The Impact of Microelectrode Pattern on the Sensitivity of Tracing Environmental CO2 Deficiency in Cellular Metabolism by a New Design of Electrochemical Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Device Fabrication
2.2.1. Fabrication of the Chip
2.2.2. Precleaning of the Device before the Test
2.3. Viability Test
2.4. Cyclic Voltammetry
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zandi, A.; Gilani, A.; Abbasvandi, F.; Katebi, P.; Tafti, S.R.; Assadi, S.; Moghtaderi, H.; Parizi, M.S.; Saghafi, M.; Khayamian, M.A.; et al. Carbon nanotube based dielectric spectroscopy of tumor secretion; electrochemical lipidomics for cancer diagnosis. Biosens. Bioelectron. 2019, 142, 111566. [Google Scholar] [CrossRef]
- Chow, R.H.; Rüden, L.V. Electrochemical detection of secretion from single cells. In Single-Channel Recording; Springer: Berlin/Heidelberg, Germany, 1995; pp. 245–275. [Google Scholar]
- Shashaani, H.; Akbari, N.; Faramarzpour, M.; Parizi, M.S.; Vanaei, S.; Khayamian, M.A.; Faranoush, M.; Anbiaee, R.; Abdolahad, M. Cyclic voltammetric biosensing of cellular ionic secretion based on silicon nanowires to detect the effect of paclitaxel on breast normal and cancer cells. Microelectron. Eng. 2021, 239, 111512. [Google Scholar] [CrossRef]
- Sun, Y.; He, K.; Zhang, Z.; Zhou, A.; Duan, H. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated grapHene–carbon nanotube hybrid paper electrode. Biosens. Bioelectron. 2015, 68, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Cai, D.; Chen, P. Micro-and nanotechnologies for study of cell secretion. Anal. Chem. 2011, 83, 4393–4406. [Google Scholar] [CrossRef]
- Shashaani, H.; Faramarzpour, M.; Hassanpour, M.; Namdar, N.; Alikhani, A.; Abdolahad, M. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens. Bioelectron. 2016, 85, 363–370. [Google Scholar] [CrossRef]
- Abdolahad, M.; Shashaani, H.; Janmaleki, M.; Mohajerzadeh, S. Silicon nanograss based impedance biosensor for label free detection of rare metastatic cells among primary cancerous colon cells, suitable for more accurate cancer staging. Biosens. Bioelectron. 2014, 59, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Lavanya, L.; Sadananda, D.; Gouthami, K.; Elfansu, K.; Singh, A. Inferences of Carbon Dioxide in Present-Day Cell Culture Systems: An Unacknowledged Problem and Perspectives. Austin Ther. 2021, 6, 26420. [Google Scholar]
- Chin, Y.-T.; Hsieh, M.-T.; Yang, S.-H.; Tsai, P.-W.; Wang, S.-H.; Wang, C.-C.; Lee, Y.-S.; Cheng, G.-Y.; HuangFu, W.-C.; London, D.; et al. Anti-proliferative and gene expression actions of resveratrol in breast cancer cells in vitro. Oncotarget 2014, 5, 12891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirkmajer, S.; Chibalin, A.V. Serum starvation: Caveat emptor. Am. J. Physiol.-Cell Physiol. 2011, 301, C272–C279. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.K.; Ho, A.; Dowdy, S.F. Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques 2001, 30, 1322–1331. [Google Scholar] [CrossRef] [Green Version]
- Griffin, M.J. Synchronization of some human cell strains by serum and calcium starvation. Vitro 1976, 12, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Caro-Maldonado, A.; Muñoz-Pinedo, C. Dying for something to eat: How cells respond to starvation. Open Cell Signal. J. 2011, 3, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, H.; Steward, M.; Lindsay, A.; Case, R. Accumulation of intracellular HCO3− by Na+-HCO3− cotransport in interlobular ducts from guinea-pig pancreas. J. Physiol. 1996, 495, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, H.M. Practical Flow Cytometry; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Adan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow cytometry: Basic principles and applications. Crit. Rev. Biotechnol. 2017, 37, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Laerum, O.D.; Farsund, T. Clinical application of flow cytometry: A review. Cytom. J. Int. Soc. Anal. Cytol. 1981, 2, 1–13. [Google Scholar] [CrossRef]
- Givan, A.L. Flow Cytometry: First Principles; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Morrison, D.G.; Hunt, D.A.; Garza, I. Counting and processing methods impact accuracy of adipose stem cell doses. BioProcessing 2012, 11, 1538–8786. [Google Scholar]
- Chan, L.L.; Wilkinson, A.R.; Paradis, B.D.; Lai, N. Rapid image-based cytometry for comparison of fluorescent viability staining methods. J. Fluoresc. 2012, 22, 1301–1311. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006, 21, 1887–1892. [Google Scholar]
- Miripour, Z.S.; Aminifar, M.; Akbari, M.E.; Abbasvandi, F.; Miraghaie, S.H.; Hoseinpour, P.; Javadi, M.R.; Dabbagh, N.; Mohajerzadeh, L.; Aghdam, M.K.; et al. Electrochemical measuring of reactive oxygen species levels in the blood to detect ratio of high-density neutropHils, suitable to alarm presence of cancer in suspicious cases. J. Pharm. Biomed. Anal. 2022, 209, 114488. [Google Scholar] [CrossRef]
- Benvidi, A.; Firouzabadi, A.D.; Tezerjani, M.D.; Moshtaghiun, S.; Mazloum-Ardakani, M.; Ansarin, A. A highly sensitive and selective electrochemical DNA biosensor to diagnose breast cancer. J. Electroanal. Chem. 2015, 750, 57–64. [Google Scholar]
- Miripour, Z.S.; Sarrami-Forooshani, R.; Sanati, H.; Makarem, J.; Taheri, M.S.; Shojaeian, F.; Eskafi, A.H.; Abbasvandi, F.; Namdar, N.; Ghafari, H.; et al. Real-time diagnosis of reactive oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic. Biosens. Bioelectron. 2020, 165, 112435. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Analytical Electrochemistry; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 1–28. [Google Scholar]
- Appel, A.M.; Bercaw, J.E.; Bocarsly, A.B.; Dobbek, H.; DuBois, D.L.; Dupuis, M.; Ferry, J.G.; Fujita, E.; Hille, R.; Kenis, P.J.; et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621–6658. [Google Scholar] [CrossRef] [Green Version]
- Breznak, J.A.; Costilow, R.N. Physicochemical factors in growth. In Methods for General and Molecular Microbiology; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 309–329. [Google Scholar]
- Cordat, E.; Casey, J.R. Bicarbonate transport in cell pHysiology and disease. Biochem. J. 2009, 417, 423–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharabi, K.; Lecuona, E.; Helenius, I.T.; Beitel, G.J.; Sznajder, J.I.; Gruenbaum, Y. Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes. J. Cell. Mol. Med. 2009, 13, 4304–4318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cell Type & Condition/Vitality | Live% | Early Apoptosis% | Late Apoptosis% | Necrosis% |
---|---|---|---|---|
HUVEC (Ctrl) | 86.20 | 5.08 | 5.33 | 3.39 |
HUVEC (CO2 deficiency) | 88.70 | 3.72 | 5.83 | 5.83 |
MCF-7 (Ctrl) | 94.00 | 0.58 | 0.37 | 5.03 |
MCF-7 (CO2 deficiency) | 94.80 | 0.25 | 0.36 | 4.55 |
MDA-MB-231 (Ctrl) | 95.00 | 1.97 | 0.96 | 2.03 |
MDA-MB-231 (CO2 deficiency) | 90.00 | 2.56 | 5.13 | 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourbour, F.; Abadijoo, H.; Nazari, F.; Ehtesabi, H.; Abdolahad, M. The Impact of Microelectrode Pattern on the Sensitivity of Tracing Environmental CO2 Deficiency in Cellular Metabolism by a New Design of Electrochemical Biosensor. Biosensors 2023, 13, 762. https://doi.org/10.3390/bios13080762
Bourbour F, Abadijoo H, Nazari F, Ehtesabi H, Abdolahad M. The Impact of Microelectrode Pattern on the Sensitivity of Tracing Environmental CO2 Deficiency in Cellular Metabolism by a New Design of Electrochemical Biosensor. Biosensors. 2023; 13(8):762. https://doi.org/10.3390/bios13080762
Chicago/Turabian StyleBourbour, Faegheh, Hamed Abadijoo, Fatemeh Nazari, Hamideh Ehtesabi, and Mohammad Abdolahad. 2023. "The Impact of Microelectrode Pattern on the Sensitivity of Tracing Environmental CO2 Deficiency in Cellular Metabolism by a New Design of Electrochemical Biosensor" Biosensors 13, no. 8: 762. https://doi.org/10.3390/bios13080762
APA StyleBourbour, F., Abadijoo, H., Nazari, F., Ehtesabi, H., & Abdolahad, M. (2023). The Impact of Microelectrode Pattern on the Sensitivity of Tracing Environmental CO2 Deficiency in Cellular Metabolism by a New Design of Electrochemical Biosensor. Biosensors, 13(8), 762. https://doi.org/10.3390/bios13080762