An Enhanced Photosensitive Sensor Based on ITO/MWCNTs@Polymer Composite@BiVO4 for Quercetin Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Homopolymers of Styrene and Acrylonitrile
2.3. Synthesis of Ternary PST/PAN/PIN Conductive Polymer Composite
2.4. Synthesis of BiVO4 Nanoparticles
2.5. Preparation of Electrodes
2.6. Characterization of Synthesized Materials and Prepared Photosensitive Sensors
3. Results
3.1. FTIR Spectra Analysis of PST, PAN, and Ternary PST/PAN/PIN Composite
3.2. Thermogravimetric Analysis of PST, PAN, PIN and Ternary PST/PAN/PIN Composite
3.3. Composite Structure Characterizations
3.4. Light Sensitive Sensor Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, Y.; Li, P.; Wei, J. Engineering Functional Mesoporous Materials from Plant Polyphenol Based Coordination Polymers. Coord. Chem. Rev. 2022, 468, 214649. [Google Scholar] [CrossRef]
- Rahim, M.A.; Kristufek, S.L.; Pan, S.; Richardson, J.J.; Caruso, F. Phenolic Building Blocks for the Assembly of Functional Materials. Angew. Chemie Int. Ed. 2019, 58, 1904–1927. [Google Scholar] [CrossRef]
- Ay, M.; Charli, A.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Chapter 32—Quercetin. In Nutraceuticals Efficacy, Safety and Toxicity; Gupta, R.C.B.T.-N., Ed.; Academic Press: Boston, UK, 2016; pp. 447–452. ISBN 978-0-12-802147-7. [Google Scholar]
- Thangasamy, T.; Sittadjody, S.; Burd, R. Chapter 27—Quercetin: A Potential Complementary and Alternative Cancer Therapy. In Complementary and Alternative Therapies and the Aging Population; Watson, R., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 563–584. ISBN 978-0-12-374228-5. [Google Scholar]
- Phattanaphakdee, W.; Ditipaeng, C.; Uttayarat, P.; Thongnopkoon, T.; Athikomkulchai, S.; Chittasupho, C. Development and Validation of HPLC Method for Determination of Quercetin in Hydrogel Transdermal Patches Loaded with Red Onion Peel Extract. Trop. J. Nat. Prod. Res. 2022, 6, 1210–1214. [Google Scholar] [CrossRef]
- Khursheed, R.; Wadhwa, S.; Kumar, B.; Gulati, M.; Gupta, S.; Chaitanya, M.V.N.L.; Kumar, D.; Jha, N.K.; Gupta, G.; Prasher, P.; et al. Development and Validation of RP-HPLC Based Bioanalytical Method for Simultaneous Estimation of Curcumin and Quercetin in Rat’s Plasma. S. Afr. J. Bot. 2022, 149, 870–877. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Abouelenein, D.; Angeloni, S.; Maggi, F.; Navarini, L.; Sagratini, G.; Santanatoglia, A.; Torregiani, E.; Vittori, S.; Caprioli, G. A New HPLC-MS/MS Method for the Simultaneous Determination of Quercetin and Its Derivatives in Green Coffee Beans. Foods 2022, 11, 3033. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, H.; Simal-Gandara, J.; Cheng, K.-W.; Wang, M.; Cao, H.; Xiao, J. Investigation of New Products of Quercetin Formed in Boiling Water via UPLC-Q-TOF-MS-MS Analysis. Food Chem. 2022, 386, 132747. [Google Scholar] [CrossRef]
- Mantashloo, R.; Bahar, S. Synthesis of Magnetic Graphene Quantum Dots Based Molecularly Imprinted Polymers for Fluorescent Determination of Quercetin. Microchem. J. 2023, 185, 108233. [Google Scholar] [CrossRef]
- Jeevika, A.; Alagarsamy, G.; Celestina, J.J. Biogenic Synthesis of Carbon Quantum Dots from Garlic Peel Bio-Waste for Use as a Fluorescent Probe for Sensing of Quercetin. Luminescence 2022, 37, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yang, X.; Leng, X.; Liu, X.; Schipper, D. A High-Nuclearity Cd(Ii)-Nd(Iii) Nanocage for the Rapid Ratiometric Fluorescent Detection of Quercetin. CrystEngComm 2022, 24, 4534–4539. [Google Scholar] [CrossRef]
- Katori, M.; Watanabe, M.; Tanaka, H.; Yakushiji, S.; Ueda, T.; Kamada, K.; Soh, N. Development of Enzyme/Titanate Nanosheet Complex Coated with Molecularly Imprinted Polydopamine for Colorimetric Quercetin Assay. Anal. Sci. 2022, 38, 777–785. [Google Scholar] [CrossRef]
- Fan, Y.; Yao, J.; Huang, M.; Linghu, C.; Guo, J.; Li, Y. Non-Conjugated Polymer Dots for Fluorometric and Colorimetric Dual-Mode Detection of Quercetin. Food Chem. 2021, 359, 129962. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Han, S. Ultrasensitive Determination of Epicatechin, Rutin, and Quercetin by Capillary Electrophoresis Chemiluminescence. Acta Chromatogr. 2012, 24, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Luo, C.; Sun, M.; Lu, F.; Fan, L.; Li, X. A Novel Chemiluminescence Sensor for Determination of Quercetin Based on Molecularly Imprinted Polymeric Microspheres. Food Chem. 2012, 134, 469–473. [Google Scholar] [CrossRef]
- Gomes, A.; Mattos, G.J.; Coldibeli, B.; Dekker, R.F.H.; Barbosa, A.M.; Dekker, S.E.R. Covalent attachment of laccase to carboxymethyl-botryosphaeran in aqueous solution for the construction of a voltammetric biosensor to quantify quercetin. Bioelectrochemistry 2020, 135, 107543. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chang, H.; Zhang, N.; He, Y.; Zhang, D.; Liu, B.; Fang, Y. Recent advances in enzyme inhibition based-electrochemical biosensors for pharmaceutical and environmental analysis. Talanta 2023, 253, 124092. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, T.; Zhang, N.; Li, L.; Zhu, Y.; Zhang, E.; Tang, J.; Guo, J. A 3D Flower-like Co/Ni Bimetallic Organic Framework as an Excellent Material for Electrochemical Determination of Quercetin. New J. Chem. 2023, 47, 7566–7574. [Google Scholar] [CrossRef]
- Gao, F.; Hong, W.; Xu, B.; Wang, Y.; Lu, L.; Zhao, Z.; Zhang, C.; Deng, X.; Tang, J. MXene Nanosheets Decorated with Pt Nanostructures for the Selective Electrochemical Detection of Quercetin. ACS Appl. Nano Mater. 2023, 6, 6869–6878. [Google Scholar] [CrossRef]
- Vinothkumar, V.; Sakthivel, R.; Chen, S.-M.; Kim, T.H. Facile Design of Wolframite Type CoWO4 Nanoparticles: A Selective and Simultaneous Electrochemical Detection of Quercetin and Rutin. J. Electroanal. Chem. 2022, 922, 116774. [Google Scholar] [CrossRef]
- Tian, L.; Wang, B.; Chen, R.; Gao, Y.; Chen, Y.; Li, T. Determination of Quercetin Using a Photo-Electrochemical Sensor Modified with Titanium Dioxide and a Platinum(II)-Porphyrin Complex. Microchim. Acta 2015, 182, 687–693. [Google Scholar] [CrossRef]
- Mahdiye Khatami, S.; Arvand, M.; Farahmand Habibi, M. Efficient “on–off” Photo-Electrochemical Sensing Platform Based on Titanium Dioxide Nanotube Arrays Decorated with Silver Doped Tin Oxide for Ultra-Sensitive Quercetin Detection. Microchem. J. 2022, 183, 108141. [Google Scholar] [CrossRef]
- Yue, H.Y.; Zhang, H.J.; Huang, S.; Gao, X.; Song, S.S.; Wang, Z.; Wang, W.Q.; Guan, E.H. A Novel Non-Enzymatic Dopamine Sensors Based on NiO-Reduced Graphene Oxide Hybrid Nanosheets. J. Mater. Sci. Mater. Electron. 2019, 30, 5000–5007. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J.R.; Wei, W.D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2018, 118, 2927–2954. [Google Scholar] [CrossRef] [PubMed]
- Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Synthesis of nylon 6-clay hybrid. J. Mater. Res. 1993, 8, 1179–1184. [Google Scholar] [CrossRef]
- Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 1993, 8, 1185–1189. [Google Scholar] [CrossRef]
- Vaia, R.A.; Ishii, H.; Giannelis, E.P. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 1993, 5, 1694–1696. [Google Scholar] [CrossRef]
- Lan, T.P.; Pinnavaia, T.J. Clay-Reinforced Epoxy Nanocomposites. Chem. Mater. 1994, 6, 2216–2219. [Google Scholar] [CrossRef]
- Karen, I.W.; Richard, A.V. Polymer Nanocomposites. MRS Bull. 2007, 32, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Baibarac, M.; Lira-Cantứ, M.; Orό Sol, J.; Baltog, I.; Casan-Pastor, N.; Gomez-Romero, P. Poly(N-Vinyl Carbazole) and Carbon Nanotubes Based Composites and Their Application to Rechargeable Lithium Batteries. Compos. Sci. Technol. 2007, 67, 2556–2563. [Google Scholar] [CrossRef] [Green Version]
- Gueye, M.N.; Carella, A.; Vincent, J.F.; Demadrille, R.; Simonato, J.P. Progress in Understanding Structure and Transport Properties of PEDOT-Based Materials: A Critical Review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M. Protective Polymeric Films for Industrial Substrates: A Critical Review on Past and Recent Applications with Conducting Polymers and Polymer Composites/Nanocomposites. Prog. Mater. Sci. 2019, 104, 380–450. [Google Scholar] [CrossRef]
- Ehrenstein, G. Polymeric Materials: Structure, Properties, Applications; Hanser Publications: Cincinnati, OH, USA, 2001; ISBN 978-1569903100. [Google Scholar]
- Tsarevsky, N.; Sarbu, T.; Gobelt, B.; Matyjaszewski, K. Synthesis of Styrene-Acrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization. Macromolecules 2002, 35, 6142–6148. [Google Scholar] [CrossRef]
- Çoğal, S.; Kiristi, M.; Ocakoğlu, K.; Öksüz, L.; Öksüz, A.U. Electrochromic Properties of Electrochemically Synthesized Porphyrin/3-Substituted Polythiophene Copolymers. Mater. Sci. Semicond. Process. 2015, 31, 551–560. [Google Scholar] [CrossRef]
- Billaud, D.; Maarouf, E.B.; Hannecart, E. Chemical Oxidation and Polymerization of İndole. Synth. Met. 1995, 69, 571–572. [Google Scholar] [CrossRef]
- Tran, T.Q.N.; Das, G.; Yoon, H.H. Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection, Sens. Actuators B Chem. 2017, 243, 78–83. [Google Scholar] [CrossRef]
- Baghayeri, M.; Sedrpoushan, A.; Mohammadi, A.; Heidari, M. A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 2017, 23, 1553–1562. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing, Mater. Chem. Phys. 2020, 250, 123042. [Google Scholar]
- Wu, W.; Tan, Z.; Chen, X.; Chen, X.; Cheng, L.; Wu, H.; Li, P.; Zhang, Z. Carnation-like Morphology of BiVO4-7 Enables Sensitive Photoelectrochemical Determination of Cr(VI) in the Food and Environment. Biosensors 2022, 12, 130. [Google Scholar] [CrossRef]
- Qi, X.; Tao, S. MWCNT modified Ni–Fe LDH/BiVO4 heterojunction: Boosted visible-light-driven photoelectrochemical aptasensor for ofloxacin detection. RSC Adv. 2022, 37, 24269–24277. [Google Scholar] [CrossRef]
- Kamble, G.; Natarajan, T.S.; Patil, S.S.; Thomas, M.; Chougale, R.K.; Sanadi, P.D.; Siddharth, U.S.; Ling, Y.C. BiVO4 As a Sustainable and Emerging Photocatalyst: Synthesis Methodologies, Engineering Properties, and Its Volatile Organic Compounds Degradation Efficiency. Nanomaterials 2023, 13, 1528. [Google Scholar] [CrossRef]
- Blanco, I.; Abate, L.; Bottino, F.A.; Bottino, P. Thermal Degradation of Hepta Cyclopentyl, Mono Phenyl-Polyhedral Oligomeric Silsesquioxane (hcp-POSS)/Polystyrene (PS) Nanocomposites. Polym. Degrad. Stab. 2012, 97, 849–855. [Google Scholar] [CrossRef]
- Janarthanan, P.; Yunus, W.; Ahmad, B. Thermal behavior and surface morphology studies on polystyrene grafted sago starch. J. Appl. Polym. Sci. 2003, 90, 2053–2058. [Google Scholar] [CrossRef]
- Sahiner, N.; Pekel, N.; Guven, O. Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer networks. React. Funct. Polym. 1999, 39, 139–146. [Google Scholar] [CrossRef]
- Çakar, S.; Özacar, M. Fe-Tannic Acid Complex Dye as Photo Sensitizer for Different Morphological ZnO Based DSSCs. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 163, 79–88. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, Z.; Zheng, G.; Yao, Z.; Mu, J. Superior Visible Light Photocatalytic Performance of Reticular BiVO4 Synthesized: Via a Modified Sol-Gel Method. RSC Adv. 2018, 8, 10654–10664. [Google Scholar] [CrossRef] [PubMed]
- Balogun, A.O.; Lasode, O.A.; Li, H.; McDonald, A.G. Fourier Transform Infrared (FTIR) Study and Thermal Decomposition Kinetics of Sorghum Bicolour Glume and Albizia Pedicellaris Residues. Waste Biomass Valorization 2015, 6, 109–116. [Google Scholar] [CrossRef]
- Wang, S.N.; Zhang, F.D.; Huang, A.M.; Zhou, Q. Distinction of Four Dalbergia Species by FTIR, 2nd Derivative IR, and 2D-IR Spectroscopy of Their Ethanol-Benzene Extractives. Holzforschung 2016, 70, 503–510. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, R.; Chi, Z.; Teng, Y.; Qin, P. New Insights into the Behavior of Bovine Serum Albumin Adsorbed onto Carbon Nanotubes: Comprehensive Spectroscopic Studies. J. Phys. Chem. B 2010, 114, 5625–5631. [Google Scholar] [CrossRef]
- Xu, H.; Fan, P.; Xu, L. CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance. Catalysts 2023, 13, 110. [Google Scholar] [CrossRef]
- Akir, S.; Barras, A.; Coffinier, Y.; Bououdina, M.; Boukherroub, R.; Omrani, A.D. Eco-Friendly Synthesis of ZnO Nanoparticles with Different Morphologies and Their Visible Light Photocatalytic Performance for the Degradation of Rhodamine B. Ceram. Int. 2016, 42, 10259–10265. [Google Scholar] [CrossRef]
- Das, T.K.; Ilaiyaraja, P.; Mocherla, P.S.V.; Bhalerao, G.M.; Sudakar, C. Influence of Surface Disorder, Oxygen Defects and Bandgap in TiO2 Nanostructures on the Photovoltaic Properties of Dye Sensitized Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 144, 194–209. [Google Scholar] [CrossRef]
- Pingmuang, K.; Chen, J.; Kangwansupamonkon, W.; Wallace, G.G.; Phanichphant, S.; Nattestad, A. Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes. Sci. Rep. 2017, 7, 8929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, S.H.; Lee, Y.H. Carbon Nanotubes and Graphene towards Soft Electronics. Nano Converg. 2014, 1, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, I.; Lim, H.N.; Mohd Zawawi, R.; Ahmad Tajudin, A.; Ng, Y.H.; Guo, H.; Huang, N.M. A Review on Visible-Light Induced Photoelectrochemical Sensors Based on CdS Nanoparticles. J. Mater. Chem. B 2018, 6, 4551–4568. [Google Scholar] [CrossRef] [PubMed]
- Çakar, S.; Çakiroğlu, B.; Şen, Ş.; Özacar, M. A Photo-Sensitive BiVO4@Bi2O3@g-C3N4 Sensor for the Detection of Dopamine. Microchem. J. 2022, 178, 107360. [Google Scholar] [CrossRef]
- Sengupta, P.; Shinde, S.; Majumdar, P.; Löffler, M.; Datta, P.; Patra, S. Direct Growth of Bismuth Vanadate Thin Film Arrays on FTO via Galvanic Deposition Mediated by BiOI Nanosheets for Fabrication of Photoelectrochemical Non-Enzymatic Dopamine Sensing Platform. J. Electrochem. Soc. 2020, 167, 047513. [Google Scholar] [CrossRef]
- Zhu, Q.G.; Sujari, A.N.A.; Ab Ghani, S. Nafion-MWCNT Composite Modified Graphite Paste for the Analysis of Quercetin in Fruits of Acanthopanax Sessiliflorus. Sens. Actuators B Chem. 2013, 177, 103–110. [Google Scholar] [CrossRef]
- Rui, Z.; Huang, W.; Chen, Y.; Zhang, K.; Cao, Y.; Tu, J. Facile Synthesis of Graphene / Polypyrrole 3D Composite for a High-Sensitivity Non-Enzymatic Dopamine Detection. J. Appl. Polym. Sci. 2017, 44840, 6–11. [Google Scholar] [CrossRef]
- Karakaya, S.; Kaya, İ. An Electrochemical Detection Platform for Selective and Sensitive Voltammetric Determination of Quercetin Dosage in a Food Supplement by Poly(9-(2-(Pyren-1-Yl)Ethyl)-9h-Carbazole) Coated Indium Tin Oxide Electrode. Polymer 2021, 212, 123300. [Google Scholar] [CrossRef]
- Chen, X.; Li, Q.; Yu, S.; Lin, B.; Wu, K. Activated Silica Gel Based Carbon Paste Electrodes Exhibit Signal Enhancement for Quercetin. Electrochim. Acta 2012, 81, 106–111. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Zhang, L.; Wang, Z.F.; Xu, J.K.; Wen, Y.P. Electrochemical Determination of Quercetin by Self-Assembled Platinum Nanoparticles/Poly(Hydroxymethylated-3,4-Ethylenedioxylthiophene) Nanocomposite Modified Glassy Carbon Electrode. Chin. Chem. Lett. 2014, 25, 505–510. [Google Scholar] [CrossRef]
- Feng, S.; Guo, J.; Chen, X.; Meng, J.; Zhang, G.; Liu, G.; Sun, H.; Wang, B.; Liu, W. N, S Co-Doped Graphene/Ag@Au Triangular Core-Shell Nanomaterials for Determination of Quercetin. Int. J. Electrochem. Sci. 2020, 15, 8041–8054. [Google Scholar] [CrossRef]
- Kan, X.; Zhang, T.; Zhong, M.; Lu, X. CD/AuNPs/MWCNTs Based Electrochemical Sensor for Quercetin Dual-Signal Detection. Biosens. Bioelectron. 2016, 77, 638–643. [Google Scholar] [CrossRef] [PubMed]
Sensors | Rs (Ω) | RCT (Ω) | Cμ (10−7 F cm−2) | fmax (Hz) | τe (ms) | τd (ms) |
---|---|---|---|---|---|---|
ITO | 23.06 | 17.44 | 4.36 | 935.12 | 0.103 | 0.0760 |
ITO/MWCNT | 18.02 | 104.84 | 1.05 | 268.02 | 0.594 | 0.1101 |
ITO/MWCNT@PC | 22.05 | 66.13 | 1.69 | 223.03 | 0.713 | 0.1117 |
ITO/MWCNT@PC@BiVO4 | 16.01 | 60.75 | 2.02 | 79.12 | 2.012 | 0.1227 |
Sensors | Method | LOD (µM) | Linear Range (µM) | Ref. |
---|---|---|---|---|
ITO/MWCNT@PC@BiVO4 | PEC | 0.133 | 10-200 | This study |
BiVO4/FTO | PEC | 0.154 | 100–106 | [58] |
Nafion/MWCNT-GPE | PEC | 6.0 | 10–910 | [59] |
TiO2/PtP/GCE | PEC | 0.8 | 2–500 | [21] |
PPy/graphene | PEC | 0.05 | 100–1000 | [60] |
poly(Pyr-Carb)/ITO | EC | 0.59 | 2–500 | [61] |
Ac–Si/CPE | EC | 0.0116 | 5–100 | [62] |
PtNPs/PEDOT-MeOH/GCE | EC | 0.0052 | 0.04–99.09 | [63] |
NS-G/T-Ag@Au NPs/GCE | EC | 0.05 | 0.5–15 | [64] |
CD/AuNPs/MWCNTs | EC | 0.064 | 0.005–7 | [65] |
Extract | Added µM | Found µM | RSD % | Recovery % |
---|---|---|---|---|
Black Tea 1 | 0 | 0.61 | 3.6 | - |
0.1 | 0.71 | 2.3 | 99.7 | |
0.5 | 1.11 | 2.6 | 99.8 | |
1 | 1.60 | 2.9 | 98.9 | |
2 | 2.56 | 3.6 | 97.8 | |
5 | 5.52 | 4.2 | 98.4 | |
Black Tea 2 | 0 | 0.59 | 3.4 | - |
0.1 | 0.68 | 2.6 | 99.6 | |
0.5 | 1.08 | 2.4 | 99.8 | |
1 | 1.58 | 2.2 | 98.8 | |
2 | 2.56 | 3.4 | 97.6 | |
5 | 5.55 | 5.2 | 96.5 | |
Black Tea 1 HPLC | - | 0.56 | 2.1 | - |
Black Tea 2 HPLC | - | 0.53 | 1.8 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarikaya, İ.; Kaleoğlu, E.; Çakar, S.; Soykan, C.; Özacar, M. An Enhanced Photosensitive Sensor Based on ITO/MWCNTs@Polymer Composite@BiVO4 for Quercetin Detection. Biosensors 2023, 13, 729. https://doi.org/10.3390/bios13070729
Sarikaya İ, Kaleoğlu E, Çakar S, Soykan C, Özacar M. An Enhanced Photosensitive Sensor Based on ITO/MWCNTs@Polymer Composite@BiVO4 for Quercetin Detection. Biosensors. 2023; 13(7):729. https://doi.org/10.3390/bios13070729
Chicago/Turabian StyleSarikaya, İrem, Esra Kaleoğlu, Soner Çakar, Cengiz Soykan, and Mahmut Özacar. 2023. "An Enhanced Photosensitive Sensor Based on ITO/MWCNTs@Polymer Composite@BiVO4 for Quercetin Detection" Biosensors 13, no. 7: 729. https://doi.org/10.3390/bios13070729
APA StyleSarikaya, İ., Kaleoğlu, E., Çakar, S., Soykan, C., & Özacar, M. (2023). An Enhanced Photosensitive Sensor Based on ITO/MWCNTs@Polymer Composite@BiVO4 for Quercetin Detection. Biosensors, 13(7), 729. https://doi.org/10.3390/bios13070729