supported on graphene oxide: A new and efficient label-free immunosensor for amyloid β-protein detection. Sens. Actuators B Chem. 2020, 304, 127413. [Google Scholar] [CrossRef]
- Devi, R.; Gogoi, S.; Dutta, H.S.; Bordoloi, M.; Sanghi, S.K.; Khan, R. Au/NiFe2O4 nanoparticle-decorated graphene oxide nanosheets for electrochemical immunosensing of amyloid beta peptide. Nanoscale Adv. 2020, 2, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Figueroa-Miranda, G.; Zafiu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Amperometric Aptasensor for Amyloid-β Oligomer Detection by Optimized Stem-Loop Structures with an Adjustable Detection Range. ACS Sens. 2019, 4, 3042–3050. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, B.; Kumar, R. A novel multi-set differential pulse voltammetry technique for improving precision in electrochemical sensing. Biosens. Bioelectron. 2022, 216, 114628. [Google Scholar] [CrossRef]
- Terbouche, A.; Lameche, S.; Ait-Ramdane-Terbouche, C.; Guerniche, D.; Lerari, D.; Bachari, K.; Hauchard, D. A new electrochemical sensor based on carbon paste electrode/Ru(III) complex for determination of nitrite: Electrochemical impedance and cyclic voltammetry measurements. Measurement 2016, 92, 524–533. [Google Scholar] [CrossRef]
- Palsaniya, S.; Jat, B.L.; Mukherji, S. Amperometry Sensor for Real Time Detection of Hydrogen Peroxide Adulteration in food samples. Electrochim. Acta 2023, 462, 142724. [Google Scholar] [CrossRef]
- Trevizan, H.F.; Olean-Oliveira, A.; Cardoso, C.X.; Teixeira, M.F.S. Development of a molecularly imprinted polymer for uric acid sensing based on a conductive azopolymer: Unusual approaches using electrochemical impedance/capacitance spectroscopy without a soluble redox probe. Sens. Actuators B Chem. 2021, 343, 130141. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Abroa-Nemeir, I.; Ben Halima, H.; Gallardo-Gonzalez, J.; El Alami El Hassani, N.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; et al. Electrochemical impedance spectroscopy determination of glyphosate using a molecularly imprinted chitosan. Sens. Actuators B Chem. 2020, 309, 127753. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, C.; Chau, Y.; Lee, Y.-K. The synergy of chemical immobilization and electrical orientation of T4 bacteriophage on a micro electrochemical sensor for low-level viable bacteria detection via Differential Pulse Voltammetry. Biosens. Bioelectron. 2020, 151, 111914. [Google Scholar] [CrossRef]
- Pizarro, J.; Segura, R.; Tapia, D.; Navarro, F.; Fuenzalida, F.; Jesús Aguirre, M. Inexpensive and green electrochemical sensor for the determination of Cd(II) and Pb(II) by square wave anodic stripping voltammetry in bivalve mollusks. Food Chem. 2020, 321, 126682. [Google Scholar] [CrossRef]
- Abeykoon, S.W.; White, R.J. Continuous Square Wave Voltammetry for High Information Content Interrogation of Conformation Switching Sensors. ACS Meas. Sci. Au 2023, 3, 1–9. [Google Scholar] [CrossRef]
- Xia, N.; Wang, X.; Zhou, B.; Wu, Y.; Mao, W.; Liu, L. Electrochemical Detection of Amyloid-β Oligomers Based on the Signal Amplification of a Network of Silver Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 19303–19311. [Google Scholar] [CrossRef]
- Singh, A.; Khatun, S.; Nath Gupta, A. Simultaneous Detection of Tyrosine and Structure-Specific Intrinsic Fluorescence in the Fibrillation of Alzheimer’s Associated Peptides. ChemPhysChem 2020, 21, 2585–2598. [Google Scholar] [CrossRef] [PubMed]
- Suprun, E.V.; Khmeleva, S.A.; Radko, S.P.; Kozin, S.A.; Archakov, A.I.; Shumyantseva, V.V. Direct electrochemical oxidation of amyloid-β peptides via tyrosine, histidine, and methionine residues. Electrochem. Commun. 2016, 65, 53–56. [Google Scholar] [CrossRef]
- Dai, Y.; Molazemhosseini, A.; Liu, C.C. In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor. Biosensors 2017, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Shu, Q.; Zhang, N.; Yan, C.; Niu, H.; Li, X.; Guan, P.; Hu, X. Electrochemical Immunosensor for the Sensitive Detection of Alzheimer’s Biomarker Amyloid-β (1-42) Using the Heme-amyloid-β (1-42) Complex as the Signal Source. Electroanalysis 2022, 34, 263–274. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Yang, Y.; Song, Y.; Ma, C.; Qiao, X.; Hong, C. Ultrasensitive electrochemical immunosensor based on the signal amplification strategy of the competitive reaction of Zn2+ and ATP ions to construct a “signal on” mode GOx-HRP enzyme cascade reaction. Microchim. Acta 2021, 188, 61. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ge, K.; Gong, Y.; Li, L.; Tang, Q.; Liao, X.; Zhang, G.; Gao, F. DNAzyme-driven bipedal DNA walker for label-free and signal-on electrochemical detection of amyloid-β oligomer. Int. J. Biol. Macromol. 2023, 228, 234–241. [Google Scholar] [CrossRef]
- Liao, X.; Ge, K.; Cai, Z.; Qiu, S.; Wu, S.; Li, Q.; Liu, Z.; Gao, F.; Tang, Q. Hybridization chain reaction triggered poly adenine to absorb silver nanoparticles for label-free electrochemical detection of Alzheimer’s disease biomarkers amyloid β-peptide oligomers. Anal. Chim. Acta 2022, 1192, 339391. [Google Scholar] [CrossRef]
- Garcia-Leis, A.; Sanchez-Cortes, S. Label-Free Detection and Self-Aggregation of Amyloid β-Peptides Based on Plasmonic Effects Induced by Ag Nanoparticles: Implications in Alzheimer’s Disease Diagnosis. ACS Appl. Nano Mater. 2021, 4, 3565–3575. [Google Scholar] [CrossRef]
- Le, P.G.; Kim, M.I. Research Progress and Prospects of Nanozyme-Based Glucose Biofuel Cells. Nanomaterials 2021, 11, 2116. [Google Scholar] [CrossRef] [PubMed]
- Le, P.G.; Wu, Q.; Kong, D.Y.; Ge, J.; Il Kim, M. Tailoring Nanostructured Supports to Achieve High Performance in Enzymatic Biofuel Cells. ACS Appl. Energy Mater. 2022, 5, 13113–13127. [Google Scholar] [CrossRef]
- Ali, A.; Zhao, J.; Khan, M.S.; Wang, H.; Ren, X.; Hu, L.; Manzoor, R.; Wu, D.; Wei, Q. Electrochemiluminescence detection for β-amyloid1-42 oligomers using silver nanoparticle decorated CuS@CoS2 double shelled nanoboxes as dual-quencher. Sens. Actuators B Chem. 2021, 329, 129155. [Google Scholar] [CrossRef]
- Ji, H.; Kang, X.; Yang, X.; Chen, H.; Zhu, l.; Mao, T.; He, Y.; Liu, J.; Wang, Q.; Zhou, X.; et al. Functionalized graphene-based electrochemical array sensors for the identification of distinct conformational states of Amyloid Beta in Alzheimer’s disease. Biosens. Bioelectron. 2023, 222, 114927. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, A.; Tang, X.; Qin, J. Electrochemical sensitive detection of amyloid-β oligomer harnessing cellular prion protein on AuNPs embedded poly (pyrrole-3-carboxylic acid) matrix. Mater. Today Adv. 2022, 14, 100250. [Google Scholar] [CrossRef]
- Yeung, S.Y.; Mucha, A.; Deshmukh, R.; Boutrus, M.; Arnebrant, T.; Sellergren, B. Reversible Self-Assembled Monolayers (rSAMs): Adaptable Surfaces for Enhanced Multivalent Interactions and Ultrasensitive Virus Detection. ACS Cent. Sci. 2017, 3, 1198–1207. [Google Scholar] [CrossRef]
- Kumakli, H.; Hoque, A.; White, R.J. Observing Real-Time Formation of Self-Assembled Monolayers on Polycrystalline Gold Surfaces with Scanning Electrochemical Cell Microscopy. Langmuir 2022, 38, 9148–9156. [Google Scholar] [CrossRef] [PubMed]
- Poirier, G.E.; Pylant, E.D. The Self-Assembly Mechanism of Alkanethiols on Au(111). Science 1996, 272, 1145–1148. [Google Scholar] [CrossRef]
- Fenter, P.; Eisenberger, P.; Li, J.; Camillone, N., III; Bernasek, S.; Scoles, G.; Ramanarayanan, T.A.; Liang, K.S. Structure of octadecyl thiol self-assembled on the silver(111) surface: An incommensurate monolayer. Langmuir 1991, 7, 2013–2016. [Google Scholar] [CrossRef]
- Soreta, T.R.; Strutwolf, J.; O’Sullivan, C.K. Electrochemically Deposited Palladium as a Substrate for Self-Assembled Monolayers. Langmuir 2007, 23, 10823–10830. [Google Scholar] [CrossRef]
- Sosna, M.; Ferapontova, E.E. Electron Transfer in Binary Hemin-Modified Alkanethiol Self-Assembled Monolayers on Gold: Hemin’s Lateral and Interfacial Interactions. Langmuir 2022, 38, 11180–11190. [Google Scholar] [CrossRef]
- Poon, V.K.M.; Burd, A. In vitro cytotoxity of silver: Implication for clinical wound care. Burns 2004, 30, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Dowling, D.P.; Donnelly, K.; McConnell, M.L.; Eloy, R.; Arnaud, M.N. Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films 2001, 398–399, 602–606. [Google Scholar] [CrossRef]
- Li, N.; Huang, X.; Shao, H. Exploring the pH Sensitivity of Ion-Pair Interactions on a Self-Assembled Monolayer by Scanning Electrochemical Microscopy. Langmuir 2023, 39, 6529–6538. [Google Scholar] [CrossRef]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Gnauck, M.; Jaehne, E.; Blaettler, T.; Tosatti, S.; Textor, M.; Adler, H.-J.P. Carboxy-Terminated Oligo(ethylene glycol)−Alkane Phosphate: Synthesis and Self-Assembly on Titanium Oxide Surfaces. Langmuir 2007, 23, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Allara, D.L.; Nuzzo, R.G. Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir 1985, 1, 45–52. [Google Scholar] [CrossRef]
No. | Material | Analyte | Bio-Fluids | Detection Technique | Linear Range | LOD | Ref. |
---|---|---|---|---|---|---|---|
1 | Au/SAM/NHS-EDC/Ab-Aβ42 | Aβ(1-42) | Undiluted HR (*) | DPV | 0.0675–0.5 g/mL | NA (**) | [78] |
2 | -DEP/Au/MHDA-EDC/Ab-Aβ -DEP/Au/MHDA-EDC/protein G/Ab-Aβ | Aβ(1-40) Aβ(1-40) | PBS PBS | EIS EIS | 1 to 103 nM 10 to 105 pM | 2.65 nM 0.57 nM | [55] |
3 | CFP/AuPt/DNA aptamer | AβO | HS | DPV | 0.5 to 104 pg/mL | 0.16 pg/mL | [56] |
4 | β-CD modified Au electrode/MCH/Ad-Pr(95-110)/Ag | AβOs | PBS | LSV | 20 to 105 pM | 8 pM | [75] |
5 | GCE/SNF/(EDC-NHS)/Aβ42 antibodies/BSA | Aβ(1-42) Aβ(1-42) | Spiked sample Plasma | EIS | 1 to 107 fg/mL 1 to 106 fg/mL | 0.146 fg/mL 0.638 fg/mL | [49] |
6 | rGO/Pyr-NHS/H31L21/Ab-Aβ/BSA | Aβ(1-42) | Human blood | DPV | 11 to 55.103 pM | 2.398 pM | [57] |
7 | NiFe2O4 decorated GO/Au/Ab-Aβ/BSA | Aβ(1-42) | PBS | DPV | 1 to 103 mg/mL | 3.0 pg/mL | [65] |
8 | G/Co9S8-Pd/Ab-Aβ/BSA | Aβ | Spiked CSF | Amperometry | 0.1 to 50.103 pg/mL | 41.4 fg/mL | [64] |
9 | Au-VG/CC/PrPc/Aptamer-poly T-CuNPs | Aβ oligomer | PB | DPV | 10 to 2200 pM | 3.5 pM | [62] |
10 | SPGE/pDAN/Ab-Aβ/BSA | Aβ(1-42) | Spiked plasma | DPV | 1 to 1000 pg/mL | 1.4 pg/mL | [63] |
11 | PrPc/AuNPs-E-PTAA PrPc/AuNPs-E-Ppy-2-COOH PrPc/AuNPs-E-Ppy-3-COOH | AβO | CSF | EIS | 10−9 to 103 nM 10−9 to 103 nM 10−9 to 103 nM | NA NA 10−9 nM | [88] |
12 | BSA/CGG CGG Chit/CCG DA/CCG DNA/CCG Gel/CCG PEG/CCG | Aβ40 Aβ42 | CSF | EIS | NA | NA | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, P.G.; Le, H.T.N.; Kim, H.-E.; Cho, S. SAM-Support-Based Electrochemical Sensor for Aβ Biomarker Detection of Alzheimer’s Disease. Biosensors 2023, 13, 809. https://doi.org/10.3390/bios13080809
Le PG, Le HTN, Kim H-E, Cho S. SAM-Support-Based Electrochemical Sensor for Aβ Biomarker Detection of Alzheimer’s Disease. Biosensors. 2023; 13(8):809. https://doi.org/10.3390/bios13080809
Chicago/Turabian StyleLe, Phan Gia, Hien T. Ngoc Le, Hee-Eun Kim, and Sungbo Cho. 2023. "SAM-Support-Based Electrochemical Sensor for Aβ Biomarker Detection of Alzheimer’s Disease" Biosensors 13, no. 8: 809. https://doi.org/10.3390/bios13080809
APA StyleLe, P. G., Le, H. T. N., Kim, H. -E., & Cho, S. (2023). SAM-Support-Based Electrochemical Sensor for Aβ Biomarker Detection of Alzheimer’s Disease. Biosensors, 13(8), 809. https://doi.org/10.3390/bios13080809