A Simple ICT-Based Fluorescent Probe for HOCl and Bioimaging Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectral Properties of Probe 1 towards ClO−
2.2. Response Time and pH Effects of Probe 1 towards ClO−
2.3. Selectivity and Competitiveness of Probe 1 toward ClO−
2.4. Response Mechanism Study
2.5. Cellular Imaging Experiment
2.6. Confocal Fluorescence Imaging in Mice Liver Tissue
3. Experimental
3.1. Instruments and Reagents
3.2. Preparation of Various ROS and RNS Solutions
3.3. Spectrophotometric Measurements
3.4. Cell Culture and MTT Viability Assays
3.5. Synthesis of Probe 1
3.6. Exogenous and Endogenous ClO− Imaging
3.7. Confocal Imaging in Mice Liver Tissues
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Starzak, K.; Swiergosz, T.; Matwijczuk, A.; Creaven, B.; Podlesny, J.; Karcz, D. Antihypochlorite, antioxidant, and catalytic activity of three polyphenol-rich superfoods investigated with the use of coumarin-based sensors. Biomolecules 2020, 10, 723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Song, B.; Yuan, J. Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. Trends Analyt. Chem. 2018, 99, 1–33. [Google Scholar] [CrossRef]
- Malkondu, S.; Erdemir, S.; Karakurt, S. Red and blue emitting fluorescent probe for cyanide and hypochlorite ions: Biological sensing and environmental analysis. Dyes Pigm. 2020, 174, 108019. [Google Scholar] [CrossRef]
- Zhu, B.; Wu, L.; Zhu, H.; Wang, Z.; Duan, Q.; Fang, Z.; Jia, P.; Li, Z.; Liu, C. A highly specific and ultrasensitive two-photon fluorescent probe for imaging native hypochlorous acid in living cells. Sens. Actuators B Chem. 2018, 269, 1–7. [Google Scholar] [CrossRef]
- Ren, M.; Zhou, K.; He, L.; Lin, W. Mitochondria and lysosome-targetable fluorescent probes for HOCl: Recent advances and perspectives. J. Mater. Chem. B 2018, 6, 1716–1733. [Google Scholar] [CrossRef]
- Kay, J.; Thadhani, E.; Samson, L.; Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst.) 2019, 83, 102673. [Google Scholar] [CrossRef]
- Palladino, P.; Torrini, F.; Scarano, S.; Minunni, M. Colorimetric analysis of the early oxidation of dopamine by hypochlorous acid as preliminary screening tool for chemical determinants of neuronal oxidative stress. J. Pharm. Biomed. Anal. 2020, 179, 113016. [Google Scholar] [CrossRef]
- Cruz Nizer, W.S.; Inkovskiy, V.; Overhage, J. Surviving reactive chlorine stress: Responses of gram-negative bacteria to hypochlorous acid. Microorganisms 2020, 8, 1220. [Google Scholar] [CrossRef]
- Ma, J.; Yan, C.; Li, Y.; Duo, H.; Li, Q.; Lu, X.; Guo, Y. Unusual hypochlorous acid (HClO) recognition mechanism based on chlorine-oxygen bond (Cl-O) formation. Chem. Eur. J. 2019, 25, 7168–7176. [Google Scholar] [CrossRef]
- Yan, F.; Zang, Y.; Sun, J.; Sun, Z.; Zhang, H. Sensing mechanism of reactive oxygen species optical detection. Trends. Analyt. Chem. 2020, 131, 116009. [Google Scholar] [CrossRef]
- Jović, M.; Cortés-Salazar, F.; Lesch, A.; Amstutz, V.; Bi, H.Y.; Girault, H.H. Electrochemical detection of free chlorine at inkjet printed silver electrodes. J. Electroanal. Chem. 2015, 756, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, T.E.; Foster, K.L.; Benter, T.; Langer, S.; Hemminger, J.C.; FinlaysonPitts, B.J. Characterization of HOCl using atmospheric pressure ionization mass spectrometry. J. Phys. Chem. A 1999, 103, 8231–8238. [Google Scholar] [CrossRef]
- Dietrich, A.M.; Ledder, T.D.; Gallagher, D.L.; Grabeel, M.N.; Hoehn, R.C. Determination of chlorite and chlorate in chlorinated and chloraminated drinking water by flow injection analysis and ion chromatography. Anal. Chem. 1992, 64, 496–502. [Google Scholar] [CrossRef]
- Gong, Y.J.; Lv, M.K.; Zhang, M.L.; Kong, Z.Z.; Mao, G.J. A novel two-photon fluorescent probe with long-wavelength emission for monitoring HClO in living cells and tissues. Talanta 2019, 192, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.J.; Liang, Z.Z.; Bi, J.J.; Zhang, H.; Meng, H.M.; Su, L.; Gong, Y.J.; Feng, S.L.; Zhang, G.S. A near-infrared fluorescent probe based on photostable si-rhodamine for imaging hypochlorous acid during lysosome-involved inflammatory response. Anal. Chim. Acta 2019, 1048, 143–153. [Google Scholar] [CrossRef]
- Chen, L.D.; Ding, H.L.; Wang, N.; An, Y.; Lü, C.W. Two highly selective and sensitive fluorescent probes design and apply to specific detection of hypochlorite. Dyes Pigm. 2019, 161, 510–518. [Google Scholar] [CrossRef]
- Gao, Y.L.; Pan, Y.; Chi, Y.; He, Y.Y.; Chen, H.Y.; Nemykin, V.N. A “reactive” turn-on fluorescence probe for hypochlorous acid and its bioimaging application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 190–196. [Google Scholar] [CrossRef]
- Lia, N.; Yeb, J.S.; Mab, Y. Stimuli-responsive SERS nanoprobes for multiplexing detection. Sens. Actuators B Chem. 2019, 281, 977–982. [Google Scholar] [CrossRef]
- Luo, P.; Zhao, X.J. A sensitive and selective fluorescent probe for real-time detection and imaging of hypochlorous acid in living cells. ACS Omega 2021, 6, 12287–12292. [Google Scholar] [CrossRef]
- Hu, W.D.; Zhao, M.; Gu, K.Y.; Xie, L.W.; Liu, M.; Lu, D.Q. Fluorescent probe for the detection of hypochlorous acid in water samples and cell models. RSC Adv. 2022, 12, 777. [Google Scholar] [CrossRef]
- Ma, C.G.; Zhong, G.Y.; Zhao, Y.; Zhang, P.; Fu, Y.Q.; Shen, B.X. Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118545. [Google Scholar] [CrossRef] [PubMed]
- He, X.J.; Zheng, Z.M.; Zhang, F.F.; Xu, C.C.; Xu, W.; Ye, L.S.; Sun, X.S.; Zhou, Z.; Shen, J.L. Mitochondria-targeted chemosensor to discriminately and continuously visualize HClO and H2S with multiresponse fluorescence signals for in vitro and in vivo bioimaging. ACS Appl. Bio. Mater. 2020, 3, 7886–7897. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Wang, P.P.; Yang, K.; Liu, Y.; Cheng, D.; He, L.W. Methylene blue-based near-infrared activatable probes for bioimaging. Dyes Pigm. 2023, 211, 111083. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Chen, Z.; Liu, Q.T.; Huang, H.T.; Meng, Z.Y.; Gong, S.; Wang, Z.L.; Wang, S.F. A NIR BODIPY-based ratiometric fluorescent probe for HClO detection with high selectivity and sensitivity in real water samples and living zebrafish. Spectrochim. Acta A Mol. Biomol. 2023, 290, 122268. [Google Scholar] [CrossRef]
- Li, S.J.; Yang, K.; Wang, P.P.; Liu, Y.; Cheng, D.; He, L.W. Monitoring heat stroke with a HClO-activatable near-infrared fluorescent probe. Sens. Actuators B Chem. 2023, 385, 133696. [Google Scholar] [CrossRef]
- Gu, B.; Dai, C.; Zhou, Z.L.; Tang, S.P.; Zhang, Y.Y. Rational construction of an AIE-active fluorescent probe bearing three reaction sites for individual and continuous detection of H2S and HClO with single-wavelength excitation. Sens. Actuators B Chem. 2023, 375, 132900. [Google Scholar] [CrossRef]
- Yang, X.P.; Liu, J.F.; Xie, P.Y.; Han, X.J.; Zhang, D.; Ye, Y.; Zhao, Y.F. Visualization of biothiols and HClO in cancer therapy via a multi-responsive fluorescent probe. Sens. Actuators B Chem. 2021, 347, 130620. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Meng, L.; Luo, H.Q.; Xiao, Q.; Li, N.B. Screening of aggregation-induced emission and multi-response acrylonitrile-bridging fluorescent molecules tailored for rapid turn-on detection of HClO as well as ratiometric visualizing of extreme basicity. Anal. Chim. Acta 2023, 1254, 341122. [Google Scholar] [CrossRef]
- Kumaravel, S.; Balamurugan, T.S.T.; Jia, S.H.; Lin, H.Y.; Huang, S.T. Ratiometric electrochemical molecular switch for sensing hypochlorous acid: Applicable in food analysis and real-time in-situ monitoring. Anal. Chim. Acta 2020, 1106, 168–175. [Google Scholar] [CrossRef]
- Pan, D.Y.; Don, Y.; Lu, Y.H.; Xiao, G.Y.; Chi, H.J.; Hu, Z.Z. AIE fluorescent probe based on tetraphenylethylene and morpholine-thiourea structures for detection of HClO. Anal. Chim. Acta 2022, 1235, 340559. [Google Scholar] [CrossRef]
- Shen, Y.M.; Zhang, X.Y.; Zhang, C.h.X.; Tang, Y.C. An ESIPT-based reversible ratiometric fluorescent sensor for detecting HClO/H2S redox cycle in living cells. Spectrochim. Acta A Mol. Biomol. 2023, 285, 121881. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.M.; Liu, X.; Zhang, X.Y.; Zhang, Y.Y.; Gu, B. Employing an ICT-ESIPT strategy for ratiometric tracking of HClO based on sulfide oxidation reaction. Spectrochim. Acta A Mol. Biomol. 2020, 239, 118515. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hou, P.; Sun, J.W.; Wang, H.J.; Liu, L. A new long-wavelength emission fluorescent probe for imaging biothiols with remarkable Stokes shift. Spectrochim. Acta A Mol. Biomol. 2020, 241, 118655. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.H.; Chen, Z.J.; Yang, M.Y.; Lv, J.J.; Li, H.Y.; Gao, J.; Yuan, Z.L. A hydroxytricyanopyrrole-based fluorescent probe for sensitive and selective detection of hypochlorous acid. Molecules 2022, 27, 7237. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zheng, G.S.; Duan, Q.Y.; Yang, L.; Zhang, J.; Zhang, H.T.; He, J.; Sun, H.Y.; Ho, D. Ultra-sensitive fluorescent probes for hypochlorite acid detection and exogenous/endogenous imaging of living cells. Chem. Commun. 2018, 54, 7967–7970. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Paramjit Kaur, M.; Singh, K. Bis-cyanostilbene based fluorescent materials: A rational design of AIE active probe for hypochlorite sensing. Spectrochim. Acta A Mol. Biomol. 2023, 302, 123043. [Google Scholar] [CrossRef]
- Sun, Y.G.; Gao, Y.Q.; Tang, C.C.; Dong, G.P.; Zhao, P.; Peng, D.Q.; Wang, T.T.; Du, L.P.; Li, M.Y. Multiple rapid-responsive probes for hypochlorite detection based on dioxetane luminophore derivatives. J. Pharm. Sci. 2022, 12, 446–452. [Google Scholar] [CrossRef]
- Yan, D.L.; Liu, L.K.; Liu, X.B.; Liu, Q.; Hou, P.; Wang, H.; Xia, C.H.; Li, G.; Ma, C.H.; Chen, S. Simultaneous discrimination of Cys/Hcy and GSH with simple fluorescent probe under a single-wavelength excitation and its application in living cells, tumor tissues, and zebrafish. Front. Chem. 2022, 10, 856994. [Google Scholar] [CrossRef]
- Yue, L.Z.; Huang, H.W.; Song, W.H.; Lin, W.Y. A near-infrared endoplasmic reticulum-targeted fluorescent probe to visualize the fluctuation of SO2 during endoplasmic reticulum stress. Chem. Eng. J. 2022, 431, 133468. [Google Scholar] [CrossRef]
- Fan, G.W.; Wang, N.N.; Zhang, J.; Ji, X.; Qin, S.C.; Tao, Y.F.; Zhao, W.L. BODIPY-based near-infrared fluorescent probe for diagnosis drug-induced liver injury via imaging of HClO in cells and in vivo. Dyes Pigm. 2022, 199, 110073. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.W.; Wang, P.Z.; Song, X.J.; Mao, Z.Q.; Liu, Z.H. Highly sensitive near-infrared imaging of peroxynitrite fluxes in inflammation progress. Anal. Chem. 2021, 93, 3035–3041. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.Y.; Xiao, Y.S.; Li, Y.; Liang, M.W.; Xie, X.L.; Wang, X.; Tang, B. Evaluating drug-induced liver injury and its remission via discrimination and imaging of HClO and H2S with a two-photon fluorescent probe. Anal. Chem. 2018, 90, 7510–7516. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Wu, S.; Bing, Y.; Li, H.; Liu, X.; Li, W.; Zou, X.; Qu, Z. A Simple ICT-Based Fluorescent Probe for HOCl and Bioimaging Applications. Biosensors 2023, 13, 744. https://doi.org/10.3390/bios13070744
Zheng Y, Wu S, Bing Y, Li H, Liu X, Li W, Zou X, Qu Z. A Simple ICT-Based Fluorescent Probe for HOCl and Bioimaging Applications. Biosensors. 2023; 13(7):744. https://doi.org/10.3390/bios13070744
Chicago/Turabian StyleZheng, Yan, Shuang Wu, Yifan Bing, Huimin Li, Xueqin Liu, Wenlan Li, Xiang Zou, and Zhongyuan Qu. 2023. "A Simple ICT-Based Fluorescent Probe for HOCl and Bioimaging Applications" Biosensors 13, no. 7: 744. https://doi.org/10.3390/bios13070744
APA StyleZheng, Y., Wu, S., Bing, Y., Li, H., Liu, X., Li, W., Zou, X., & Qu, Z. (2023). A Simple ICT-Based Fluorescent Probe for HOCl and Bioimaging Applications. Biosensors, 13(7), 744. https://doi.org/10.3390/bios13070744