Monoclonal Antibody-Based Colorimetric Lateral Flow Immunoassay for the Detection of Pyridaben in the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of the Pyridaben Hapten and Antigen
2.3. Preparation and Characterization of MAbs
2.4. Preparation of AuNP Labeled MAb
2.5. Assembly of the CLFIA
2.6. Protocol of the CLFIA
2.7. Optimization of the CLFIA
2.8. Analysis of the Spiked Samples
2.9. HPLC Analysis and Validation
3. Results and Discussion
3.1. Identification of Hapten and Antigen
3.2. Characterization of MAbs
3.3. Generation of the Colorimetric Signal on the CLFIA
3.4. CLFIA Optimization
3.5. Sensitivity and Selectivity of the CLFIA
3.6. Detection of the Spiked Samples
3.7. Validation with HPLC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bae, H.; You, S.; Li, W.; Song, G. Pyridaben leads to inhibition of cell growth and induction of cell death through intracellular mechanisms in early pregnancy. Pestic. Biochem. Phys. 2021, 171, 104733. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; You, S.; Li, W.; Song, G. Pyridaben induces mitochondrial dysfunction and leads to latent male reproductive abnormalities. Pestic. Biochem. Phys. 2021, 171, 104731. [Google Scholar] [CrossRef]
- Navarro, A.; Bandez, M.J.; Gomez, C.; Repetto, M.G.; Boveris, A. Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity. J. Bioenerg. Biomembr. 2010, 42, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Charli, A.; Jin, H.J.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model. Neurotoxicology 2016, 53, 302–313. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Dong, B.; Hu, J. Simultaneous determination of pyridaben, dinotefuran, DN and UF in eggplant ecosystem under open-field conditions: Dissipation behaviour and residue distribution. Chemosphere 2018, 195, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ebadi Manas, G.; Hasanzadeh, S.; Parivar, K. The effects of pyridaben pesticide on the histomorphometric, hormonal alternations and reproductive functions of BALB/c mice. Iran. J. Basic. Med. Sci. 2013, 16, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Maske, P.; Dighe, V.; Mote, C.; Vanage, G. N-butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats. Environ. Pollut. 2020, 256, 112957. [Google Scholar] [CrossRef]
- Ma, J.Z.; Huang, Y.; Jiang, P.; Liu, Z.; Luo, Q.; Zhong, K.Y.; Yuan, W.; Meng, Y.L.; Lu, H.Q. Pyridaben induced cardiotoxicity during the looping stages of zebrafish (Danio rerio) embryos. Aquat. Toxicol. 2021, 237, 105870. [Google Scholar] [CrossRef]
- Jabali, Y.; Millet, M.; El-Hoz, M. Spatio-temporal distribution and ecological risk assessment of pesticides in the water resources of Abou Ali River, Northern Lebanon. Environ. Sci. Pollut. R. 2020, 27, 17997–18012. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Annotation Record for Pyridaben, Source: Hazardous Substances Data Bank (HSDB). 12 May. Available online: https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7052 (accessed on 10 May 2023).
- Wang, N.; Zhao, S.; Long, X.F.; Gong, J.; Sui, C.L.; Zhang, Y.P.; Chen, L.Z.; Hu, D.Y. Determination, risk assessment and processing factors for pyridaben in field-incurred kiwifruit samples. J. Environ. Sci. Health B 2020, 55, 613–619. [Google Scholar] [CrossRef]
- Liu, C.; Lu, D.; Wang, Y.; Huang, J.; Wan, K.; Wang, F. Residue and risk assessment of pyridaben in cabbage. Food Chem. 2014, 149, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Algharibeh, G.R.; Alfararjeh, M.S. Pesticide residues in fruits and vegetables in Jordan using liquid chromatography/tandem mass spectrometry. Food Addit. Contam. B 2019, 12, 65–73. [Google Scholar] [CrossRef]
- Sun, D.L.; Zhu, Y.M.; Pang, J.X.; Zhou, Z.Q.; Jiao, B.N. Residue level, persistence and safety of spirodiclofen-pyridaben mixture in citrus fruits. Food Chem. 2015, 194, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Huan, Z.B.; Luo, J.H.; Xie, D.F. Simultaneous determination of eight pesticide residues in cowpeas by GC-ECD. J. Chromatogr. Sci. 2017, 55, 1–6. [Google Scholar] [CrossRef]
- Wang, W.P.; Zhu, H.L.; Cui, S.M.; Miao, J.G.; Chen, J.R. Ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplets coupled with gas chromatography for the determination of pesticide residues in water samples. Anal. Methods 2014, 6, 3388–3394. [Google Scholar] [CrossRef]
- Li, J.; Ding, Y.; Chen, H.; Sun, W.L.; Huang, Y.; Liu, F.Q.; Wang, M.H.; Hua, X.D. Development of an indirect competitive enzyme-linked immunosorbent assay for propiconazole based on monoclonal antibody. Food Control 2022, 134, 108751. [Google Scholar] [CrossRef]
- Yao, J.J.; Wang, Z.X.; Guo, L.L.; Xu, X.X.; Liu, L.Q.; Kuang, H.; Xu, C.L. Lateral flow immunoassay for the simultaneous detection of fipronil and its metabolites in food samples. Food Chem. 2021, 356, 129710. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Lu, D.; Zhang, G.Y.; Zhang, D.; Shi, X.B. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021, 223, 121722. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Diez, S.; Cruz, M.J.; Alvarez-Simon, D.; Montalvo, T.; Munoz, X.; Hoet, P.M.; Vanoirbeek, J.A.; Gomez-Olles, S. A rapid test for the environmental detection of pigeon antigen. Sci. Total Environ. 2021, 788, 147789. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Jin, J.; Huang, L.; Yu, W.; Su, B.; Hu, J. Ratiometric fluorescent lateral flow immunoassay for point-of-care testing of acute myocardial infarction. Angew. Chem. Int. Ed. 2021, 60, 2–10. [Google Scholar] [CrossRef]
- Soh, J.H.; Chan, H.M.; Ying, J.Y. Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today 2020, 30, 100831. [Google Scholar] [CrossRef]
- Huang, X.L.; Zhou, Y.F.; Ding, L.; Yu, G.C.; Leng, Y.K.; Lai, W.H.; Xiong, Y.H.; Chen, X.Y. Supramolecular recognition-mediated layer-by-layer self-assembled gold nanoparticles for customized sensitivity in paper-based strip nanobiosensors. Small 2019, 15, 1903861. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Jiang, Y.Z.; Wu, L.L.; Wu, Z.; Bi, Y.H.; Wong, G.; Qiu, X.G.; Chen, J.J.; Pang, D.W.; Zhang, Z.L. Dual-signal readout nanospheres for rapid point-of-care detection of ebola virus glycoprotein. Anal. Chem. 2017, 89, 13105–13111. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Ding, L.; Wu, Y.H.; Huang, X.L.; Lai, W.H.; Xiong, Y.H. Emerging strategies to develop sensitive AuNP-based ICTS nanosensors. Trac-Trend. Anal. Chem. 2019, 112, 147–160. [Google Scholar] [CrossRef]
- Miyamoto, T.; Kuwahara, T.; Yamamoto, I. A rational approach to hapten selection for immunoassay of the miticide pyridaben by computational chemistry. Pestic. Biochem. Phys. 2001, 69, 174–182. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.X.; Wu, A.H.; Wang, Z.Y.; Song, S.S.; Kuang, H.; Liu, L.Q.; Xu, C.L. Development of a gold nanoparticle-based lateral flow immunoassay for the detection of pyridaben. Microchem. J. 2021, 170, 106762. [Google Scholar] [CrossRef]
- Nieves, R.A.; Ellis, R.P.; Todd, R.J.; Johnson, T.J.A.; Grohmann, K.; Himmel, M.E. Visualization of trichoderma reesei cellobiohydrolase I and endoglucanase ion aspen cellulose by using monoclonal antibody-colloidal gold conjugates. Appl. Environ. Microbiol. 1991, 11, 3163–3170. [Google Scholar] [CrossRef]
- Xu, Z.L.; Ye, S.L.; Luo, L.; Hua, X.D.; Lai, J.X.; Cai, X.P.; Liang, Q.W.; Lei, H.T.; Sun, Y.M.; Chen, Y.P.; et al. Fluorescent enzyme-linked immunoassay based on silane-doped carbon dots for sensitive detection of microcystin-LR in water and crucian samples. Sci. Total Environ. 2020, 708, 134614. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Huang, Y.; Zhang, Z.R.; Lin, Q.; Xia, P.L.; Kong, F.Y.; Qiu, J.; Fang, S.; Hua, X.D. Rapid and sensitive detection of quizalofop-p-ethyl by gold nanoparticle-based lateral flow immunoassay in agriproducts and environmental samples. Sci. Total Environ. 2023, 857, 159427. [Google Scholar] [CrossRef]
- Yan, Z.Q.; Yuan, H.; Zhao, Q.; Xing, L.; Zheng, X.Y.; Wang, W.G.; Zhao, Y.L.; Yu, Y.; Hu, L.; Yao, W.L. Recent developments of nanoenzyme-based colorimetric sensors for heavy metal detection and the interaction mechanism. Analyst 2020, 145, 3173–3187. [Google Scholar] [CrossRef]
- Yang, P.; Chang, J.; Wong, J.; Zhang, K.; Krynitsky, A.; Bromirski, M.; Wang, J. Effect of sample dilution on matrix effects in pesticide analysis of several matrices by liquid chromatography−high-resolution mass spectrometry. J. Agric. Food Chem. 2015, 63, 5169–5177. [Google Scholar] [CrossRef] [PubMed]
Sample | Spiked (ng g−1 or ng mL−1) | Results of CLFIA a | MRL (ng g−1 or ng mL−1) | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Paddy water | 0 | − | − | − | 10 b |
1.25 | − | − | − | ||
2.5 | − | − | − | ||
5 | + | + | + | ||
10 | + | + | + | ||
Cucumber | 0 | − | − | − | 100 |
12.5 | − | − | − | ||
25 | + | + | + | ||
50 | + | + | + | ||
100 | + | + | + | ||
Cabbage | 0 | − | − | − | 2000 |
25 | − | − | − | ||
50 | + | + | + | ||
100 | + | + | + | ||
200 | + | + | + | ||
Tangerine | 0 | − | − | − | 2000 |
25 | − | − | − | ||
50 | + | + | + | ||
100 | + | + | + | ||
200 | + | + | + | ||
Orange | 0 | − | − | − | 2000 |
25 | − | − | − | ||
50 | + | + | + | ||
100 | + | + | + | ||
200 | + | + | + |
Sample Number | Results | Sample Number | Results | ||
---|---|---|---|---|---|
HPLC (mg kg−1) | CLFIA a | HPLC (mg kg −1) | CLFIA a | ||
S1 | 0.32 | + | S26 | 0.21 | + |
S2 | 0.46 | + | S27 | <LOQ | − |
S3 | 0.15 | + | S28 | 0.48 | + |
S4 | 0.12 | + | S29 | <LOQ | − |
S5 | 0.09 | + | S30 | 0.08 | + |
S6 | 0.11 | + | S31 | <LOQ | − |
S7 | <LOQ | − | S32 | <LOQ | − |
S8 | <LOQ | − | S33 | 0.27 | + |
S9 | <LOQ | − | S34 | <LOQ | − |
S10 | <LOQ | − | S35 | <LOQ | − |
S11 | 0.35 | + | S36 | <LOQ | − |
S12 | 0.08 | + | S37 | 0.11 | + |
S13 | 0.13 | + | S38 | <LOQ | − |
S14 | 0.06 | + | S39 | <LOQ | − |
S15 | <LOQ | − | S40 | 0.09 | + |
S16 | 0.58 | + | S41 | <LOQ | − |
S17 | <LOQ | − | S42 | <LOQ | − |
S18 | <LOQ | − | S43 | 0.13 | + |
S19 | 0.28 | + | S44 | 0.16 | + |
S20 | 0.14 | + | S45 | <LOQ | − |
S21 | <LOQ | − | S46 | 0.11 | + |
S22 | <LOQ | − | S47 | <LOQ | − |
S23 | <LOQ | − | S48 | 0.07 | + |
S24 | 0.05 | + | S49 | 0.28 | + |
S25 | <LOQ | − | S50 | <LOQ | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Liu, H.; Ji, Y.; Sha, Z.; An, L.; Li, M.; Zhang, D.; Wu, X.; Hua, X. Monoclonal Antibody-Based Colorimetric Lateral Flow Immunoassay for the Detection of Pyridaben in the Environment. Biosensors 2023, 13, 545. https://doi.org/10.3390/bios13050545
Chen H, Liu H, Ji Y, Sha Z, An L, Li M, Zhang D, Wu X, Hua X. Monoclonal Antibody-Based Colorimetric Lateral Flow Immunoassay for the Detection of Pyridaben in the Environment. Biosensors. 2023; 13(5):545. https://doi.org/10.3390/bios13050545
Chicago/Turabian StyleChen, He, Hao Liu, Yanran Ji, Zekun Sha, Li An, Meng Li, Di Zhang, Xujin Wu, and Xiude Hua. 2023. "Monoclonal Antibody-Based Colorimetric Lateral Flow Immunoassay for the Detection of Pyridaben in the Environment" Biosensors 13, no. 5: 545. https://doi.org/10.3390/bios13050545
APA StyleChen, H., Liu, H., Ji, Y., Sha, Z., An, L., Li, M., Zhang, D., Wu, X., & Hua, X. (2023). Monoclonal Antibody-Based Colorimetric Lateral Flow Immunoassay for the Detection of Pyridaben in the Environment. Biosensors, 13(5), 545. https://doi.org/10.3390/bios13050545