A Europium Nanosphere-Based Time-Resolved Fluorescent Immunochromatographic Assay for the Rapid Screening of 4,4′-Dinitrocarbanilide: Aiming at Improving Strip Method Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus
2.3. Preparation of Eu-NP-mAb Probes and Eu-NP-Chicken IgY Probes
2.4. TRFICA Procedure
2.5. TRFICA Development and Optimization
2.6. Curve Fitting and Statistical Analysis
2.7. Chicken Sample Analysis for TRFICA
3. Results and Discussion
3.1. Development and Optimization of TRFICA
3.1.1. Optimization of the Conjugation of Eu-NP-mAb Probes
3.1.2. Optimization of the Concentrations of mAb and Coating Antigen
3.1.3. Optimization of the Reconstitution Buffer for Eu-NP-mAb Probes
3.1.4. Optimization of Eu-NP-mAb Probe Usage
3.1.5. Optimization of Coating Buffers
3.1.6. Optimization of Incubation Times
3.1.7. Optimization of Sample Dilution Buffers
3.1.8. Optimization of Immunochromatographic Strips
3.2. Sensitivity and Cross-Reactivity of TRFICA
3.3. Chicken Sample Analysis for TRFICA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chapman, H.D.; Barta, J.R.; Blake, D.; Gruber, A.; Jenkins, M.; Smith, N.C.; Suo, X.; Tomley, F.M. A selective review of advances in coccidiosis research. Adv. Parasitol. 2013, 83, 93–171. [Google Scholar] [PubMed]
- Delahaut, P.; Pierret, G.; Ralet, N.; Dubois, M.; Gillard, N. Multi-residue method for detecting coccidiostats at carry-over level in feed by HPLC-MS/MS. Food Addit. Contam. 2010, 27, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, J.; Rodríguez-Carrasco, Y.; Ruiz, M.J.; Vila-Donat, P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. Food Chem. Toxicol. 2021, 158, 112661. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.; He, Y.; Gao, X.; Liu, H.; Rao, G.; Su, Q.; Ruan, Z.; Tang, Z.; Hu, L. Curcumin attenuates AFB1-induced duck liver injury by inhibiting oxidative stress and lysosomal damage. Food Chem. Toxicol. 2023, 172, 113593. [Google Scholar] [CrossRef]
- Luo, Y.S.; Chiu, Z.Y.; Wu, K.Y.; Hsu, C.-C. Integrating high-throughput exposure assessment and in vitro screening data to prioritize endocrine-active potential and dietary risks of pesticides and veterinary drug residues in animal products. Food Chem. Toxicol. 2023, 173, 113639. [Google Scholar] [CrossRef]
- Guth, S.; Baum, M.; Cartus, A.T.; Diel, P.; Engel, K.-H.; Engeli, B.; Epe, B.; Grune, T.; Haller, D.; Heinz, V.; et al. Evaluation of the genotoxic potential of acrylamide: Arguments for the derivation of a tolerable daily intake (TDI value). Food Chem. Toxicol. 2023, 173, 113632. [Google Scholar] [CrossRef]
- Capurro, E.; Danaher, M.; Anastasio, A.; Cortesi, M.L.; O’Keeffe, M. Efficient HPLC method for the determination of nicarbazin, as dinitrocarbanilide in broiler liver. J. Chromatogr. B 2005, 822, 154–159. [Google Scholar] [CrossRef]
- Marta, P.; Piotr, J.; Jan, Z. Comparison of different sample preparation procedures for multiclass determination of selected veterinary drug, coccidiostat and insecticide residues in eggs by liquid chromatography-tandem mass spectrometry. Anal. Methods 2014, 6, 3034–3044. [Google Scholar]
- Edyta, P.; Malgorzata, O.; Teresa, S.J.; Jedziniak, P.; Zmudzki, J. Determination of Nicarbazin in Animal Feed by High-Performance Liquid Chromatography with Interlaboratory Evaluation. Anal. Lett. 2015, 48, 2183–2194. [Google Scholar]
- Juan, M.S.; Federico, J.A.; Gaston, K.; Sosa, J.S.; Carrizo, D.B.; Boschetti, C.E. Multiple response optimization of a QuEChERS extraction and HPLC analysis of diclazuril, nicarbazin and lasalocid in chicken liver. Food Chem. 2020, 311, 126014. [Google Scholar]
- Barreto, F.; Ribeiro, C.; Hoff, R.B.; Costa, T.D. A simple and high-throughput method for determination and confirmation of 14 coccidiostats in poultry muscle and eggs using liquid chromatography—Quadrupole linear ion trap—Tandem mass spectrometry (HPLC-QqLIT-MS/MS): Validation according to European Union 2002/657/EC. Talanta 2017, 168, 43–51. [Google Scholar] [PubMed]
- Dmitrovic, J.; Durden, D.A. A new approach to the analysis of nicarbazin and ionophores in eggs by HPLC/MS/MS. J. AOAC Int. 2011, 94, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Matus, J.L.; Boison, J.O. A multi-residue method for 17 anticoccidial drugs and ractopamine in animal tissues by liquid chromatography-tandem mass spectrometry and time-of-flight mass spectrometry. Drug Test Anal. 2016, 8, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Muharem, M.; Yan, H.; Xu, S.; Feng, N.; Hao, J.; Zhu, C.; Guo, S.; Zhang, Z.; Han, N. Determination of six anticoccidials in chicken using QuEChERS combined with ultra high liquid chromatography-high resolution mass spectrometry. Se Pu= Chin. J. Chromatogr. 2015, 33, 1199–1204. [Google Scholar] [CrossRef]
- Connolly, L.; Fodey, T.L.; Crooks, S.R.; Delahaut, P.; Elliott, C.T. The production and characterisation of dinitrocarbanilide antibodies raised using antigen mimics. J. Immunol. Methods 2002, 264, 45–51. [Google Scholar] [CrossRef]
- Huet, A.C.; Bienenmann-Ploum, M.; Vincent, U.; Delahaut, P. Screening methods and recent developments in the detection of anticoccidials. Anal. Bioanal. Chem. 2013, 405, 7733–7751. [Google Scholar] [CrossRef]
- Huet, A.C.; Mortier, L.; Daeseleire, E.; Fodey, T.; Elliott, C.; Delahaut, P. Screening for the coccidiostats halofuginone and nicarbazin in egg and chicken muscle: Development of an ELISA. Food Addit. Contam. 2005, 22, 128–134. [Google Scholar] [CrossRef]
- Wu, A.; Wu, X.; Zheng, Q.; Xu, L.; Kuang, H. Preparation of an anti-4,4′-dinitrocarbanilide monoclonal antibody and its application in an immunochromatographic assay for anticoccidial drugs. Food Agric. Immunol. 2018, 29, 1162–1172. [Google Scholar] [CrossRef]
- Yao, J.; Xing, G.; Han, J.; Sun, Y.; Wang, F.; Deng, R.; Hu, X.; Zhang, G. Novel fluoroimmunoassays for detecting ochratoxin A using CdTe quantum dots. J. Biophotonics 2017, 10, 657–663. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, K.; Wang, Z.; Jiang, H.; Beier, R.C.; Shen, J. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M 1 in milk. Food Control 2016, 60, 588–595. [Google Scholar] [CrossRef]
- Wang, P.; Wang, R.; Zhang, W.; Su, X.; Luo, H. Novel fabrication of immunochromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol. Biosens. Bioelectron. 2016, 77, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Z.; Li, P.; Zhang, Q.; Ding, X.; Zhang, W. Europium Nanospheres-Based Time-Resolved Fluorescence for Rapid and Ultrasensitive Determination of Total Aflatoxin in Feed. J. Agric. Food Chem. 2015, 63, 10313–10318. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Z.; Li, P.; Zhang, Q.; Zhang, W. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis. Sensors 2016, 16, 1094. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Wang, M.; Shen, J. Rapid Quantification of Chlorpromazine Residues in Pork Using Nanosphere-Based Time-Resolved Fluorescence Immunoassay Analyzer. Int. J. Anal. Chem. 2021, 2021, 6633016. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zhang, H.; Qiu, M.; Wu, N.; Zeng, K.; Du, D. Dual-label time-resolved fluoroimmunoassay as an advantageous approach for investigation of diethyl phthalate & dibutyl phthalate in surface water. Sci. Total Environ. 2019, 695, 133793. [Google Scholar] [PubMed]
- Guo, L.; Wang, Z.; Xu, X.; Xu, L.; Kuang, H.; Xiao, J.; Xu, C. Europium nanosphere-based fluorescence strip sensor for ultrasensitive and quantitative determination of fumonisin B1. Anal. Methods Adv. Methods Appl. 2020, 12, 5229–5235. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Z.; Liu, H.; Wu, C.; Ding, Y. Monoclonal antibody production and the development of a quantitative time-resolved fluoroimmunoassay for rifaximin in milk. Food Agric. Immunol. 2019, 30, 1135–1141. [Google Scholar] [CrossRef]
- Liang, X.; Ni, H.; Beier, R.C.; Dong, Y.; Li, J.; Luo, X.; Zhang, S.; Shen, J.; Wang, Z. Highly Broad-Specific and Sensitive Enzyme-Linked Immunosorbent Assay for Screening Sulfonamides: Assay Optimization and Application to Milk Samples. Food Anal. Methods 2014, 7, 1992–2002. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, Y.; Liu, X.; Qiu, J.; Liu, Z.; Kong, F. Development of a highly sensitive time-resolved fluoroimmunoassay for the determination of trace salbutamol in environmental samples. Sci. Total Environ. 2019, 679, 359–364. [Google Scholar] [CrossRef]
- Zhang, Q.; Zou, M.; Wang, W.; Li, J.; Liang, X. Design, Synthesis, and Characterization of Tracers and Development of a Fluorescence Polarization Immunoassay for Rapid Screening of 4,4′-Dinitrocarbanilide in Chicken Muscle. Foods 2021, 10, 1822. [Google Scholar] [CrossRef]
Analogues | IC50 (ng mL−1) | CR (%) |
---|---|---|
DNC | 0.43 | 100 |
2-Nitroaniline | >1000 | <0.1 |
3-Nitroaniline | >1000 | <0.1 |
N-(4-Nitrophenyl) propionamide | >1000 | <0.1 |
H-Val-pNA HCl | >1000 | <0.1 |
L-Arginine P-Nitroanilide Dihydrochloride | >1000 | <0.1 |
4-Nitrophenethylamine hydrochloride | >1000 | <0.01 |
N-Methyl-4-nitrophenethylamine hydrochloride | >1000 | <0.1 |
H-Ala-pNA HCl | >1000 | <0.1 |
N, N-Dimethyl-4-Nitroaniline | >1000 | <0.1 |
H-Glu-pNA | >1000 | <0.1 |
Halofuginone | >1000 | <0.1 |
Toltrazuril | >1000 | <0.1 |
1,3-Diphenylguanidine | >1000 | <0.1 |
Ronidazole | >1000 | <0.1 |
Dinitolmide | >1000 | <0.1 |
Sample | Spiked (ug kg−1) | Intra-Assay (n = 5) | Inter-Assay (n = 5) | ||
---|---|---|---|---|---|
Recovery (%) | CV (%) | Recovery (%) | CV (%) | ||
Chicken | 6.0 | 77.3 | 2.5 | 80.3 | 4.0 |
16.0 | 81.9 | 2.4 | 88.9 | 3.8 | |
30.0 | 87.6 | 7.0 | 92.7 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, M.; Yin, Y.; Guo, L.; Zhang, Q.; Li, J.; Zhang, H.; Song, Q.; Li, Z.; Wang, L.; Ao, X.; et al. A Europium Nanosphere-Based Time-Resolved Fluorescent Immunochromatographic Assay for the Rapid Screening of 4,4′-Dinitrocarbanilide: Aiming at Improving Strip Method Performance. Biosensors 2023, 13, 518. https://doi.org/10.3390/bios13050518
Zou M, Yin Y, Guo L, Zhang Q, Li J, Zhang H, Song Q, Li Z, Wang L, Ao X, et al. A Europium Nanosphere-Based Time-Resolved Fluorescent Immunochromatographic Assay for the Rapid Screening of 4,4′-Dinitrocarbanilide: Aiming at Improving Strip Method Performance. Biosensors. 2023; 13(5):518. https://doi.org/10.3390/bios13050518
Chicago/Turabian StyleZou, Ming, Yongkang Yin, Liuchuan Guo, Qidi Zhang, Jinyan Li, Hong Zhang, Qian Song, Zhaojie Li, Li Wang, Xiang Ao, and et al. 2023. "A Europium Nanosphere-Based Time-Resolved Fluorescent Immunochromatographic Assay for the Rapid Screening of 4,4′-Dinitrocarbanilide: Aiming at Improving Strip Method Performance" Biosensors 13, no. 5: 518. https://doi.org/10.3390/bios13050518
APA StyleZou, M., Yin, Y., Guo, L., Zhang, Q., Li, J., Zhang, H., Song, Q., Li, Z., Wang, L., Ao, X., & Liang, X. (2023). A Europium Nanosphere-Based Time-Resolved Fluorescent Immunochromatographic Assay for the Rapid Screening of 4,4′-Dinitrocarbanilide: Aiming at Improving Strip Method Performance. Biosensors, 13(5), 518. https://doi.org/10.3390/bios13050518