Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing
Abstract
:1. Introduction
2. Classification of Nanozymes
2.1. Peroxidases
2.2. Superoxide Dismutase (SOD)
2.3. Oxidase Mimics
2.4. Catalase Mimics
3. Nanozyme-Based Biosensors
3.1. Colorimetric Biosensors
3.2. Fluorescence Biosensors
3.3. Electrochemical Biosensors
3.4. Surface-Enhanced Raman Spectroscopy (SERS) Biosensors
4. Market Opportunities and Commercialization
5. Challenges in the Development of Personalized Biosensors
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro, E.; Serrano-Heras, G.; Castaño, M.J.; Solera, J. Real-Time PCR Detection Chemistry. Clin. Chim. Acta 2015, 439, 231–250. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, K.A.; Nonaka, C.K.; de Ávila Mendonça, R.N.; Mascarenhas, V.N.; Weber, T.G.; Regis Silva, C.G.; Mendes, A.V.; Khouri, R.; Souza, B.S.; Gurgel Rocha, C.A. SARS-CoV-2 Detection via RT-PCR in Matched Saliva and Nasopharyngeal Samples Reveals High Concordance in Different Commercial Assays. Diagnostics 2023, 13, 329. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.A.; AL-maqati, T.N.; Alnaam, Y.A.; Alharbi, S.S.; Khaneen, R.; Almutairi, H.; AL-harbi, M. The Association between Brain-Derived Neurotrophic Factor (BDNF) Protein Level and Body Mass Index. Medicina 2023, 59, 99. [Google Scholar] [CrossRef] [PubMed]
- Mpupa, A.; Nqombolo, A.; Mizaikoff, B.; Nomngongo, P.N. Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis. Molecules 2022, 27, 248. [Google Scholar] [CrossRef]
- Incocciati, A.; Di Fabio, E.; Boffi, A.; Bonamore, A.; Macone, A. Rapid and Simultaneous Determination of Free Aromatic Carboxylic Acids and Phenols in Commercial Juices by GC-MS after Ethyl Chloroformate Derivatization. Separations 2022, 9, 9. [Google Scholar] [CrossRef]
- Kurup, C.P.; Mohd-Naim, N.F.; Ahmed, M.U. Recent Trends in Nanomaterial-Based Signal Amplification in Electrochemical Aptasensors. Crit. Rev. Biotechnol. 2022, 42, 794–812. [Google Scholar] [CrossRef]
- Adhikari, J.; Rizwan, M.; Keasberry, N.A.; Ahmed, M.U. Current Progresses and Trends in Carbon Nanomaterials-based Electrochemical and Electrochemiluminescence Biosensors. J. Chinese Chem. Soc. 2020, 67, 937–960. [Google Scholar] [CrossRef]
- Baehner, T.; Rohner, M.; Heinze, I.; Schindler, E.; Wittmann, M.; Strassberger-Nerschbach, N.; Kim, S.-C.; Velten, M. Point-of-Care Ultrasound-Guided Protocol to Confirm Central Venous Catheter Placement in Pediatric Patients Undergoing Cardiothoracic Surgery: A Prospective Feasibility Study. J. Clin. Med. 2021, 10, 5971. [Google Scholar] [CrossRef]
- Rizwan, M.; Mohd-Naim, N.; Ahmed, M. Trends and Advances in Electrochemiluminescence Nanobiosensors. Sensors 2018, 18, 166. [Google Scholar] [CrossRef] [Green Version]
- Arshad, F.; Arrigan, D.W.M.; Ahmed, M.U. Recent Developments in Nanozyme Based Sensors for Detection of Clinical Biomarkers-A Review. IEEE Sens. J. 2022, 22, 15622–15634. [Google Scholar] [CrossRef]
- Yan, S.; Foroughi, M.M.; Safaei, M.; Jahani, S.; Ebrahimpour, N.; Borhani, F.; Rezaei Zade Baravati, N.; Aramesh-Boroujeni, Z.; Foong, L.K. A Review: Recent Advances in Ultrasensitive and Highly Specific Recognition Aptasensors with Various Detection Strategies. Int. J. Biol. Macromol. 2020, 155, 184–207. [Google Scholar] [CrossRef]
- Tandon, S.; Sharma, A.; Singh, S.; Sharma, S.; Sarma, S.J. Therapeutic Enzymes: Discoveries, Production and Applications. J. Drug Deliv. Sci. Technol. 2021, 63, 102455. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization Strategies to Develop Enzymatic Biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, G.; Liu, S.; Yu, A. Ultrasensitive Electrochemical Aptasensing of Kanamycin Antibiotic by Enzymatic Signal Amplification with a Horseradish Peroxidase-Functionalized Gold Nanoprobe. Sens. Actuators B Chem. 2018, 273, 1762–1767. [Google Scholar] [CrossRef]
- Amara, U.; Mahmood, K.; Riaz, S.; Nasir, M.; Hayat, A.; Hanif, M.; Yaqub, M.; Han, D.; Niu, L.; Nawaz, M.H. Self-Assembled Perylene-Tetracarboxylic Acid/Multi-Walled Carbon Nanotube Adducts Based Modification of Screen-Printed Interface for Efficient Enzyme Immobilization towards Glucose Biosensing. Microchem. J. 2021, 165, 106109. [Google Scholar] [CrossRef]
- Barsan, M.M.; Brett, C.M.A. An Alcohol Oxidase Biosensor Using PNR Redox Mediator at Carbon Film Electrodes. Talanta 2008, 74, 1505–1510. [Google Scholar] [CrossRef] [Green Version]
- Parra, A.; Casero, E.; Vázquez, L.; Pariente, F.; Lorenzo, E. Design and Characterization of a Lactate Biosensor Based on Immobilized Lactate Oxidase onto Gold Surfaces. Anal. Chim. Acta 2006, 555, 308–315. [Google Scholar] [CrossRef]
- Santharaman, P.; Venkatesh, K.A.; Vairamani, K.; Benjamin, A.R.; Sethy, N.K.; Bhargava, K.; Karunakaran, C. ARM-Microcontroller Based Portable Nitrite Electrochemical Analyzer Using Cytochrome c Reductase Biofunctionalized onto Screen Printed Carbon Electrode. Biosens. Bioelectron. 2017, 90, 410–417. [Google Scholar] [CrossRef]
- Li, Y.; Bai, Y.; Han, G.; Li, M. Porous-Reduced Graphene Oxide for Fabricating an Amperometric Acetylcholinesterase Biosensor. Sens. Actuators B Chem. 2013, 185, 706–712. [Google Scholar] [CrossRef]
- Genet, J.-P. Asymmetric Catalytic Hydrogenation. Design of New Ru Catalysts and Chiral Ligands: From Laboratory to Industrial Applications. Acc. Chem. Res. 2003, 36, 908–918. [Google Scholar] [CrossRef]
- Mohamad, A.; Teo, H.; Keasberry, N.A.; Uddin, M. Critical Reviews in Biotechnology Recent Developments in Colorimetric Immunoassays Using Nanozymes and Plasmonic Nanoparticles. Crit. Rev. Biotechnol. 2019, 39, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Arshad, F.; Mohd-Naim, N.F.; Chandrawati, R.; Cozzolino, D.; Ahmed, M.U. Nanozyme-Based Sensors for Detection of Food Biomarkers: A Review. RSC Adv. 2022, 12, 26160–26175. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Sharifi, M.; Bloukh, S.H.; Edis, Z.; Siddique, R.; Falahati, M. In Vivo Guiding Inorganic Nanozymes for Biosensing and Therapeutic Potential in Cancer, Inflammation and Microbial Infections. Talanta 2021, 224, 121805. [Google Scholar] [CrossRef]
- Wang, W.; Gunasekaran, S. Nanozymes-Based Biosensors for Food Quality and Safety. TrAC—Trends Anal. Chem. 2020, 126, 115841. [Google Scholar] [CrossRef]
- Su, Z.; Du, T.; Liang, X.; Wang, X.; Zhao, L.; Sun, J.; Wang, J.; Zhang, W. Nanozymes for Foodborne Microbial Contaminants Detection: Mechanisms, Recent Advances, and Challenges. Food Control. 2022, 141, 109165. [Google Scholar] [CrossRef]
- Zhong, Y.; Tang, X.; Li, J.; Lan, Q.; Min, L.; Ren, C.; Hu, X.; Torrente-Rodríguez, R.M.; Gao, W.; Yang, Z. A Nanozyme Tag Enabled Chemiluminescence Imaging Immunoassay for Multiplexed Cytokine Monitoring. Chem. Commun. 2018, 54, 13813–13816. [Google Scholar] [CrossRef]
- Economou, A.; Karapetis, S.K.; Nikoleli, G.-P.; Nikolelis, D.P.; Bratakou, S.; Varzakas, T.H. Enzyme-Based Sensors. In Advances in Food Diagnostics, 2nd ed.; Toldrá, F., Nollet, L.M.L., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 231–250. [Google Scholar] [CrossRef]
- Stasyuk, N.; Smutok, O.; Demkiv, O.; Prokopiv, T.; Gayda, G.; Nisnevitch, M.; Gonchar, M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. Sensors 2020, 20, 4509. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wei, H. Light-Responsive Nanozymes for Biosensing. Analyst 2020, 145, 4388–4397. [Google Scholar] [CrossRef]
- Wu, Y.; Darland, D.C.; Zhao, J.X. Nanozymes-Hitting the Biosensing “Target”. Sensors 2021, 21, 5201. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, F.; Chi, H.; Zhao, G.; Zhang, Y.; Li, T.; Wei, Q. Electrochemical Aptasensor Based on Gold Modified Thiol Graphene as Sensing Platform and Gold-Palladium Modified Zirconium Metal-Organic Frameworks Nanozyme as Signal Enhancer for Ultrasensitive Detection of Mercury Ions. J. Colloid Interface Sci. 2022, 606, 510–517. [Google Scholar] [CrossRef]
- Chong, Y.; Liu, Q.; Ge, C. Advances in Oxidase-Mimicking Nanozymes: Classification, Activity Regulation and Biomedical Applications. Nano Today 2021, 37, 101076. [Google Scholar] [CrossRef]
- Navyatha, B.; Singh, S.; Nara, S. AuPeroxidase Nanozymes: Promises and Applications in Biosensing. Biosens. Bioelectron. 2021, 175, 112882. [Google Scholar] [CrossRef]
- Wang, X.; Wei, H. Peroxidase-like Nanozyme Sensing Arrays for Versatile Analytes. J. Nanoparticle Res. 2020, 22, 22. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Bytesnikova, Z.; Barek, J.; Richtera, L.; Adam, V. A Critical Comparison of Natural Enzymes and Nanozymes in Biosensing and Bioassays. Biosens. Bioelectron. 2021, 192, 113494. [Google Scholar] [CrossRef]
- Mahmudunnabi, R.G.; Farhana, F.Z.; Kashaninejad, N.; Firoz, S.H.; Shim, Y.-B.; Shiddiky, M.J.A. Nanozyme-Based Electrochemical Biosensors for Disease Biomarker Detection. Analyst 2020, 145, 4398–4420. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, Y.; Ma, X.; Guo, L.; Qiu, B.; Chen, G.; Lin, Z. Multicolor Biosensor for Fish Freshness Assessment with the Naked Eye. Sens. Actuators B Chem. 2017, 252, 201–208. [Google Scholar] [CrossRef]
- Campos, S.; Salazar, R.; Arancibia-Miranda, N.; Rubio, M.A.; Aranda, M.; García, A.; Sepúlveda, P.; Espinoza, L.C. Nafcillin Degradation by Heterogeneous Electro-Fenton Process Using Fe, Cu and Fe/Cu Nanoparticles. Chemosphere 2020, 247, 125813. [Google Scholar] [CrossRef]
- Walling, C. Fenton’s Reagent Revisited. Acc. Chem. Res. 1975, 8, 125–131. [Google Scholar] [CrossRef]
- Wang, M.; Tian, B.; Xue, Y.; Li, R.; Zhai, T.; Tan, L. Determination of Aminophylline Based on Fluorescence Quenching of Amino-Functionalized Graphene Quantum Dots Induced by Photoilluminated Riboflavin-Aminophylline System. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 235, 118306. [Google Scholar] [CrossRef]
- Chen, T.M.; Wu, X.J.; Wang, J.X.; Yang, G.W. WSe2 Few Layers with Enzyme Mimic Activity for High-Sensitive and High-Selective Visual Detection of Glucose. Nanoscale 2017, 9, 11806–11813. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, F.; Wang, A.; Chen, X.; Li, H.; Zhang, X.; Zheng, H.; Ji, R.; Li, B.; Yu, X.; et al. Defect-Rich Adhesive Molybdenum Disulfide/RGO Vertical Heterostructures with Enhanced Nanozyme Activity for Smart Bacterial Killing Application. Adv. Mater. 2020, 32, 2005423. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, Y.; Xu, H.; Du, C.; Wu, X.; Yang, G. Superior Peroxidase Mimetic Activity Induced by Topological Surface States of Weyl Semimetal WTe2. Nano Today 2022, 43, 101421. [Google Scholar] [CrossRef]
- Kehrer, J.P. The Haber–Weiss Reaction and Mechanisms of Toxicity. Toxicology 2000, 149, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Chen, Y.; Liu, Z.; Huang, C.; Li, Y.; Kong, D.; Shen, W.; Tang, S. Modification and Application of Fe3O4 Nanozymes in Analytical Chemistry: A Review. Chinese Chem. Lett. 2023, 34, 107820. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, Y.; Ren, J.; Qu, X. Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications. Angew. Chemie Int. Ed. 2018, 57, 9224–9237. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Zhao, C.; Qu, K.; Ren, J.; Qu, X. Label-Free Colorimetric Detection of Single Nucleotide Polymorphism by Using Single-Walled Carbon Nanotube Intrinsic Peroxidase-like Activity. Chem. —A Eur. J. 2010, 16, 3617–3621. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Q.; Liu, Y.; Cui, J.; Liu, H.; Wang, P.; Li, Y.; Chen, L.; Zhao, Z.; Dong, Y. A Novel Label-Free Electrochemical Immunosensor Based on Functionalized Nitrogen-Doped Graphene Quantum Dots for Carcinoembryonic Antigen Detection. Biosens. Bioelectron. 2017, 90, 31–38. [Google Scholar] [CrossRef]
- Lu, W.; Guo, Y.; Zhang, J.; Yue, Y.; Fan, L.; Li, F.; Dong, C.; Shuang, S. A High Catalytic Activity Nanozyme Based on Cobalt-Doped Carbon Dots for Biosensor and Anticancer Cell Effect. ACS Appl. Mater. Interfaces 2022, 14, 57206–57214. [Google Scholar] [CrossRef]
- Wang, X.; Qin, L.; Lin, M.; Xing, H.; Wei, H. Fluorescent Graphitic Carbon Nitride-Based Nanozymes with Peroxidase-Like Activities for Ratiometric Biosensing. Anal. Chem. 2019, 91, 10648–10656. [Google Scholar] [CrossRef]
- Sheng, Y.; Abreu, I.A.; Cabelli, D.E.; Maroney, M.J.; Miller, A.-F.; Teixeira, M.; Valentine, J.S. Superoxide Dismutases and Superoxide Reductases. Chem. Rev. 2014, 114, 3854–3918. [Google Scholar] [CrossRef]
- Lin, Y.; Ren, J.; Qu, X. Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes. Acc. Chem. Res. 2014, 47, 1097–1105. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Das, B.; Franco, J.L.; Logan, N.; Balasubramanian, P.; Kim, M.I.; Cao, C. Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. Nano-Micro Lett. 2021, 13. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, B.; Yang, R.; Liu, J. Filling in the Gaps between Nanozymes and Enzymes: Challenges and Opportunities. Bioconjug. Chem. 2017, 28, 2903–2909. [Google Scholar] [CrossRef]
- Dugan, L.L.; Turetsky, D.M.; Du, C.; Lobner, D.; Wheeler, M.; Almli, C.R.; Shen, C.K.-F.; Luh, T.-Y.; Choi, D.W.; Lin, T.-S. Carboxyfullerenes as Neuroprotective Agents. Proc. Natl. Acad. Sci. USA 1997, 94, 9434–9439. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.S.; Hardt, J.I.; Quick, K.L.; Sook Kim-Han, J.; Erlanger, B.F.; Huang, T.; Epstein, C.J.; Dugan, L.L. A Biologically Effective Fullerene (C60) Derivative with Superoxide Dismutase Mimetic Properties. Free Radic. Biol. Med. 2004, 37, 1191–1202. [Google Scholar] [CrossRef]
- Heckert, E.G.; Karakoti, A.S.; Seal, S.; Self, W.T. The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria. Biomaterials 2008, 29, 2705–2709. [Google Scholar] [CrossRef] [Green Version]
- Dhall, A.; Self, W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants 2018, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, B.; Huang, P.-J.J.; Zhang, Z.; Liu, J. Highly Active Fluorogenic Oxidase-Mimicking NiO Nanozymes. Chem. Commun. 2018, 54, 12519–12522. [Google Scholar] [CrossRef]
- Chen, Z.-J.; Huang, Z.; Sun, Y.-M.; Xu, Z.-L.; Liu, J. The Most Active Oxidase-Mimicking Mn2O3 Nanozyme for Biosensor Signal Generation. Chem.—A Eur. J. 2021, 27, 9597–9604. [Google Scholar] [CrossRef] [PubMed]
- Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The Catalytic Activity of “Naked” Gold Particles. Angew. Chemie Int. Ed. 2004, 43, 5812–5815. [Google Scholar] [CrossRef] [PubMed]
- Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chemie Int. Ed. 2009, 48, 2308–2312. [Google Scholar] [CrossRef] [PubMed]
- Vinothkumar, G.; Arunkumar, P.; Mahesh, A.; Dhayalan, A.; Suresh Babu, K. Size- and Defect-Controlled Anti-Oxidant Enzyme Mimetic and Radical Scavenging Properties of Cerium Oxide Nanoparticles. New J. Chem. 2018, 42, 18810–18823. [Google Scholar] [CrossRef]
- Chen, M.; Shu, J.; Wang, Z.; Ren, C. Porous Surface MnO2 Microspheres as Oxidase Mimetics for Colorimetric Detection of Sulfite. J. Porous Mater. 2017, 24, 973–977. [Google Scholar] [CrossRef]
- Lopez-Cantu, D.O.; González-González, R.B.; Melchor-Martínez, E.M.; Martínez, S.A.H.; Araújo, R.G.; Parra-Arroyo, L.; Sosa-Hernández, J.E.; Parra-Saldívar, R.; Iqbal, H.M.N. Enzyme-Mimicking Capacities of Carbon-Dots Nanozymes: Properties, Catalytic Mechanism, and Applications—A Review. Int. J. Biol. Macromol. 2022, 194, 676–687. [Google Scholar] [CrossRef]
- Li, J.; Liu, W.; Wu, X.; Gao, X. Mechanism of PH-Switchable Peroxidase and Catalase-like Activities of Gold, Silver, Platinum and Palladium. Biomaterials 2015, 48, 37–44. [Google Scholar] [CrossRef]
- Vallabani, N.V.S.; Singh, S. Recent Advances and Future Prospects of Iron Oxide Nanoparticles in Biomedicine and Diagnostics. 3 Biotech 2018, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.; Zhang, L.; Zhao, M.; Wang, Y. Co3O4 Nanoparticles as an Efficient Catalase Mimic: Properties, Mechanism and Its Electrocatalytic Sensing Application for Hydrogen Peroxide. J. Mol. Catal. A Chem. 2013, 378, 30–37. [Google Scholar] [CrossRef]
- Mu, J.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic Peroxidase-like Activity and Catalase-like Activity of Co3O4 Nanoparticles. Chem. Commun. 2012, 48, 2540–2542. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.; Kan, X. A Facile Nanozyme Based Catalytic Platform for the Selective and Sensitive Detection of Thrombin. Microchem. J. 2022, 172, 106965. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Zhang, C.; Lin, Y.; Lv, J.; Hu, S.; Zhang, S.; Li, M. Colorimetric Determination of Amyloid-β Peptide Using MOF-Derived Nanozyme Based on Porous ZnO-Co3O4 Nanocages. Microchim. Acta 2021, 188, 56. [Google Scholar] [CrossRef]
- Wang, S.; Ma, R.; Zhang, H.; Li, L.; Li, X.; Zhao, Y.; Wang, L.; Mao, X. Construction of a High Affinity Aptamer and an Aptasensor with Chitosan Oligosaccharide-AuNPs@Fe2+ Nanozyme for Highly Sensitive Detection of Phosphatidylserine. Sens. Actuators B Chem. 2022, 362, 131800. [Google Scholar] [CrossRef]
- Wu, H.; Liu, J.; Chen, Z.; Lin, P.; Ou, W.; Wang, Z.; Xiao, W.; Chen, Y.; Cao, D. Mechanism and Application of Surface-Charged Ferrite Nanozyme-Based Biosensor toward Colorimetric Detection of l-Cysteine. Langmuir 2022, 38, 8266–8279. [Google Scholar] [CrossRef]
- Sun, W.; Wang, N.; Zhou, X.; Sheng, Y.; Su, X. Co, N Co-Doped Porous Carbon-Based Nanozyme as an Oxidase Mimic for Fluorescence and Colorimetric Biosensing of Butyrylcholinesterase Activity. Microchim. Acta 2022, 189, 363. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.K.; Omer, K.M. Ultrasensitive Aptamer-Functionalized Cu-MOF Fluorescent Nanozyme as an Optical Biosensor for Detection of C-Reactive Protein. Anal. Biochem. 2022, 658, 114928. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.K.; Omer, K.M. Nanozyme and Stimulated Fluorescent Cu-Based Metal–Organic Frameworks (Cu-MOFs) Functionalized with Engineered Aptamers as a Molecular Recognition Element for Thrombin Detection in the Plasma of COVID-19 Patients. ACS Omega 2022, 7, 36804–36810. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhou, X.; Wang, M.; Su, X. Nanozyme-Based Sensitive Ratiometric Fluorescence Detection Platform for Glucose. Anal. Chim. Acta 2022, 1216, 339993. [Google Scholar] [CrossRef]
- Hou, L.; Huang, Y.; Lin, T.; Ye, F.; Zhao, S. A FRET Ratiometric Fluorescence Biosensor for the Selective Determination of Pyrophosphate Ion and Pyrophosphatase Activity Based on Difunctional Cu-MOF Nanozyme. Biosens. Bioelectron. X 2022, 10, 100101. [Google Scholar] [CrossRef]
- Tian, L.; Qi, J.; Oderinde, O.; Yao, C.; Song, W.; Wang, Y. Planar Intercalated Copper (II) Complex Molecule as Small Molecule Enzyme Mimic Combined with Fe3O4 Nanozyme for Bienzyme Synergistic Catalysis Applied to the MicroRNA Biosensor. Biosens. Bioelectron. 2018, 110, 110–117. [Google Scholar] [CrossRef]
- Yang, Q.; Li, N.; Li, Q.; Chen, S.; Wang, H.-L.; Yang, H. Amperometric Sarcosine Biosensor Based on Hollow Magnetic Pt–Fe3O4@C Nanospheres. Anal. Chim. Acta 2019, 1078, 161–167. [Google Scholar] [CrossRef]
- Tian, L.; Qi, J.; Qian, K.; Oderinde, O.; Liu, Q.; Yao, C.; Song, W.; Wang, Y. Copper (II) Oxide Nanozyme Based Electrochemical Cytosensor for High Sensitive Detection of Circulating Tumor Cells in Breast Cancer. J. Electroanal. Chem. 2018, 812, 1–9. [Google Scholar] [CrossRef]
- Wu, J.; Lv, W.; Yang, Q.; Li, H.; Li, F. Label-Free Homogeneous Electrochemical Detection of MicroRNA Based on Target-Induced Anti-Shielding against the Catalytic Activity of Two-Dimension Nanozyme. Biosens. Bioelectron. 2021, 171, 112707. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Meng, Y.; Zhao, L.; Shi, W.; Wang, X.; He, Z.; Chao, J.; Li, C. Electrochemical/Visual Microfluidic Detection with a Covalent Organic Framework Supported Platinum Nanozyme-Based Device for Early Diagnosis of Pheochromocytoma. Biosens. Bioelectron. 2022, 207, 114208. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, Y.; Wu, Y.; Guo, X.; Ying, Y.; Wen, Y.; Yang, H. Enzyme-Free Tandem Reaction Strategy for Surface-Enhanced Raman Scattering Detection of Glucose by Using the Composite of Au Nanoparticles and Porphyrin-Based Metal–Organic Framework. ACS Appl. Mater. Interfaces 2020, 12, 55324–55330. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.-Y.; He, W.-M. Surface-Enhanced Raman Spectroscopy Biosensor Based on Silver Nanoparticles@metal-Organic Frameworks with Peroxidase-Mimicking Activities for Ultrasensitive Monitoring of Blood Cholesterol. Sens. Actuators B Chem. 2022, 365, 131939. [Google Scholar] [CrossRef]
- Huang, Y.; Gu, Y.; Liu, X.; Deng, T.; Dai, S.; Qu, J.; Yang, G.; Qu, L. Reusable Ring-like Fe3O4/Au Nanozymes with Enhanced Peroxidase-like Activities for Colorimetric-SERS Dual-Mode Sensing of Biomolecules in Human Blood. Biosens. Bioelectron. 2022, 209, 114253. [Google Scholar] [CrossRef]
- Tan, Y.; Jiang, H.; Wang, B.; Zhang, X. MoS2-Based Composite Nanozymes with Superior Peroxidase-like Activity for Ultrasensitive SERS Detection of Glucose. New J. Chem. 2021, 45, 19593–19604. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, R.; Fan, S.; Jing, X.; Gao, R.; Yang, H.; Wang, H.; Wang, D.; Yang, Z.; Xie, Y.; et al. A Dual-Mode NADH Biosensor Based on Gold Nanostars Decorated CoFe2 Metal–Organic Frameworks to Reveal Dynamics of Cell Metabolism. ACS Sens. 2022, 7, 2671–2679. [Google Scholar] [CrossRef]
- Attaallah, R.; Amine, A. Highly Selective and Sensitive Detection of Cadmium Ions by Horseradish Peroxidase Enzyme Inhibition Using a Colorimetric Microplate Reader and Smartphone Paper-Based Analytical Device. Microchem. J. 2022, 172, 106940. [Google Scholar] [CrossRef]
- Liu, X.; Mei, X.; Yang, J.; Li, Y. Hydrogel-Involved Colorimetric Platforms Based on Layered Double Oxide Nanozymes for Point-of-Care Detection of Liver-Related Biomarkers. ACS Appl. Mater. Interfaces 2022, 14, 6985–6993. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Liao, Y.; Gao, A.; Hao, J.; Shu, D.; Huang, Y.; Zhong, J.; He, C.; Zeng, R. Supercapacitive Behavior of Electrostatic Self-Assembly Reduced Graphene Oxide/CoAl-Layered Double Hydroxides Nanocomposites. J. Alloys Compd. 2016, 669, 146–155. [Google Scholar] [CrossRef]
- Nai, J.; Yin, H.; You, T.; Zheng, L.; Zhang, J.; Wang, P.; Jin, Z.; Tian, Y.; Liu, J.; Tang, Z.; et al. Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni–Co Double Hydroxides Nanocages. Adv. Energy Mater. 2015, 5, 1401880. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Y.; Jiao, L.; Gu, W.; Zhu, C. Amorphous RuTe2 Nanorods as Efficient Peroxidase Mimics for Colorimetric Immunoassay. Sens. Actuators B Chem. 2021, 341, 130007. [Google Scholar] [CrossRef]
- Peng, C.; Hua, M.; Li, N.; Hsu, Y.; Chen, Y.; Chuang, C. Biosensors and Bioelectronics A Colorimetric Immunosensor Based on Self-Linkable Dual-Nanozyme for Ultrasensitive Bladder Cancer Diagnosis and Prognosis Monitoring. Biosens. Bioelectron. 2019, 126, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, Z.; Guan, Y.; Chen, Y.; Liu, W.; Liu, Y. Zeolitic Imidazolate Frameworks-Derived Hollow Co/N-Doped CNTs as Oxidase-Mimic for Colorimetric-Fluorescence Immunoassay of Ochratoxin A. Sens. Actuators B Chem. 2022, 359, 131609. [Google Scholar] [CrossRef]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical Affinity Biosensors Based on Selected Nanostructures for Food and Environmental Monitoring. Sensors 2020, 20, 5125. [Google Scholar] [CrossRef]
- Wang, X.; Qin, L.; Zhou, M.; Lou, Z.; Wei, H. Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells. Anal. Chem. 2018, 90, 11696–11702. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Q.; Liu, S.; Xiao, H.; Zhang, M.; Zhang, X. Surface Molecular Imprinting on G-C3N4 Photooxidative Nanozyme for Improved Colorimetric Biosensing. Chinese Chem. Lett. 2019, 30, 2186–2190. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, I.M.; Ji, H.; Wang, Z.; Tian, H.; Cao, W.; Mi, W. A Label-Free Fluorescent Aptasensor for Detection of Staphylococcal Enterotoxin A Based on Aptamer-Functionalized Silver Nanoclusters. Polymers 2020, 12, 152. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Andrés, L.; Serrano-Pérez, J.J. Calculation of Excited States: Molecular Photophysics and Photochemistry on Display BT. In Handbook of Computational Chemistry; Leszczynski, J., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 483–560. ISBN 978-94-007-0711-5. [Google Scholar]
- Furukawa, K.; Ueno, Y.; Takamura, M.; Hibino, H. Graphene FRET Aptasensor. ACS Sens. 2016, 1, 710–716. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Zhou, X.; Sun, H.; Su, X. Sensors and Actuators: B. Chemical Fluorescence Sensing Strategy for Xanthine Assay Based on Gold Nanoclusters and Nanozyme. Sens. Actuators B. Chem. 2022, 358, 131488. [Google Scholar] [CrossRef]
- Guo, J.; Wu, S.; Wang, Y.; Zhao, M. Sensors and Actuators B: Chemical A Label-Free Fl Uorescence Biosensor Based on a Bifunctional MIL-101(Fe) Nanozyme for Sensitive Detection of Choline and Acetylcholine at Nanomolar Level. Sens. Actuators B. Chem. 2020, 312, 128021. [Google Scholar] [CrossRef]
- Li, W.; Li, T.; Chen, S.; Deng, D.; Ji, Y.; Li, R. Sensors and Actuators: B. Chemical Nanozyme-Mediated Cascade Reaction System for Ratiometric Fluorescence Detection of Sarcosine. Sens. Actuators B. Chem. 2022, 355, 131341. [Google Scholar] [CrossRef]
- Rizwan, M.; Elma, S.; Lim, S.A.; Ahmed, M.U. Biosensors and Bioelectronics AuNPs/CNOs/SWCNTs/Chitosan-Nanocomposite Modi Fi Ed Electrochemical Sensor for the Label-Free Detection of Carcinoembryonic Antigen. Biosens. Bioelectron. 2018, 107, 211–217. [Google Scholar] [CrossRef]
- Kurup, C.P.; Mohd-Naim, N.F.; Tlili, C.; Ahmed, M.U. A Highly Sensitive Label-Free Aptasensor Based on Gold Nanourchins and Carbon Nanohorns for the Detection of Lipocalin-2 (LCN-2). Anal. Sci. 2021, 37, 825–831. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Wang, X.; Han, L. Flow-Homogeneous Electrochemical Sensing System Based on 2D Metal-Organic Framework Nanozyme for Successive MicroRNA Assay. Biosens. Bioelectron. 2022, 206, 114120. [Google Scholar] [CrossRef]
- Lim, S.A.; Ahmed, M.U. A Label Free Electrochemical Immunosensor for Sensitive Detection of Porcine Serum Albumin as a Marker for Pork Adulteration in Raw Meat. Food Chem. 2016, 206, 197–203. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Rao, Z.; Dhanjai; Wu, J.; Shen, Y.; Boddula, R.; Huang, Y. Electrochemical (Bio) Sensors Go Green. Biosens. Bioelectron. 2020, 163, 112270. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhu, A.; Tian, Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal. Chem. 2023, 95, 388–406. [Google Scholar] [CrossRef]
- Hong, S.P.; Zakaria, S.N.A.; Ahmed, M.U. Trends in the Development of Immunoassays for Mycotoxins and Food Allergens Using Gold and Carbon Nanostructured Material. Food Chem. Adv. 2022, 1, 100069. [Google Scholar] [CrossRef]
- Ansari, A.A.; Malhotra, B.D. Current Progress in Organic–Inorganic Hetero-Nano-Interfaces Based Electrochemical Biosensors for Healthcare Monitoring. Coord. Chem. Rev. 2022, 452, 214282. [Google Scholar] [CrossRef]
- Mohamad, A.; Rizwan, M.; Keasberry, N.A.; Nguyen, A.S.; Lam, T.D.; Ahmed, M.U. Gold-Microrods/Pd-Nanoparticles/Polyaniline-Nanocomposite-Interface as a Peroxidase-Mimic for Sensitive Detection of Tropomyosin. Biosens. Bioelectron. 2020, 155, 112108. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G.; Zhang, Q.; Wang, H.; Zhang, Y.; Cao, W.; Zhang, N.; Du, B.; Wei, Q. Electrochemical Aptasensor Based on Gold Modified Graphene Nanocomposite with Different Morphologies for Ultrasensitive Detection of Pb2+. Sens. Actuators B Chem. 2019, 288, 325–331. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. Nanozymes in Electrochemical Affinity Biosensing. Microchim. Acta 2020, 187, 423. [Google Scholar] [CrossRef]
- Dinu Gugoasa, L.A.; Pogacean, F.; Kurbanoglu, S.; Tudoran, L.-B.; Serban, A.B.; Kacso, I.; Pruneanu, S. Graphene-Gold Nanoparticles Nanozyme-Based Electrochemical Sensor with Enhanced Laccase-Like Activity for Determination of Phenolic Substrates. J. Electrochem. Soc. 2021, 168, 067523. [Google Scholar] [CrossRef]
- Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. Metals@MOFs—Loading MOFs with Metal Nanoparticles for Hybrid Functions. Eur. J. Inorg. Chem. 2010, 2010, 3701–3714. [Google Scholar] [CrossRef]
- Wang, X.; Lan, P.C.; Ma, S. Metal–Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials. ACS Cent. Sci. 2020, 6, 1497–1506. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Li, X.; Yue, Q.; Dong, X.; Du, B.; Cao, W.; Wei, Q. Dual-Quenching Electrochemiluminescence Strategy Based on Three-Dimensional Metal–Organic Frameworks for Ultrasensitive Detection of Amyloid-β. Anal. Chem. 2019, 91, 1989–1996. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Homogeneous Assays Using Aptamers. Analyst 2011, 136, 257–274. [Google Scholar] [CrossRef]
- Zhang, F.-T.; Cai, L.-Y.; Zhou, Y.-L.; Zhang, X.-X. Immobilization-Free DNA-Based Homogeneous Electrochemical Biosensors. TrAC Trends Anal. Chem. 2016, 85, 17–32. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Ye, Z.; Zhao, M.; Huang, J. Synthesis of ZnO Micro-Pompons by Soft Template-Directed Wet Chemical Method and Their Application in Electrochemical Biosensors. Electrochim. Acta 2014, 115, 277–282. [Google Scholar] [CrossRef]
- Das, R.S.; Agrawal, Y.K. Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Yaraki, M.T.; Tan, Y.N. Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-Enhanced Raman Scattering. Chem.—An Asian J. 2020, 15, 3180–3208. [Google Scholar] [CrossRef]
- Mu, M.; Wen, S.; Hu, S.; Zhao, B.; Song, W. Putting Surface-Enhanced Raman Spectroscopy to Work for Nanozyme Research: Methods, Materials and Applications. TrAC—Trends Anal. Chem. 2022, 152, 116603. [Google Scholar] [CrossRef]
- Yao, D.; Li, C.; Liang, A.; Jiang, Z. A Facile SERS Strategy for Quantitative Analysis of Trace Glucose Coupling Glucose Oxidase and Nanosilver Catalytic Oxidation of Tetramethylbenzidine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 146–153. [Google Scholar] [CrossRef]
- Xia, X.; Weng, Y.; Zhang, L.; Tang, R.; Zhang, X. A Facile SERS Strategy to Detect Glucose Utilizing Tandem Enzyme Activities of Au@Ag Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 259, 119889. [Google Scholar] [CrossRef]
- Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Nature 2010, 464, 392–395. [Google Scholar] [CrossRef]
- Li, J.-F.; Zhang, Y.-J.; Ding, S.-Y.; Panneerselvam, R.; Tian, Z.-Q. Core–Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 5002–5069. [Google Scholar] [CrossRef]
- Jin, J.; Song, W.; Wang, J.; Li, L.; Tian, Y.; Zhu, S.; Zhang, Y.; Xu, S.; Yang, B.; Zhao, B. A Highly Sensitive SERS Platform Based on Small-Sized Ag/GQDs Nanozyme for Intracellular Analysis. Chem. Eng. J. 2022, 430, 132687. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Saaem, I.; Wu, P.C.; Brown, A.S. Personalized Diagnostics and Biosensors: A Review of the Biology and Technology Needed for Personalized Medicine. Crit. Rev. Biotechnol. 2014, 34, 180–196. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
Nanozyme | Enzyme Mimetic Activity | Transduction System | Nanozyme Activity | Bioreceptor | Application | Limit of Detection | Range | Ref. |
---|---|---|---|---|---|---|---|---|
MOF-818 on carbon cloth (CC) fibers | catechol oxidase | colorimetric | MOF-818/CC effectively mimicked catechol oxidase by catalyzing 3,5-Ditert-butylcatechol (3,5-DTBC) colorimetric substrates in the presence of oxygen. | aptamer | thrombin | 6.4 pM | 1.4 × 10−10–1.4 × 10−5 M | [73] |
Bimetallic ZnO-Co3O4 (zinc oxide/cobalt oxide) nanocages | peroxidase | colorimetric | Due to the high binding capacity of Aβ monomer to ZnO-Co3O4 NCs, the peroxidase activity of ZnO-Co3O4 NCs was reduced, and as a result, the TMB color change was lowered as well. | amyloid-β peptide (Aβ) | 3.5 nM | 5 to 150 nM | [74] | |
COS (chitosan oligosaccharide)-AuNPs@Fe2+ | peroxidase | colorimetric | In the presence of PS, COS bind to AuNPs@Fe2+ to generate a nanozyme with improved peroxidase-mimicking activity towards TMB. | aptamer | phosphatidylserine (PS) | 5 × 10−10 mol L−1 | 5 × 10−7 mol L−1 to 5 × 10−3 mol L−1 | [75] |
Ferrite nanozyme | peroxidase | colorimetric | Ferrite nanozyme with improved peroxidase-mimicking activity oxidized TMB to create a color change. | l-cysteine | 0.119 μM | 0.2–20 μM | [76] | |
Co–N-C (Co, N co-doped porous carbon) nanozyme | oxidase | fluorescence | The chromogenic substrate TMB was catalyzed and oxidized by Co–N-C nanozyme | butyrylcholinesterase (BChE) | 0.16 U L−1 | 0.5 to 40 U L−1 | [77] | |
Cu-MOF | peroxidase | fluorescence | TMB was oxidized by Co–N-C nanozyme, and oxTMB caused the quenching of carbon quantum dots fluorescence. | aptamer | C-reactive protein | 40 pg mL−1 | 0.1 to 50 ng mL −1 | [78] |
Cu-MOF | peroxidase | fluorescence | CRP-specific RNA adsorbed on Cu-MOFs inhibited the enzymatic activity and fluorescence of the MOF. | aptamer | thrombin | 110 fM | [79] | |
CuAA nanozyme (copper-doped carbon-based) | peroxidase | fluorescence | CuAA oxidised the OPD into 2,3-diaminophenazine (DAP). DAP further quenched Mg–N-CQDs’ (Mg/N doped CQDs) fluorescence. | glucose | 1.56 μM | 2–400 μΜ | [80] | |
Cu (copper)-MOF | peroxidase | fluorescence | The immobilized thrombin-based aptamer on the Cu-MOF surface forms a functionalized composite, ssDNA/MOF, which inhibited the stimulated fluorescence emission and enzymatic activity of Cu-MOF. | pyrophosphatase pyrophosphate ion | 0.30 mU mL−1 0.53 μmol L−1 | 2–40 mU mL−1 1 to 450 μmol L−1 | [81] | |
Fe3O4 nanozyme with copper (II) complex | peroxidase | electrochemical | The Fe3O4 nanozyme functioned as a carrier for hairpin capture probes (HCP) and also amplified the signal amplification through the catalytic reaction. | microRNA | 33 aM | 100 aM to 100 nM | [82] | |
Hollow Pt–Fe3O4@C nanospheres | oxidase | electrochemical | Fe3O4 hollow nanospheres were used as carriers for Pt, and the combination with carbon (Pt–Fe3O4@C) achieved high conductivity. | sarcosine | 0.43 μM | 0.5–60 μM | [83] | |
CuO | peroxidase | electrochemical | CuO nanozyme functioned as signal amplifying nanoprobes. | aptamer | MCF-7 circulating tumor cell (MUC-1) | 27 cells mL− 1 | 50 to 7 × 103 cells mL−1 | [84] |
2D MnO2 nanoflakes | oxidase/ peroxidase | electrochemical | MnO2 nanoflakes exhibit superior response to ssDNA binding and showed high catalytic activity. | microRNA (let-7a) | 0.25 nM | 0.4 to 100 nM | [85] | |
COF@Pt (covalent organic framework-based nanozymes) | peroxidase | electrochemical | COF@Pt functions as peroxidase mimic to amplify the electrochemical response from H2O2 reduction. | circulating tumor cells | 1 cell mL−1 | 2 to 105 cells mL−1 | [86] | |
AuNPs/Cu-TCPP(Fe) (Cu-tetra(4-carboxyphenyl)porphyrin)chloride(Fe(III))) | peroxidase | SERS | Cu-TCPP(Fe) nanosheets catalyzed H2O2 and they further oxidized the non-Raman-active leucomalachite green (LMG) into the Raman-active malachite green (MG) | glucose | 0.16 mmol/L | [87] | ||
AgNPs@MOF | peroxidase | SERS | The AgNPs@MOF served as the SERS substrate and as peroxidase mimic to convert the non-Raman-active LMG into Raman-active MG. | cholesterol | 0.36 μM | 1.0 to100 μM | [88] | |
Magnetic ring-like -Fe3O4/Au | peroxidase | SERS | Fe3O4/Au performed as SERS substrate for detecting the Raman signals of oxidized products. | glutathione cholesterol | 0.10 μM 0.08 μM | 1 to 150 μM 1 to 100 μM | [89] | |
PANI@MoS2@Fe3O4@Au (polyaniline@MoS2@Fe3O4@Au) | peroxidase | SERS | PANI@MoS2@Fe3O4@Au nanozymes greatly increased the peroxidase-like activity and the SERS performance. | glucose | 10−12 M | 10−11–10−3 M | [90] | |
Au/CoFe2 MOF (gold nanostars and metal–organic frameworks) | peroxidase | SERS | Peroxidase-like activity of Au/CoFe2 MOFs promotes the formation of OH radicals, resulting in the catalytic oxidation of TMB and the enhancement of the SERS signal. | nicotinamide adenine dinucleotide | 28 pM | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurup, C.P.; Ahmed, M.U. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. Biosensors 2023, 13, 461. https://doi.org/10.3390/bios13040461
Kurup CP, Ahmed MU. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. Biosensors. 2023; 13(4):461. https://doi.org/10.3390/bios13040461
Chicago/Turabian StyleKurup, Chitra Padmakumari, and Minhaz Uddin Ahmed. 2023. "Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing" Biosensors 13, no. 4: 461. https://doi.org/10.3390/bios13040461