The Fabrication of a La2Sn2O7/f-HNT Composite for Non-Enzymatic Electrochemical Detection of 3-Nitro-l-tyrosine in Biological Samples
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of La2Sn2O7 Nanoparticles
2.3. Synthesis of f-HNT
2.4. Synthesis of La2Sn2O7/f-HNT
2.5. Fabrication of Modified Electrodes
2.6. Real Samples Preparation
3. Results and Discussion
3.1. Characterization of f-HNT, La2Sn2O7, and La2Sn2O7/F-HNT
3.1.1. X-ray Diffraction (XRD)
3.1.2. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.1.3. Microscopic Studies
3.2. Electrochemical Behavior of La2Sn2O7/F-HNT
3.2.1. Electrochemical Detection of 3-Nitro-l-tyrosine
3.2.2. DPV Analysis of 3-Nitro-l-tyrosine at La2Sn2O7/f-HNT
3.2.3. Reproducibility and Cycle Stability of 3-Nitro-l-tyrosine at La2Sn2O7/f-HNT/SPCE
3.2.4. Spiked Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, E.A.; Kokulnathan, T.; Wang, T.J.; Anthuvan, A.J.; Chang, Y.H. Two-dimensional titanium carbide (MXene) nanosheets as an efficient electrocatalyst for 4-nitroquinoline N-oxide detection. J. Mol. Liq. 2020, 312, 113354. [Google Scholar] [CrossRef]
- Ramanathan, S.; Elanthamilan, E.; Obadiah, A.; Durairaj, A.; Santhoshkumar, P.; Merlin, J.P.; Ramasundaram, S.; Vasanthkumar, S. Electrochemical Detection of Trace Amounts of Arsenic (III) in Poultry Using a Graphene Oxide-Bis (2-(4, 5-diphenyl-1 H-imidazol-2-yl) phenoxy) Cobalt Composite Modified Electrode. J. Electron. Mater. 2019, 48, 4498–4506. [Google Scholar] [CrossRef]
- Govindasamy, M.; Manavalan, S.; Chen, S.M.; Umamaheswari, R.; Chen, T.W. Determination of oxidative stress biomarker 3-nitro-L-tyrosine using CdWO4 nanodots decorated reduced graphene oxide. Sens. Actuators B Chem. 2018, 272, 274–281. [Google Scholar] [CrossRef]
- Thirumalraj, B.; Sriram, B.; Muthukutty, B.; Zheng, L.; Wang, S.F.; Choe, H.; Kwon, K. Layered metal chalcogenide of SnSe nanosheets integrated with 2D-hexagonal boron nitride for accurate and low-level detection of nitrofurazone. Chem. Eng. J. 2023, 455, 140521. [Google Scholar] [CrossRef]
- Priscillal, I.J.D.; Wang, S.F. Coral reef-like zinc niobate nanostructures decorated functionalized carbon nanofiber as electrode modifier for detection of oxidative stress biomarker: 3-nitro-L-tyrosine. Mater. Today Chem. 2022, 25, 100970. [Google Scholar] [CrossRef]
- Liu, H.; Huang, T.; Kissinger, C.B.; Kissinger, P.T. Comparison of detection methods for liquid chromatographic determination of 3-nitro-L-tyrosine. J. Chromatogr. B Biomed. Sci. Appl. 1998, 713, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Nehru, R.; Dong, C.D.; Chen, C.W.; Nguyen, T.B.; Li, M.F. Green and low-cost synthesis of yttrium oxide/graphene oxide binary sheets as a highly efficient electrocatalyst for voltammetric determination of 3-nitro-L-tyrosine. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128089. [Google Scholar] [CrossRef]
- Sriram, B.; Baby, J.N.; Hsu, Y.F.; Wang, S.F.; George, M. In Situ Synthesis of a Bismuth Vanadate/Molybdenum Disulfide Composite: An Electrochemical Tool for 3-Nitro-l-Tyrosine Analysis. Inorg. Chem. 2022, 61, 14046–14057. [Google Scholar] [CrossRef]
- Maheshwaran, S.; Akilarasan, M.; Chen, S.M.; Chen, T.W.; Tamilalagan, E.; Tzu, C.Y.; Lou, B.S. An ultra-sensitive electrochemical sensor for the detection of oxidative stress biomarker 3-nitro-l-tyrosine in human blood serum and saliva samples based on reduced graphene oxide entrapped zirconium (IV) oxide. J. Electrochem. Soc. 2020, 167, 066517. [Google Scholar] [CrossRef]
- Maruyama, W.; Hashizume, Y.; Matsubara, K.; Naoi, M. Identification of 3-nitro-L-tyrosine, a product of nitric oxide and superoxide, as an indicator of oxidative stress in the human brain. J. Chromatogr. B Biomed. Sci. Appl. 1996, 676, 153–158. [Google Scholar] [CrossRef]
- Liu, H.; Duda, C.T.; Huang, T.; Aruda, W.O.; Kissinger, P.T. Optimization of post-column photolysis and electrochemical detection for the liquid chromatographic determination of 3-nitro-L-tyrosine. J. Chromatogr. A 1998, 818, 69–75. [Google Scholar] [CrossRef]
- Chen, T.W.; Priya, T.S.; Chen, S.M.; Kokulnathan, T.; Ahmed, F.; Alshahrani, T. Synthesis of praseodymium vanadate in deep eutectic solvent medium for electrochemical detection of furaltadone. Process Saf. Environ. Prot. 2023, 174, 368–375. [Google Scholar] [CrossRef]
- Selvi, S.V.; Nataraj, N.; Chen, T.W.; Chen, S.M.; Nagarajan, S.; Ko, C.S.; Tseng, T.W.; Huang, C.C. In-situ formation of 2H phase MoS2/cerium-zirconium oxide nanohybrid for potential electrochemical detection of an anticancer drug flutamide. Mater. Today Chem. 2022, 23, 100749. [Google Scholar] [CrossRef]
- Santhoshkumar, P.; Thirumalraj, B.; Sriram, B.; Karuppasamy, K.; Vikraman, D.; Kathalingam, A.; Choe, H.; Kim, H.S. Mesoporous SnSe2-grafted N-doped carbon composites with integrated flaky structure for electrochemical sensing of carbendazim. Ceram. Int. 2022, 48, 16023–16032. [Google Scholar] [CrossRef]
- Elanthamilan, E.; Akilarasan, M.; Chen, S.M.; Kogularasu, S.; Johnson, P.M.; Tamilarasan, E.B. Sonochemically recovered aluminum oxide nanoparticles from domestic aluminum wastes as a highly stable electrocatalyst for proton-pump inhibitor (omeprazole) detection. J. Electrochem. Soc. 2020, 167, 027544. [Google Scholar]
- Berri, S.; Kaur, K.; Gupta, D.C.; Sofi, S.A.; Singh, J.; Srinivasana, M.; Wani, A.F.; Lone, I.U.N. Tailoring the Inherent Magnetism and Thermoelectric Response of Pyrochlore Oxide A2B2O7 (A= Er, B= Ru, Sn, Ge, Pt): A Computational Approach. J. Supercond. Nov. Magn. 2023, 36, 1203–1215. [Google Scholar] [CrossRef]
- Radha, A.; Wang, S.F. Designing Hybrid Lanthanum Stannate/Functionalized Halloysite Nanotubes as Electrode Material for Electrochemical Detection of 4-(Methylamino) phenol (Metol) in Environmental Samples. ACS Sustain. Chem. Eng. 2023, 11, 5072–5081. [Google Scholar] [CrossRef]
- Muthukutty, B.; Ganesamurthi, J.; Chen, T.W.; Chen, S.M.; Yu, J.; Liu, X. A novel high-performance electrocatalytic determination platform for voltammetric sensing of eugenol in acidic media using pyrochlore structured lanthanum stannate nanoparticles. J. Ind. Eng. Chem. 2022, 106, 103–112. [Google Scholar] [CrossRef]
- Devi, R.K.; Ganesan, M.; Chen, T.W.; Chen, S.M.; Rasheed, R.A.; Al-Onazi, W.A.; Elshikh, M.S.; Liu, X.; Yu, J. Hexagonal nanosheets of pyrrochlore-type lanthanum stannate for sensitive detection of chlorinated pesticide in food and environmental samples. Food Chem. 2023, 404, 134516. [Google Scholar] [CrossRef]
- Rawtani, D.; Agrawal, Y.K. Multifarious applications of halloysite nanotubes: A review. Rev. Adv. Mater. Sci 2012, 30, 282–295. [Google Scholar]
- Kokulnathan, T.; Chen, T.W.; Chen, S.M.; Ahmed, F.; Hasan, P.M.Z.; Bilgrami, A.L.; Kumar, S. A robust combination of dysprosium vanadate/halloysite nanotubes: The electrochemical system for dimetridazole detection. Mater. Today Chem. 2022, 24, 100890. [Google Scholar] [CrossRef]
- Hwa, K.Y.; Sharma, T.S.K.; Ganguly, A. Design strategy of rGO–HNT–AgNPs based hybrid nanocomposite with enhanced performance for electrochemical detection of 4-nitrophenol. Inorg. Chem. Front. 2020, 7, 1981–1994. [Google Scholar] [CrossRef]
- Bharathi, P.; Wang, S.F. Integration of Bismuth sulfide/functionalized halloysite nanotube composite: An electrochemical tool for diethofencarb analysis. Chemosphere 2023, 310, 136834. [Google Scholar] [CrossRef]
- Kamble, R.; Ghag, M.; Gaikawad, S.; Panda, B.K. Halloysite nanotubes and applications: A review. J. Adv. Sci. Res. 2012, 3, 25–29. [Google Scholar]
- Kokulnathan, T.; Wang, T.J.; Kumar, E.A.; Ahmed, F. Construction of nickel cobalt-layered double hydroxide/functionalized–halloysite nanotubes composite for electrochemical detection of organophosphate insecticide. Chem. Eng. J. 2022, 433, 133639. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.J.; Thangapandian, M.; Alaswad, S.O. Synthesis and characterization of hexagonal boron nitride/halloysite nanotubes nanocomposite for electrochemical detection of furazolidone. Appl. Clay Sci. 2020, 187, 105483. [Google Scholar] [CrossRef]
- Goda, E.S.; Gab-Allah, M.A.; Singu, B.S.; Yoon, K.R. Halloysite nanotubes based electrochemical sensors: A review. Microchem. J. 2019, 147, 1083–1096. [Google Scholar] [CrossRef]
- Sherlin, V.A.; Stanley, M.M.; Wang, S.F.; Sriram, B.; Baby, J.N.; George, M. Nanoengineered Disposable Sensor Fabricated with Lanthanum Stannate Nanocrystallite for Detecting Animal Feed Additive: Ractopamine. Food Chem. 2023, 423, 136268. [Google Scholar] [CrossRef]
- Elanthamilan, E.; Kogularasu, S.; Chen, S.M.; Akilarasan, M.; Joshua, C.E.; Johnson, P.M.; Ali, M.A.; Al-Hemaid, F.M.; Elshikh, M.S. Sonochemically recovered silver oxide nanoparticles from the wastewater of photo film processing units as an electrode material for supercapacitor and sensing of 2, 4, 6-trichlorophenol in agricultural soil samples. Ultrason. Sonochem. 2019, 50, 255–264. [Google Scholar]
- Thirumalraj, B.; Jaihindh, D.P.; Alaswad, S.O.; Sudhakaran, M.S.P.; Selvaganapathy, M.; Alfantazi, A.; Choe, H.; Kwon, K. Fabricating BiOCl/BiVO4 nanosheets wrapped in a graphene oxide heterojunction composite for detection of an antihistamine in biological samples. Environ. Res. 2022, 212, 113636. [Google Scholar] [CrossRef]
- Selvi, S.V.; Nataraj, N.; Chen, T.W.; Chen, S.M.; Balu, P.; Liu, X. Disposable cerium oxide/graphene nanosheets based sensor for monitoring acebutolol in environmental samples and bio-fluids. J. Environ. Chem. Eng. 2022, 10, 107182. [Google Scholar] [CrossRef]
- Thirumalraj, B.; Krishnapandi, A.; Chen, S.M.; MSP, S.; Choe, H. Rational design and interlayer effect of dysprosium-stannate nanoplatelets incorporated graphene oxide: A versatile and competent electrocatalyst for toxic carbamate pesticide detection in vegetables. ACS Sustain. Chem. Eng. 2020, 8, 17882–17892. [Google Scholar] [CrossRef]
- Priscillal, I.J.D.; Wang, S.F. Nanoengineered lanthanum niobate nanocaviar anchored carbon nanofibers for trace level detection of menadione in environmental samples. Environ. Res. 2023, 227, 115794. [Google Scholar] [CrossRef]
- Priscillal, I.J.D.; Wang, S.F. Synchronously activated strontium aluminate nanoflakes anchored functionalized carbon nanofiber nanocomposite for sensitive amperometric detection of food additive: Propyl gallate. Food Chem. 2022, 389, 133119. [Google Scholar] [CrossRef]
- Kogularasu, S.; Muthumariappan, A.; Chen, S.M.; Li, Y.L.; Chen, T.W.; Ali, M.A. Evaluating Ternary Metal Oxide (TMO) core-shell nanocomposites for the rapid determination of the anti-neoplastic drug Chlorambucil (Leukeran™) by electrochemical approaches. Mater. Sci. Eng. C 2019, 103, 109724. [Google Scholar]
- Jalili, R.; Amjadi, M. Bio-inspired molecularly imprinted polymer–green emitting carbon dot composite for selective and sensitive detection of 3-nitrotyrosine as a biomarker. Sens. Actuators B: Chem. 2018, 255, 1072–1078. [Google Scholar]
- Wang, S.; Sun, G.; Chen, Z.; Liang, Y.; Zhou, Q.; Pan, Y.; Zhai, H. Constructing a novel composite of molecularly imprinted polymer-coated AuNPs electrochemical sensor for the determination of 3-nitrotyrosine. Electrochim. Acta 2018, 259, 893–902. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriram, B.; Kogularasu, S.; Wang, S.-F.; Chang-Chien, G.-P. The Fabrication of a La2Sn2O7/f-HNT Composite for Non-Enzymatic Electrochemical Detection of 3-Nitro-l-tyrosine in Biological Samples. Biosensors 2023, 13, 722. https://doi.org/10.3390/bios13070722
Sriram B, Kogularasu S, Wang S-F, Chang-Chien G-P. The Fabrication of a La2Sn2O7/f-HNT Composite for Non-Enzymatic Electrochemical Detection of 3-Nitro-l-tyrosine in Biological Samples. Biosensors. 2023; 13(7):722. https://doi.org/10.3390/bios13070722
Chicago/Turabian StyleSriram, Balasubramanian, Sakthivel Kogularasu, Sea-Fue Wang, and Guo-Ping Chang-Chien. 2023. "The Fabrication of a La2Sn2O7/f-HNT Composite for Non-Enzymatic Electrochemical Detection of 3-Nitro-l-tyrosine in Biological Samples" Biosensors 13, no. 7: 722. https://doi.org/10.3390/bios13070722
APA StyleSriram, B., Kogularasu, S., Wang, S. -F., & Chang-Chien, G. -P. (2023). The Fabrication of a La2Sn2O7/f-HNT Composite for Non-Enzymatic Electrochemical Detection of 3-Nitro-l-tyrosine in Biological Samples. Biosensors, 13(7), 722. https://doi.org/10.3390/bios13070722