A Self-Assembled G-Quadruplex/Hemin DNAzyme-Driven DNA Walker Strategy for Sensitive and Rapid Detection of Lead Ions Based on Rolling Circle Amplification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of DNA Walker-IMBs
2.3. RCA Reaction Signal Amplification and Pb2+ Detection
3. Results and Discussion
3.1. Detection Strategy of the Biosensor
3.2. Feasibility of the DNAzyme and DNA Walker
3.3. Feasibility of the RCA Reaction and Verification of G4/Hemin
3.4. Optimization of Detection Conditions
3.5. Sensitivity, Selectivity, and Reproducibility of the Biosensor for Pb2+ Detection
3.6. Analysis of Pb2+ in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, H.; Hu, Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environ. Pollut. 2010, 158, 1134–1146. [Google Scholar] [CrossRef]
- Poonam; Bharti, S.K.; Kumar, N. Kinetic study of lead (Pb 2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent. Appl. Water Sci. 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Hashim, A.; Hadi, A. Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 2017, 62, 978. [Google Scholar] [CrossRef]
- Pattee, O.H.; Pain, D.J. Lead in the environment. Handb. Ecotoxicol. 2003, 2, 373–399. [Google Scholar]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevič, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef]
- Ojekunle, O.Z.; Ojekunle, O.V.; Adeyemi, A.A.; Taiwo, A.G.; Sangowusi, O.R.; Taiwo, A.M.; Adekitan, A.A. Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighbourhood. SpringerPlus 2016, 5, 560. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, A.A.; Ojekunle, Z.O. Concentrations and health risk assessment of industrial heavy metals pollution in groundwater in Ogun state, Nigeria. Sci. Afr. 2021, 11, e00666. [Google Scholar] [CrossRef]
- Callender, E.; Rice, K.C. The urban environmental gradient: Anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ. Sci. Technol. 2000, 34, 232–238. [Google Scholar] [CrossRef]
- Li, L.; Sun, F.; Liu, Q.; Zhao, X.; Song, K. Development of regional water quality criteria of lead for protecting aquatic organism in Taihu Lake, China. Ecotoxicol. Environ. Saf. 2021, 222, 112479. [Google Scholar] [CrossRef]
- Tong, S.; Schirnding, Y.E.V.; Prapamontol, T. Environmental lead exposure: A public health problem of global dimensions. Bull. World Health Organ. 2000, 78, 1068–1077. [Google Scholar]
- Dash, M.; Eid, A.; Subaiea, G.; Chang, J.; Deeb, R.; Masoud, A.; Renehan, W.E.; Adem, A.; Zawia, N.H. Developmental exposure to lead (Pb) alters the expression of the human tau gene and its products in a transgenic animal model. Neurotoxicology 2016, 55, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Jamal, Q.; Durani, P.; Khan, K.; Munir, S.; Hussain, S.; Munir, K.; Anees, M. Heavy metals accumulation and their toxic effects. J. Bio-Mol. Sci. 2013, 1, 27–36. [Google Scholar]
- Lidsky, T.I.; Schneider, J.S. Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain 2003, 126, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Levin, R.; Vieira, C.L.Z.; Rosenbaum, M.H.; Bischoff, K.; Mordarski, D.C.; Brown, M.J. The urban lead (Pb) burden in humans, animals and the natural environment. Environ. Res. 2021, 193, 110377. [Google Scholar] [CrossRef]
- Mendiola, J.; Moreno, J.M.; Roca, M.; Vergara-Juárez, N.; Martínez-García, M.J.; García-Sánchez, A.; Elvira-Rendueles, B.; Moreno-Grau, S.; López-Espín, J.J.; Ten, J. Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: A pilot study. Environ. Health 2011, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Zaier, H.; Mudarra, A.; Kutscher, D.; De La Campa, M.F.; Abdelly, C.; Sanz-Medel, A. Induced lead binding phytochelatins in Brassica juncea and Sesuvium portulacastrum investigated by orthogonal chromatography inductively coupled plasma-mass spectrometry and matrix assisted laser desorption ionization-time of flight-mass spectrometry. Anal. Chim. Acta 2010, 671, 48–54. [Google Scholar] [CrossRef]
- Nunes, J.A.; Batista, B.L.; Rodrigues, J.L.; Caldas, N.M.; Neto, J.A.; Barbosa, F., Jr. A simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, copper, manganese, nickel, lead, and selenium in blood of the Brazilian population. J. Toxicol. Environ. Health Part A 2010, 73, 878–887. [Google Scholar] [CrossRef]
- Feng, L.; Liu, J.; Mao, X.; Lu, D.; Zhu, X.; Qian, Y. An integrated quartz tube atom trap coupled with solid sampling electrothermal vapourization and its application to detect trace lead in food samples by atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2016, 31, 2253–2260. [Google Scholar] [CrossRef]
- Reis, B.F.D.; Knochen, M.; Pignalosa, G.; Cabrera, N.; Giglio, J. A multicommuted flow system for the determination of copper, chromium, iron and lead in lubricating oils with detection by flame AAS. Talanta 2004, 64, 1220–1225. [Google Scholar] [CrossRef]
- Jazayeri, M.H.; Aghaie, T.; Avan, A.; Vatankhah, A.; Ghaffari, M.R.S. Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens. Bio-Sens. Res. 2018, 20, 1–8. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, C.; Liu, R.; Niu, X.; Xiong, D.; Wang, K.; Yin, D.; Zhang, Z. Biomimic Nanozymes with Tunable Peroxidase-like Activity Based on the Confinement Effect of Metal–Organic Frameworks (MOFs) for Biosensing. Anal. Chem. 2022, 94, 4821–4830. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Burciu, B.; Filipe, C.D.; Li, Y.; Dellinger, K.; Didar, T.F. DNAzyme-based biosensors: Immobilization strategies, applications, and future prospective. ACS Nano 2021, 15, 13943–13969. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Han, S.H.; Chung, B.H. Improving Pb2+ detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles. Biosens. Bioelectron. 2011, 26, 2125–2129. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 2000, 122, 10466–10467. [Google Scholar] [CrossRef]
- Li, T.; Wang, E.; Dong, S. Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal. Chem. 2010, 82, 1515–1520. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643. [Google Scholar] [CrossRef]
- Brown, A.K.; Li, J.; Pavot, C.M.-B.; Lu, Y. A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 2003, 42, 7152–7161. [Google Scholar] [CrossRef]
- Zhuang, J.; Fu, L.; Xu, M.; Zhou, Q.; Chen, G.; Tang, D. DNAzyme-based magneto-controlled electronic switch for picomolar detection of lead (II) coupling with DNA-based hybridization chain reaction. Biosens. Bioelectron. 2013, 45, 52–57. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Zhou, S.; Zhu, L.; Lv, X.; Zhang, J.; Zhang, L.; Zhu, P.; Yu, J. DNAzyme-triggered visual and ratiometric electrochemiluminescence dual-readout assay for Pb (II) based on an assembled paper device. Anal. Chem. 2020, 92, 3874–3881. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal amplification of nucleic acids. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef]
- Andras, S.C.; Power, J.B.; Cocking, E.C.; Davey, M.R. Strategies for signal amplification in nucleic acid detection. Mol. Biotechnol. 2001, 19, 29–44. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, J.; Ma, W.; Zheng, W. PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 2006, 24, 243–284. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Lu, Z.; Luo, H.; Dong, L.; Ji, Z.; Xu, F.; Huo, D.; Hou, C. Ultra-sensitive detection of Pb2+ based on DNAzymes coupling with multi-cycle strand displacement amplification (M-SDA) and nano-graphene oxide. Sens. Actuators B Chem. 2020, 311, 127898. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Xie, H.; Liu, H.; Liu, S.; He, D.; Mi, P.; He, S.; Wang, J.; Sun, Y. NIR-to-vis handheld platforms for detecting miRNA level and mutation based on sub-10 nm sulfide nanodots and HCR amplification. ACS Appl. Mater. Interfaces 2022, 14, 10212–10226. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, Y.; Yin, X.; Zhang, Y.; Yang, Z.; Wang, H.; Yang, W.; Pang, P. Electrochemical determination of Pb2+ based on DNAzyme-triggered rolling circle amplification and DNA-templated silver nanoclusters amplification strategy. Microchem. J. 2023, 189, 108544. [Google Scholar] [CrossRef]
- Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.-K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014, 43, 3324–3341. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, R.; Tang, J.; Yang, D. Rolling circle amplification (RCA)-based DNA hydrogel. Nat. Protoc. 2021, 16, 5460–5483. [Google Scholar] [CrossRef]
- Pang, Y.-H.; Guo, L.-L.; Shen, X.-F.; Yang, N.-C.; Yang, C. Rolling circle amplified DNAzyme followed with covalent organic frameworks: Cascade signal amplification of electrochemical ELISA for alfatoxin M1 sensing. Electrochim. Acta 2020, 341, 136055. [Google Scholar] [CrossRef]
- Peng, X.; Liang, W.-B.; Wen, Z.-B.; Xiong, C.-Y.; Zheng, Y.-N.; Chai, Y.-Q.; Yuan, R. Ultrasensitive fluorescent assay based on a rolling-circle-amplification-assisted multisite-strand-displacement-reaction signal-amplification strategy. Anal. Chem. 2018, 90, 7474–7479. [Google Scholar] [CrossRef]
- Peng, Y.; Li, L.; Yi, X.; Guo, L. Label-free picomolar detection of Pb2+ using atypical icosahedra gold nanoparticles and rolling circle amplification. Biosens. Bioelectron. 2014, 59, 314–320. [Google Scholar] [CrossRef]
- Yuan, A.; Xiao, H.; Yang, F.; Hao, H.; Wang, X.; Li, J.; Jin, M.; Zhao, Q.; Sha, R.; Deng, Z. DNA walker for signal amplification in living cells. TrAC Trends Anal. Chem. 2022, 158, 116870. [Google Scholar] [CrossRef]
- Wang, D.; Vietz, C.; Schröder, T.; Acuna, G.; Lalkens, B.; Tinnefeld, P. A DNA walker as a fluorescence signal amplifier. Nano Lett. 2017, 17, 5368–5374. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, K.; Wang, B.; Liu, Z.; Yang, C.; Wang, J.; Ma, X.; Li, H.; Sun, C. Engineering DNAzyme strategies for fluorescent detection of lead ions based on RNA cleavage-propelled signal amplification. J. Hazard. Mater. 2022, 440, 129712. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Furuya, K.; Lu, Y. A highly selective lead sensor based on a classic lead DNAzyme. Chem. Commun. 2010, 46, 3896–3898. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, W.; Liu, J. Review of recent progress on DNA-based biosensors for Pb2+ detection. Anal. Chim. Acta 2021, 1147, 124–143. [Google Scholar] [CrossRef]
- Rong, M.; Li, J.; Hu, J.; Chen, A.; Wu, W.; Lyu, J. A highly sensitive and colorimetric biosensor based on magnetic nano-DNAzyme for detection of lead (II) ion in real water samples. J. Chem. Technol. Biotechnol. 2018, 93, 3254–3263. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, J.; Luo, Z.; Wang, X.; Duan, Y. Label-Free and Enzyme-Free Colorimetric Detection of Pb2+ Based on RNA Cleavage and Annealing-Accelerated Hybridization Chain Reaction. Anal. Chem. 2019, 91, 4806–4813. [Google Scholar] [CrossRef]
- Yang, G.; Song, C.; Shi, Q.; Liu, H.; Li, S.; Liu, R.; Liu, S.; Lv, C. Amplified colorimetric sensor for detecting radon by its daughter lead based on the free-fixed auto-assembly structure of Duplex-hemin/G-quadruplex. J. Pharm. Biomed. Anal. 2018, 159, 459–465. [Google Scholar] [CrossRef]
Probe Name | Sequence |
---|---|
SS | 5′-biotin-TTT TTA CTG CTA CTC ACT AT/rA/GGA AGA GAT GAG ACT GAT-3′ |
FAM-SS | 5′-biotin-TTT TTA CTG CTA CTC ACT AT/rA/GGA AGA GAT GAG ACT GAT-FAM-3′ |
ES | 5′-CTC ATC TCT GAA GTA GCG CCG CCG TAT AGT GAG TAG CAG T-3′ |
cDNA | 5′-GGA AGA GAT GAG ACT GAT-3′ |
TEMP | 5′-P-ATC TCT TCC TTT TCC CAA CCC GCC CAA CCC TTT TTT TTT TCC CAA CCC GCC CAA CCC TTT TAT CAG TCT C-3′ |
Recognition Element | Strategy | Linear Range | LOD | Ref. |
---|---|---|---|---|
GR5 DNAzyme | Functionalized AuNPs/magnetic nano-DNAzyme | 0.1 nM–100 μM | 32 pM | [46] |
GR5 DNAzyme | Cleavage-induced HCR/AuNPs | 0–1 nM | 59.39 pM | [47] |
GR5 DNAzyme | Cleavage-induced G4 formation/HCR/Duplex-hemin/TMB-H2O2 | 2.58–18 nM | 0.77 nM | [48] |
GR5 DNAzyme | Magnetic nano-DNAzyme walker/cleavage-induced RCA/G4/TMB-H2O2 | 0.01–1000 nM | 3.3 pM | This work |
Sample | Added Pb2+ (nM) | ICP-MS | This Work | |||
---|---|---|---|---|---|---|
Found Pb2+ (nM) a | RSD (%) b | Found Pb2+ (nM) a | RSD (%) b | Recovery (%) | ||
River water | 0 | 2.017 | 1.190 | 3.676 | 3.117 | / |
0.5 | 2.648 | 0.873 | 4.188 | 2.362 | 102.416 | |
50 | 52.492 | 1.181 | 54.947 | 2.197 | 102.542 | |
250 | 252.187 | 0.945 | 249.084 | 2.112 | 98.163 | |
Drinking water | 0 | / | / | 0.205 | 4.331 | / |
0.5 | / | / | 0.719 | 3.227 | 102.8 | |
50 | 50.284 | 0.523 | 51.034 | 2.233 | 101.658 | |
250 | 249.467 | 0.642 | 248.432 | 2.143 | 99.291 | |
Tap water | 0 | / | / | 0.346 | 3.627 | / |
0.5 | / | / | 0.853 | 2.956 | 101.412 | |
50 | 49.953 | 0.452 | 49.833 | 2.423 | 98.974 | |
250 | 251.628 | 0.639 | 253.433 | 2.027 | 101.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xiao, J.; Lin, X.; Waheed, A.; Ravikumar, A.; Zhang, Z.; Zou, Y.; Chen, C. A Self-Assembled G-Quadruplex/Hemin DNAzyme-Driven DNA Walker Strategy for Sensitive and Rapid Detection of Lead Ions Based on Rolling Circle Amplification. Biosensors 2023, 13, 761. https://doi.org/10.3390/bios13080761
Wang Y, Xiao J, Lin X, Waheed A, Ravikumar A, Zhang Z, Zou Y, Chen C. A Self-Assembled G-Quadruplex/Hemin DNAzyme-Driven DNA Walker Strategy for Sensitive and Rapid Detection of Lead Ions Based on Rolling Circle Amplification. Biosensors. 2023; 13(8):761. https://doi.org/10.3390/bios13080761
Chicago/Turabian StyleWang, Yuhan, Jiaxuan Xiao, Xiaona Lin, Amira Waheed, Ayyanu Ravikumar, Zhen Zhang, Yanmin Zou, and Chengshui Chen. 2023. "A Self-Assembled G-Quadruplex/Hemin DNAzyme-Driven DNA Walker Strategy for Sensitive and Rapid Detection of Lead Ions Based on Rolling Circle Amplification" Biosensors 13, no. 8: 761. https://doi.org/10.3390/bios13080761
APA StyleWang, Y., Xiao, J., Lin, X., Waheed, A., Ravikumar, A., Zhang, Z., Zou, Y., & Chen, C. (2023). A Self-Assembled G-Quadruplex/Hemin DNAzyme-Driven DNA Walker Strategy for Sensitive and Rapid Detection of Lead Ions Based on Rolling Circle Amplification. Biosensors, 13(8), 761. https://doi.org/10.3390/bios13080761