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Abstract: This review highlights the recent advancements in the field of nanozymes and their
applications in the development of point-of-care biosensors. The use of nanozymes as enzyme-
mimicking components in biosensing systems has led to improved performance and miniaturization
of these sensors. The unique properties of nanozymes, such as high stability, robustness, and surface
tunability, make them an attractive alternative to traditional enzymes in biosensing applications.
Researchers have explored a wide range of nanomaterials, including metals, metal oxides, and
metal–organic frameworks, for the development of nanozyme-based biosensors. Different sensing
strategies, such as colorimetric, fluorescent, electrochemical and SERS, have been implemented
using nanozymes as signal-producing components. Despite the numerous advantages, there are also
challenges associated with nanozyme-based biosensors, including stability and specificity, which
need to be addressed for their wider applications. The future of nanozyme-based biosensors looks
promising, with the potential to bring a paradigm shift in biomolecular sensing. The development of
highly specific, multi-enzyme mimicking nanozymes could lead to the creation of highly sensitive
and low-biofouling biosensors. Integration of nanozymes into point-of-care diagnostics promises
to revolutionize healthcare by improving patient outcomes and reducing costs while enhancing the
accuracy and sensitivity of diagnostic tools.

Keywords: nanozyme; point of care; peroxidase; oxidase; SOD; catalase; colorimetric; fluorescence;
electrochemical; SERS

1. Introduction

Recent years have seen a surge in interest in early disease detection as a new area of
medical research due to its apparent ability to reduce mortality rates and raise survival
rates. Modern research progress has played a significant role in sustaining high levels of
healthcare and general well-being. Although conventional technologies like real-time poly-
merase chain reaction (RT-PCR) [1,2], enzyme-linked immunosorbent assay (ELISA) [3],
high-performance liquid chromatography (HPLC) [4], gas chromatography–mass spec-
trometry (GCMS) [5], and so on demonstrate high sensitivity and accuracy, the complex
and costly equipment required could cause a delay in response time. This highlights the
essential need in biosensor and bioassay research for the development of rapid, portable,
and user-friendly assays that could accelerate the diagnostic process and alleviate treatment
delay [6,7]. Point-of-care (POC) testing is a catch-all word for diagnostic treatments that
are conducted directly at the site of a patient.

Consequently, there has been an effort to develop advanced biosensing technologies
that can accurately detect biomarkers, the naturally occurring molecules that indicate
the presence of a disease and can be utilized to monitor disease outbreaks and facilitate
timely diagnosis [8]. When a patient’s blood, serum, urine, saliva, or tears are placed
on a biosensor’s surface, the target biomarker reacts with the bioreceptor (an enzyme,
an antibody, a protein receptor, DNA, or whole cells) attached to the sensor, and the
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presence or absence of disease is determined based on the resulting signal change. Bio-
threat agents, chemical contaminants, toxins, bio-molecular targets, and pathogens are all
within the detection range of biosensors [9–11]. Over the past decade, many biosensors
have emerged as viable complementary or alternative detection equipment to traditional
methods, allowing for faster and more precise detection in the aforementioned areas of
study.

Enzymes play the role of catalysts, speeding up the biochemical processes that take
place in the biological molecules [12]. While proteins are typically thought of as enzymes,
some RNA molecules have enzymatic activity, and both of them exhibit remarkable effi-
ciency and substrate specificity. By lowering the activation energy needed for a reaction
to take place, enzymes speed up chemical processes. Due to their exceptional biocatalytic
activity, natural enzymes have been widely used as a key component, the bioreceptor in
the development of point-of-care biosensors [13]. The biological component of a biosensor
interacts with the target analyte to provide a signal that is proportional to the concentration
of the analyte. The transducer turns this signal into a measured output that can be shown
on a readout or sent to a computer for analysis [9]. Natural enzymes such as horseradish
peroxidase (HRP) [14], glucose oxidase [15], alcohol oxidase [16], lactate oxidase [17],
cholesterol oxidase [17], cytochrome c reductase [18], and acetylcholinesterase [19] have
been used as the bioreceptor in biosensing applications. Variations in environmental fac-
tors, such as temperature, pH, and ionic strength, can diminish the enzyme’s stability
and activity over time [20]. Enzymes can also be difficult to store effectively and may
require specialized storage conditions to preserve their activity and they may also have a
short shelf life, leading to a brief lifespan for biosensors that employ them. Enzymes may
also be susceptible to interference from other substances in the sample, resulting in either
false-positive or false-negative results [19]. Natural enzymes have limited use in fields such
as biomedicine, environmental protection, biosensing, and food processing due to the afore-
mentioned limitations. As a result, researchers have devoted enormous resources to the
study of artificial enzyme mimics to circumvent these restrictions. Current developments
in nanotechnology have led to the development of functional nanomaterials with natural
enzyme-like activity. These nanomaterials are called “nanozymes” because they mimic the
catalytic action of enzymes. Nanozymes can perform the same kinetic behaviors as natural
enzymes and catalyze the conversion of substrates to oxidized coloring products [21,22]. In
2004, Pasquato and coworkers coined the term “nanozymes” to represent the ribonuclease-
mimicking activity of triazacyclononane functionalized gold nanoparticles (NPs) in the
transphosphorylation reaction. Numerous nanomaterials have been discovered to have
biocatalytic properties since the first nanozyme (Fe3O4 NPs) was discovered [23]. For
the oxidation of chromogenic substrates like o-phenylenediamine dihydrochloride (OPD),
3,3′-diaminobenzidine (DAB), and 2,2′-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS), nanomaterials including metals, metal oxides, carbon nanomaterials (CNMs), and
metal–organic frameworks (MOFs) mimic the behavior of natural enzymes [24,25]. Each
substrate’s oxidation can produce a different color in aqueous solutions; these solutions
can be examined visually, and the absorption spectrum can be identified with a spectropho-
tometer. Nanozymes are often seen as functionally equivalent replacements for natural
enzymes because of their customizable catalytic activity, adaptability, surface area, cost,
and manufacturing scale. As a result of their unique features, nanozymes can also serve
as recognition receptors [26] or signal tags [27]. Signal amplification by nanozymes has
allowed for improvements in the performance and sensitivity of a wide variety of biosensor
platforms, including colorimetric, fluorometric, chemiluminescent, surface-enhanced Ra-
man scattering, and electrochemical biosensors [21]. Up until now, there has been a dearth
of comprehensive reviews on the use of nanozyme-based biosensors, particularly as they
relate to personalized diagnostics. This article aims to address that gap by providing a
detailed and comprehensive overview of the use of nanozyme-based biosensors in POC
settings. In doing so, we aim to explore the catalytic mechanisms employed by nanozymes
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for biosensing and provide an overview of the various types of nanozyme-based biosensors
currently in use.

2. Classification of Nanozymes

Natural enzymes play a crucial role in the biochemical processes that sustain life, but
they also have some significant limitations that make it important to investigate potential
substitutes [28]. Numerous nanomaterials have been proposed as possible enzyme candi-
dates for practical applications by researchers. Although other characteristics such as size,
shape, coating, surface modification, pH, and temperature can have a major influence, the
atomic composition of nanozymes is the most relevant since the atoms on the surface and
inside the core of the NPs are responsible for the enzymatic activity of the nanozyme [29,30].
Therefore, the incorporation of various NPs may either modify the basic characteristics
of nanozymes or provide for their multifunctionality. According to their enzymatic ac-
tivity, nanozymes fall into two broad categories: oxidoreductase and hydrolase. Family
members of the oxidoreductase class perform redox catalysis, much as catalase, superoxide
dismutase (SOD), oxidase, peroxidase, and nitrate reductase. Similar to phosphatases,
proteases, nucleases, esterases, and silicatein, hydrolases catalyze hydrolysis processes [31].
Nanozymes based on peroxidase, superoxide dismutase (SOD), catalase, and oxidase are
commonly used in biosensing applications [32–36]. Recent years have seen the publication
of a variety of articles addressing the topic of nanomaterial-based enzyme mimics, with
subjects from peroxidase mimics and oxidase mimics to catalase mimics and sulfite oxidase
mimics [25,26,29,36,37]. However, the purpose of this review is to provide readers with an
idea of the state of the art in the burgeoning field of nanozyme-based biosensors. Since
recent developments in chemical synthetic methods have led to the formation of nanoma-
terials with precise controls of size, shape, and compositions, we hope this review article
can highlight the various new nanomaterials used and thereby facilitate the research in
enzyme mimics. In this section, we explore the plethora of nanomaterials that exhibit these
enzyme-mimicking properties, as well as the method by which they function in biosensing
applications (Figure 1).
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Figure 1. Schematic illustration of various mimicking types of enzymes and the nanozyme base.

2.1. Peroxidases

Peroxidases are a broad family of isoenzymes found in various sources, such as plants,
animals, and microbes. They generally contain an iron-porphyrin derivative (heme) in
their active site, which can accelerate biological oxidation events. In these reactions, the
organic hydroperoxides or hydrogen peroxide act as electron acceptors and collaborate
with oxidized redox substrates, which serve as electron donors during the reduction
process. (Figure 2). The ping-pong mechanism is the recognized mechanism for peroxidase
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activity (double-displacement reaction). There are two common catalysis pathways for
nanozymes in a peroxidase mimic reaction: an electron transfer pathway and a hydroxyl
radical production pathway based on the Fenton reaction [38]. The Fenton reaction is
mainly responsible for the peroxidase-like activity of nanomaterials [39]. In the Fenton
process, the hydrogen peroxide (H2O2) is catalytically broken down by the ferrous ion
(Fe2+) in a sequence of reactions in solution (summarized by Equations (1)–(3), leading to
the generation of reactive oxygen species [40].

Fe2+ + H2O2 + H+ → Fe3+ + •OH + H2O (1)

Fe3+ + H2O2 → Fe2+ + •OOH + H+ (2)

Fe3+ + OOH→ Fe2+ + O2 + H+ (3)

In 2007, it was demonstrated that magnetic nanoparticles made of iron oxide (Fe3O4)
possess the ability to catalyze the oxidation of TMB, o-phenylenediamine (OPD), and
diazoaminobenzene (DAB) in the presence of H2O2 under acidic pH conditions. The
resulting reaction produced a range of colored products, such as blue, orange, and brown,
resembling the outcomes of the natural enzyme HRP [23]. More recently, an electron
transfer pathway has also been identified to increase the peroxidase activity [41]. Their
peroxidase-like activity was determined by the number of oxidized products produced and
H2O2 consumed. As possible peroxidase (POD) mimics, transition metal dichalcogenides
(TMDs) are a type of 2D materials with considerable potential. Several properties of PODs,
such as their active edge locations and surface electron transfer capabilities, contribute
to this. TMDs, such as molybdenum disulfide (MoS2), tungsten diselenide (WSe2), and
tungsten ditelluride (WTe2), have comparable active sites and electron transfer abilities to
PODs [42–44]. The maximum turnover number (Kcat), maximum reaction speed (Vmax),
and Michaelis–Menten constant (Km) are determined for enzyme kinetics studies using the
Michaelis–Menten equation. In addition to the Fenton reaction, H2O2 can be transformed
into reactive hydroxyl radicals (OH) and superoxide anion (O2) via “Haber–Weiss reactions”
in the presence of strong catalytic metal ions (often iron ions) [45]. Nanozymes made of
metallic NPs have numerous applications. The detection of inherent peroxidase activity
in Fe3O4 nanoparticles [23], which closely resembles the peroxidase system found in
nature (specifically, the horseradish peroxidase enzyme), has inspired the exploration of
peroxidase-mimicking biosensors based on nanomaterials. These biosensors have received
significant attention over time [46]. CNMs possess several appealing characteristics as
peroxidase mimics, including a high specific surface area, high water solubility, stability,
biocompatibility, and non-toxicity [47]. It was shown that single-walled carbon nanotubes
(SWCNTs) have peroxidase-like activity, just as natural HRP [48]. Similar to HRP, SWNTs
catalyze the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB), resulting in a change
in color that is highly sensitive to changes in pH, temperature, and H2O2 concentration.
These intriguing results have encouraged the study of different carbon-based nanomaterials
as peroxidase mimics in the field of biosensors, including GQDs [49], carbon dots [50], and
graphitic carbon nitride [51].



Biosensors 2023, 13, 461 5 of 24

Biosensors 2023, 13, x FOR PEER REVIEW 5 of 24 
 

into reactive hydroxyl radicals (OH) and superoxide anion (O2) via “Haber–Weiss reac-

tions” in the presence of strong catalytic metal ions (often iron ions) [45]. Nanozymes 

made of metallic NPs have numerous applications. The detection of inherent peroxidase 

activity in Fe3O4 nanoparticles [23], which closely resembles the peroxidase system found 

in nature (specifically, the horseradish peroxidase enzyme), has inspired the exploration 

of peroxidase-mimicking biosensors based on nanomaterials. These biosensors have re-

ceived significant attention over time [46]. CNMs possess several appealing characteristics 

as peroxidase mimics, including a high specific surface area, high water solubility, stabil-

ity, biocompatibility, and non-toxicity [47]. It was shown that single-walled carbon nano-

tubes (SWCNTs) have peroxidase-like activity, just as natural HRP [48]. Similar to HRP, 

SWNTs catalyze the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB), resulting 

in a change in color that is highly sensitive to changes in pH, temperature, and H2O2 con-

centration. These intriguing results have encouraged the study of different carbon-based 

nanomaterials as peroxidase mimics in the field of biosensors, including GQDs [49], car-

bon dots [50], and graphitic carbon nitride [51]. 
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2.2. Superoxide Dismutase (SOD)

When it comes to protecting mammalian cells from damage, natural SOD enzymes
are indispensable because of their ability to catalyze the dismutation reaction that converts
superoxide anion O2 (one of the reactive oxygen species, (ROS)) into harmless hydrogen
peroxide (H2O2) and oxygen (O2) (Figure 2). Increased oxidative stress and negative health
impacts may result from defective deregulation of ROS formation at the cellular level [54].
Some inorganic NMs have been shown to have scavenging •O2

− activity, similar to that of
SOD, and mostly they are more reliable and less expensive than SOD [55,56]. Additionally,
unlike SOD, these nanozymes exhibit both electrical and magnetic properties. Therefore,
NMs with SOD-like catalytic activity have shown the potential to develop novel biosensors
in various areas [53,56]. While these NMs have some catalytic activity toward removing
•O2

−, it is significantly less potent than that of SODs, which limits their utility [57]. In
recent years, there have been multiple attempts to develop a highly effective nanozyme
that can mimic the behavior of superoxide dismutase (SOD). After discovering fullerene’s
radical sponge properties, researchers began using it and its derivatives to prevent oxidative
damage to neurons [58]. The water-soluble C60 fullerene was proposed to catalyze the
removal of •O2

− in two stages. In the presence of protons in the solution, the catalyst
is reduced by taking one electron from •O2

−, and then that electron is transferred to
another •O2

−, resulting in the production of •O2
− and H2O2 [59]. The ceria nanoparticles

(CeNPs) are the most researched of the nanozymes that mimic SOD. CeNPs mimicking SOD
activity with enhanced catalytic efficiency were originally reported by the Self group [60].
Numerous studies have indicated that the ability of CeNPs to mimic the behavior of
superoxide dismutase (SOD) is primarily linked to the presence of an electron shuttle
between their mixed oxidation states, which consist of Ce3+ and Ce4+ [61].

2.3. Oxidase Mimics

Enzymes known as natural oxidases can facilitate the oxidation of a substrate, or
electron donor, to produce its corresponding oxidized product in the presence of oxygen,
typically resulting in the formation of H2O, H2O2, or •O2

−, as shown in Figure 2. Recent
research has shown that a variety of NMs are capable of catalyzing the oxidation of single
or multiple substrates in oxygen-rich environments, demonstrating properties that are
identical to those of natural oxidases [33,62,63].
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To evaluate the oxidase-like activity of different nanomaterials, organic substrates
containing amino groups, including polyamines and aromatic amines, as well as TMB,
OPD, and ABTS, are commonly used because they produce a noticeable change in color
and a sensitive signal response when exposed to UV-visible light. A variety of biomedical
uses for citrate-capped Au NPs have prompted much research. Extensive research has
been conducted on the catalytic properties of “naked” or citrate-capped gold nanoparticles
(Au NPs). Rossi and colleagues showed that water-dispersed gold sol may facilitate
the oxidation of beta-D-glucose by O2 without the need of conventional supports like
carbon or protectors such as PVP [64]. Contrary to what could be expected based on
control tests, other metal nanoparticles did not exhibit pronounced catalytic ability on
the glucose oxidation reaction. It was discovered, in 2009, that nanoceria, which contains
a Ce3+/Ce4+ redox pair, could catalyze the oxidation of organic molecules in ambient
conditions [65]. Adsorption of O2 is preferentially favored by nanoceria defect sites. This
results in the oxidation of TMB and the reduction of Ce4+ to Ce3+ on the nanoceria surface
from the adsorbed O2. Afterwards, the newly formed •O2

− will re-oxidize the Ce3+ to
Ce4+. Nanoceria’s oxidase-mimetic properties can be traced back to the redox switching of
Ce3+/Ce4+ and the production of •O2

− radicals [66]. Nanomaterials based on manganese
(Mn) were also frequently described as acting as oxidase mimics (MnO2 and Mn3O4). An
example of a nanomaterial with oxidase-like properties is MnO2 nanoparticles, which have
been shown to promote the oxidation of substrate molecules such as TMB and OPD using
O2, resulting in a color change reaction [67].

2.4. Catalase Mimics

The ability of natural catalase enzymes to catalyze the cellular degradation of H2O2
into the water and molecular oxygen is of great importance (Figure 2). An abundance
of nanomaterials, including metals and metal oxides, showed catalase-like activity. In
most cases, the reported nanomaterials contained catalase-like activities in addition to
other enzyme-mimicking activities, and the main enzyme-mimicking activity depended on
the pH or temperature [68]. It is vital to remember that if H2O2 levels are not monitored
closely, it can contribute to the spread of several different diseases. Consequently, catalase
enzymes are crucial for getting rid of H2O2 buildup in the cytoplasm by dismutating it
into harmless water and oxygen molecules. Researchers have discovered a wide variety
of metal-based nanomaterials (Au, Ag, Pd, Pt) [69] and metal oxide-based NPs (cerium
oxide, iron oxides, and cobalt oxide nanoparticles) [69–71] displaying catalase enzyme-like
activity in recent years. Most nanomaterials had catalase-like and other enzyme-mimicking
properties. The catalytic reaction’s pH and temperature determine whether these switchable
enzyme-mimicking features coexist [69]. Metal nanoparticles can act as mimics of different
enzymes depending on the conditions they are in. Under basic pH conditions, they can
act as mimics of catalase, which decomposes hydrogen peroxide (H2O2) into water (H2O)
and oxygen gas (O2). However, in acidic pH conditions, certain metal nanoparticles can
exhibit peroxidase-like activity, similar to the natural enzyme horseradish peroxidase,
which catalyzes the oxidation of substrates, with hydrogen peroxide as the oxidant [72].

3. Nanozyme-Based Biosensors

The use of nanozymes for developing biosensors that can mimic enzyme-like catalytic
activity and amplify signals has gained popularity in recent times. They have been found to
be an excellent substitute for biological enzymes in the fabrication of innovative biosensors.
We discuss the wide range of nanozyme-based biosensors that have been developed and
utilized successfully, employing various techniques, such as colorimetry, fluorescence,
electrochemistry, surface enhanced Raman, and scattering (Table 1).
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Table 1. Different biosensors based on nanozymes used in biosensing applications.

Nanozyme
Enzyme
Mimetic
Activity

Transduction
System Nanozyme Activity Bioreceptor Application Limit of

Detection Range Ref.

MOF-818 on carbon cloth (CC)
fibers

catechol
oxidase colorimetric

MOF-818/CC effectively mimicked
catechol oxidase by catalyzing

3,5-Ditert-butylcatechol (3,5-DTBC)
colorimetric substrates in the

presence of oxygen.

aptamer thrombin 6.4 pM 1.4 × 10−10–
1.4 × 10−5 M

[73]

Bimetallic ZnO-Co3O4 (zinc
oxide/cobalt oxide) nanocages peroxidase colorimetric

Due to the high binding capacity of
Aβ monomer to ZnO-Co3O4 NCs, the

peroxidase activity of ZnO-Co3O4
NCs was reduced, and as a result, the

TMB color change was lowered as
well.

amyloid-β
peptide (Aβ) 3.5 nM 5 to 150 nM [74]

COS (chitosan
oligosaccharide)-AuNPs@Fe2+

peroxidase colorimetric

In the presence of PS, COS bind to
AuNPs@Fe2+ to generate a nanozyme
with improved peroxidase-mimicking

activity towards TMB.

aptamer phosphatidylserine
(PS) 5 × 10−10 mol L−1 5 × 10−7 mol L−1 to

5 × 10−3 mol L−1 [75]

Ferrite nanozyme peroxidase colorimetric

Ferrite nanozyme with improved
peroxidase-mimicking activity
oxidized TMB to create a color

change.

l-cysteine 0.119 µM 0.2–20 µM [76]

Co–N-C (Co, N co-doped porous
carbon) nanozyme oxidase fluorescence

The chromogenic substrate TMB was
catalyzed and oxidized by Co–N-C

nanozyme

butyrylcholinesterase
(BChE) 0.16 U L−1 0.5 to 40 U L−1 [77]

Cu-MOF peroxidase fluorescence

TMB was oxidized by Co–N-C
nanozyme, and oxTMB caused the
quenching of carbon quantum dots

fluorescence.

aptamer C-reactive protein 40 pg mL−1 0.1 to 50 ng mL −1 [78]

Cu-MOF peroxidase fluorescence
CRP-specific RNA adsorbed on

Cu-MOFs inhibited the enzymatic
activity and fluorescence of the MOF.

aptamer thrombin 110 fM [79]

CuAA nanozyme
(copper-doped carbon-based) peroxidase fluorescence

CuAA oxidised the OPD into
2,3-diaminophenazine (DAP). DAP

further quenched Mg–N-CQDs’
(Mg/N doped CQDs) fluorescence.

glucose 1.56 µM 2–400 µM [80]
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Table 1. Cont.

Nanozyme
Enzyme
Mimetic
Activity

Transduction
System Nanozyme Activity Bioreceptor Application Limit of

Detection Range Ref.

Cu (copper)-MOF peroxidase fluorescence

The immobilized thrombin-based
aptamer on the Cu-MOF surface

forms a functionalized composite,
ssDNA/MOF, which inhibited the

stimulated fluorescence emission and
enzymatic activity of Cu-MOF.

pyrophosphatase
pyrophosphate ion

0.30 mU mL−1

0.53 µmol L−1
2–40 mU mL−1

1 to 450 µmol L−1 [81]

Fe3O4 nanozyme with copper (II)
complex peroxidase electrochemical

The Fe3O4 nanozyme functioned as a
carrier for hairpin capture probes

(HCP) and also amplified the signal
amplification through the catalytic

reaction.

microRNA 33 aM 100 aM to 100 nM [82]

Hollow
Pt–Fe3O4@C
nanospheres

oxidase electrochemical

Fe3O4 hollow nanospheres were used
as carriers for Pt, and the combination
with carbon (Pt–Fe3O4@C) achieved

high conductivity.

sarcosine 0.43 µM 0.5–60 µM [83]

CuO peroxidase electrochemical CuO nanozyme functioned as signal
amplifying nanoprobes. aptamer MCF-7 circulating

tumor cell (MUC-1) 27 cells mL− 1 50 to
7 × 103 cells mL−1 [84]

2D MnO2 nanoflakes oxidase/
peroxidase electrochemical

MnO2 nanoflakes exhibit superior
response to ssDNA binding and
showed high catalytic activity.

microRNA
(let-7a) 0.25 nM 0.4 to 100 nM [85]

COF@Pt
(covalent organic

framework-based nanozymes)
peroxidase electrochemical

COF@Pt functions as peroxidase
mimic to amplify the electrochemical

response from H2O2 reduction.

circulating tumor
cells 1 cell mL−1 2 to 105 cells mL−1 [86]

AuNPs/Cu-TCPP(Fe)
(Cu-tetra(4-

carboxyphenyl)porphyrin)
chloride(Fe(III)))

peroxidase SERS

Cu-TCPP(Fe) nanosheets catalyzed
H2O2 and they further oxidized the
non-Raman-active leucomalachite

green (LMG) into the Raman-active
malachite green (MG)

glucose 0.16 mmol/L [87]

AgNPs@MOF peroxidase SERS

The AgNPs@MOF served as the SERS
substrate and as peroxidase mimic to
convert the non-Raman-active LMG

into Raman-active MG.

cholesterol 0.36 µM 1.0 to100 µM [88]
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Table 1. Cont.

Nanozyme
Enzyme
Mimetic
Activity

Transduction
System Nanozyme Activity Bioreceptor Application Limit of

Detection Range Ref.

Magnetic ring-like -Fe3O4/Au peroxidase SERS
Fe3O4/Au performed as SERS

substrate for detecting the Raman
signals of oxidized products.

glutathione
cholesterol

0.10 µM
0.08 µM

1 to 150 µM
1 to 100 µM [89]

PANI@MoS2@Fe3O4@Au
(polyaniline@MoS2@Fe3O4@Au) peroxidase SERS

PANI@MoS2@Fe3O4@Au nanozymes
greatly increased the peroxidase-like
activity and the SERS performance.

glucose 10−12 M 10−11–10−3 M [90]

Au/CoFe2 MOF
(gold nanostars and

metal–organic frameworks)
peroxidase SERS

Peroxidase-like activity of Au/CoFe2
MOFs promotes the formation of OH

radicals, resulting in the catalytic
oxidation of TMB and the

enhancement of the SERS signal.

nicotinamide
adenine dinucleotide 28 pM [91]
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3.1. Colorimetric Biosensors

As a promising technique for point-of-care detections, colorimetric biosensors allow
for the quantitative identification of a specific analyte by color changes using only one’s eyes
or a simple portable optical detector. A catalyst’s catalytic activity may also influence the
sensing efficiency. Natural enzymes are often used in colorimetric detection methods due to
their great sensitivity and specificity [92]. However, their utilization is constrained by inher-
ent restrictions such as high cost, complex treatments, low stability, and challenging storage.
Nanozymes, which combine the benefits of natural enzymes with those of nanomaterials,
have gained a lot of attention as a viable alternative to natural enzymes because of their
low synthesis cost, ease of recycling, and the aforementioned advantages [10]. Enzymes
and nanozymes provide colorimetric output signals when they react with chromogenic
substrates like 3,3′,5,5′-tetramethylbenzidine (TMB), 2,2′-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) diammonium salt (ABTS), and o-phenylenediamine (OPD) [21]. We have
chosen a few publications to serve as examples of the mechanism of nanozyme-based
colorimetric biosensors.

Colorimetric sensors were developed using a variety of inorganic nanomaterials with
peroxidase-like activity, including transition metal oxides (e.g., ferromagnetic nanoparticles,
MOFs), metals (nanohybrids of gold nanoparticles and MoS2 nanoribbons), and carbon-
based nanomaterials (e.g., graphene dots, graphene, and carbon nanotubes). Liu et al. were
able to successfully develop a simple and cost-effective approach for the simultaneous detec-
tion of three liver-related biomarkers—aspartate transaminase (AST), alanine transaminase
(ALT), and alkaline phosphatase (ALP)—from human plasma employing Au-decorated
CoAl-layered double oxide (Au/LDO) nanozymes [93]. Two-dimensional (2D) nanomate-
rial layered double hydroxides (LDHs) are also known as anionic clays or hydrotalcite-like
compounds. One of the most researched LDHs, CoAl-LDHs convert between divalent Co2+

and trivalent Al3+ ions, which could aid in the faradaic redox process [94]. The nanozyme
Au/LDO, combined with the agarose hydrogel, acted as a peroxidase mimic, expediting
the transformation of colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue oxTMB in
the presence of hydrogen peroxide (H2O2). Significant interest has been drawn to the
specific advantages of the amorphous structure over the crystalline structure in the realm of
catalysis. Improved activity and enhanced catalytic selectivity are two of the benefits [95].
Peroxidase mimetic amorphous ruthenium hexamine/tellurium nanorod (a-RuTe2) has
a catalytic constant (Kcat) 3.77 times higher than that of crystalline RuTe (c-RuTe2), as
indicated by the work of Yan et al. (Figure 3A,B) [96]. Based on this, an enzyme-linked
immunosorbent assay (ELISA) was developed for the detection of prostate-specific antigen
(PSA) using a-RuTe2 nanorods as labels (Figure 3C). The proposed ELISA based on a-RuTe2
nanorods has a very high sensitivity, at approximately an order of magnitude lower than
that of a standard ELISA based on natural horseradish peroxidase.

Similarly, an ultrasensitive immunosensor was constructed for ApoA1 detection using
POD-mimicking nanozymes synthesized from Prussian Blue (PB) and magnetic graphene
oxide (MGO, PMGO). By catalyzing the oxidation of a colorimetric substrate, TMB, the
produced nanozyme could be used as a signal-generating material [97]. Increasing interest
in metal–organic frameworks (MOF) can be attributed to the materials’ many desirable qual-
ities, such as their high specific surface area and pore volume, their malleable composition,
and their remarkable thermal stability [98]. Recently, MOF-818, a nanozyme-mimicking
catechol oxidase, was homogeneously prepared and characterized on the surface of car-
bon cloth (CC) fibers using a hydrothermal method. The nanozyme displayed high cat-
alytic activity toward the oxidation of pale yellow 3,5-di-tert-butylcatechol (3,5-DTBC) to
bright yellow 3,5-di-tert-butyl-(3,5-DTBQ) [73]. Following aptamer modification on the
MOF-818/CC surface, thrombin was detected, which hindered the catalytic activity of the
nanozyme composite. The aptamer-MOF-818/CC selectively and sensitively measured
thrombin with an LOD of 6.4 pM.

The active surface of nanozymes allows for rapid interaction with a range of biomolecules,
from low-molecular-weight compounds to macromolecules. However, interference from
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the biological sample matrix is a persistent issue. To address this concern, molecularly
imprinted polymers (MIPs) have been used as they can create large-scale target molecule-
binding sites, reducing interference from other molecules [99,100]. In their research, Wu
et al. [101] discovered that the MIP graphitic carbon nitride (MIP-g-C3N4) nanozyme pos-
sessed intrinsic photooxidase activity (Figure 3D), which led to an increase in the enzyme’s
bioactivity and target specificity. They also found that this nanozyme reduced matrix
interference from serum samples by a factor of 1000 (Figure 3E,F). During colorimetric
sensing, MIP-g-C3N4 displayed enzyme activity that was four times higher than that of bare
g-C3N4. Using the novel nanozyme, the group was able to detect L-cysteine, a biomarker
associated with a range of diseases like cancer and Alzheimer’s. Nanozyme-based colori-
metric biosensors have proven to be highly useful owing to their ease of use, quick response
time, portability, and adaptability. However, their detection accuracy and sensitivity can be
compromised by the background color of the sample, which can cause interference [21,22].
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Figure 3. (A) RuTe2 nanorods demonstrate peroxidase-like activity by catalyzing the oxidation of
TMB similar to POD. (B) Comparison of the enzymatic parameters Vmax and KM of amorphous and
crystalline RuTe2 using H2O2 as a substrate. (C) Representation of the colorimetric a-RuTe2-ELISA
for detecting PSA. (D) Illustration of g-C3N4-catalyzed oxidation of TMB. Experimental conditions:
g-C3N4 concentration of 20 mg/mL, solution pH of 4.0, TMB concentration of 0.5 mmol/L, and
blue LED color. Interfering matrices from serum samples are demonstrated in (E) g-C3N4 and
(F) MIP-g-C3N4. Reprinted with permission from refs. [96,101].

3.2. Fluorescence Biosensors

Fluorescent biosensors, which consist of small scaffolds, can be attached to molecules
using one or more fluorescent probes through enzymatic, chemical, or genetic methods.
This technology has emerged as a sensitive and effective approach for biosensing due to its
ability to improve sensitivity and reduce matrix effects. The biosensor’s detection function
relies on the activation or deactivation of its fluorescence by the target analytes, which can
either turn it on or turn it off [102]. Fluorescence is a form of luminescence that occurs
when a substance absorbs light with high energy (shorter wavelength) and subsequently
emits light with lower energy (longer wavelength). This process occurs rapidly, typically
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taking place within 10−8 to 10−9 s [103]. Nanozyme-based fluorescence approaches have
been developed for a number of diagnostic applications and have recently attracted a lot of
attention in biosensing research. One type of these sensors is fluorescence resonance energy
transfer (FRET) biosensors, which rely on the direct excitation of a fluorophore donor by
electromagnetic emission at the appropriate wavelength [104]. The substances that prevent
excited fluorophores from emitting further light and instead turn that energy into heat are
called quenchers. Quenchers are effective energy acceptors in FRET pairs because they
maintain their darkness by releasing the absorbed energy as heat.

For example, gold nanoclusters were modified by Wang et al. with lysozyme-function
alized 5-methyl-2-thiouracil gold nanoclusters (MT-LZ@GNCs) (Figure 4A) to enhance the
fluorescence activity. [105]. The MT-LZ@GNCs exhibited a yellow fluorescence when mea-
sured at a wavelength of 550 nm (Figure 4B). To create a fluorescent nanoprobe for detecting
xanthine, MT-LZ@GNCs was combined with an iron-doped carbon nanosheet (Fe/CNS),
which has similar activity to the enzyme peroxidase. The resulting MT-LZ@GNCs/Fe/CNS
fluorescent nanoprobe was able to detect xanthine, and it showed a 3.67-fold increase in
fluorescence intensity compared to MT@GNCs. The nanoprobe was able to detect xanthine
in human serum samples with a low detection limit of 0.23 µmol L−1 and a recovery rate
between 98.72% and 109.27%.

Biosensors 2023, 13, x FOR PEER REVIEW 13 of 24 
 

Li and colleagues developed a dual-emission ratiometric fluorescence sensing system 

using MnO2 nanosheets (MnO2 NSs) as quenchers for blue fluorescent carbon dots (BCDs) 

to determine multiple H2O2-related biomarkers with high accuracy and reliability [107]. 

The system avoids the need for synthesizing dual-emission fluorophores, making it sim-

ple, sensitive, and versatile. MnO2 NSs possess oxidase-like activity that can convert non-

fluorescent o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP), producing a flu-

orescence signal at 562 nm. As mediators, MnO2 NSs decompose in the presence of H2O2, 

resulting in the fluorescence recovery of BCDs and a decrease in DAP. Sarcosine, a pros-

tate cancer biomarker, generates H2O2 when catalyzed by sarcosine oxidase. Under opti-

mal conditions, sarcosine can be detected as low as 0.36 μM. The system’s practicability 

was demonstrated by successfully detecting sarcosine in human urine samples with sat-

isfactory recoveries of 94.9–98.6%. 

 

Figure 4. (A) Schematic representation of the fabrication of MT-LZ@GNCs. (B) Fluorescence emis-

sion spectra of MT@GNCs and MT-LZ@GNCs. (C) Schematic representation of the principle behind 

the assay and the color change obtained with the three different materials. Reprinted with permis-

sion from refs. [51,105]. 

3.3. Electrochemical Biosensors 

Incorporating the natural bioselectivity of the biological component, electrochemical 

biosensors combine the sensitivity of electroanalytical methods with the analytical preci-

sion of the chemical component. Once the analyte has been recognized by the biological 

component of the sensor, a catalytic or binding event will follow, resulting in an electrical 

signal that is measured by a transducer and will be proportionate to the analyte concen-

tration [108–113]. Electrochemical biosensors have been widely used in numerous indus-

tries, including clinical diagnostics, environmental monitoring, food safety analysis, etc., 

because of their ease of use, low cost, exceptional stability, and sensitive response [6,114]. 

Since the nanozymes have a large surface area and a high density of capture sites, they 

may be able to increase the loading of the electroactive species at their surfaces, leading to 

better electrochemical reactions [21,29,115]. Thus, nanozymes can serve either as an elec-

trode material [116] or as a tracer tag [117] for signal amplification in electrochemical bio-

sensors. Graphene oxides, fullerenes, carbon nanotubes (CNTs), and AuNPs Zr and Cu-

Figure 4. (A) Schematic representation of the fabrication of MT-LZ@GNCs. (B) Fluorescence emission
spectra of MT@GNCs and MT-LZ@GNCs. (C) Schematic representation of the principle behind the
assay and the color change obtained with the three different materials. Reprinted with permission
from refs. [51,105].

In another study, a fluorescence biosensor was fabricated based on the dual functions
of MIL-101(Fe) particles, peroxidase-mimicking activity and fluorescent emission, for
the simultaneous detection of choline and acetylcholine (ACh) [106]. This method of
fluorescence sensing uses acetylcholinesterase (AChE) to break down ACh into choline,
which is then oxidized by choline oxidase (ChOx) to create H2O2. The H2O2 is then broken
down into hydroxyl radicals using MIL-101(Fe) nanozymes, resulting in the oxidation of
the non-fluorescent terephthalic acid of MIL-101(Fe) to form a highly fluorescent 2-hydroxy
terephthalic acid. The MIL-101(Fe) nanozyme has a much greater affinity for H2O2 than the
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enzyme HRP, as shown by its Km value being around 67 times lower. This indicates that the
MIL-101(Fe) nanozyme is more effective at detecting H2O2 than HRP. Using this biosensor,
choline in milk and ACh in human plasma were detected, with recoveries ranging from
99.63% to 102.00% and 97.20% to 102.91%, respectively.

A ratiometric fluorescence sensing system requires the integration of two emitting com-
ponents, which can be accomplished through the production of nanoparticles or various
organic dye composites and the manufacture of intrinsic dual-emission fluorophores [13,14].
Unfortunately, the general application of such approaches is hampered by the fact that
they typically necessitate elaborate and time-consuming pretreatment steps [15]. Graphitic
carbon nitrides (C3N4) have been utilized to create highly active nanozymes for biosens-
ing applications. These nanozymes have abundant pyridinic nitrogen moieties and a
π-conjugated framework that provides potential binding sites for further modifications to
enhance their catalytic activity. Wang et al. [51] developed three fluorescent C3N4-based
nanozymes, namely C3N4-Ru, C3N4-Cu, and C3N4-hemin, with excellent peroxidase-like
activities. They combined ruthenium and copper ions into the nanosheets through coor-
dination with pyridinic nitrogen moieties, while hemin was linked to C3N4 through π-π
interaction. These fluorescent nanozymes emitted a fluorescence at 438 nm when excited at
385 nm. An intriguing observation was made when the nanozymes were present during
the catalytic oxidation of o-phenylenediamine (OPD) to oxidized OPD (OPDox) in the
presence of H2O2. In addition to the emission of a new fluorescence at 564 nm by the
OPDox, the fluorescence at 438 nm of the nanozymes was also quenched. As a result, the
researchers used the ratio between the fluorescent intensity at 564 and 438 nm (F564/F438)
as the signal output to create a ratiometric biosensing system. To create a ratiometric
H2O2 sensing system, the C3N4-Ru nanozyme was used (Figure 4C). In order to detect
and differentiate between five phosphates, a ratiometric sensor array was built using three
distinct C3N4-based nanozymes.

Li and colleagues developed a dual-emission ratiometric fluorescence sensing system
using MnO2 nanosheets (MnO2 NSs) as quenchers for blue fluorescent carbon dots (BCDs)
to determine multiple H2O2-related biomarkers with high accuracy and reliability [107].
The system avoids the need for synthesizing dual-emission fluorophores, making it sim-
ple, sensitive, and versatile. MnO2 NSs possess oxidase-like activity that can convert
non-fluorescent o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP), producing
a fluorescence signal at 562 nm. As mediators, MnO2 NSs decompose in the presence of
H2O2, resulting in the fluorescence recovery of BCDs and a decrease in DAP. Sarcosine, a
prostate cancer biomarker, generates H2O2 when catalyzed by sarcosine oxidase. Under
optimal conditions, sarcosine can be detected as low as 0.36 µM. The system’s practicabil-
ity was demonstrated by successfully detecting sarcosine in human urine samples with
satisfactory recoveries of 94.9–98.6%.

3.3. Electrochemical Biosensors

Incorporating the natural bioselectivity of the biological component, electrochemical
biosensors combine the sensitivity of electroanalytical methods with the analytical preci-
sion of the chemical component. Once the analyte has been recognized by the biological
component of the sensor, a catalytic or binding event will follow, resulting in an electrical
signal that is measured by a transducer and will be proportionate to the analyte concentra-
tion [108–113]. Electrochemical biosensors have been widely used in numerous industries,
including clinical diagnostics, environmental monitoring, food safety analysis, etc., because
of their ease of use, low cost, exceptional stability, and sensitive response [6,114]. Since
the nanozymes have a large surface area and a high density of capture sites, they may be
able to increase the loading of the electroactive species at their surfaces, leading to better
electrochemical reactions [21,29,115]. Thus, nanozymes can serve either as an electrode
material [116] or as a tracer tag [117] for signal amplification in electrochemical biosensors.
Graphene oxides, fullerenes, carbon nanotubes (CNTs), and AuNPs Zr and Cu-based MOFs



Biosensors 2023, 13, 461 14 of 24

are just some of the nanozymes employed in EC biosensors due to their exceptional catalytic
activity [10,118].

It was worth noting that Gugoasa’s team developed the first in situ synthesis method
for a hybrid material made of gold nanoparticles and reduced graphene oxide (Au-rGO),
which combines the unique features of each nanomaterial [119]. Laccase-like catalytic
activity was demonstrated by the Au-rGO on a phenolic substrate (catechol). Compared to
unmodified SPE 0.073 cm2, the electroactive surface area of Au-rGO/SPE was increased to
0.215 cm2. Au-rGO’s surface area, efficient electro-catalysis, and high conductivity aided
in electron transfer between the analyte and electrode, boosting the response signal of the
SPE-modified electrode.

Recent years have seen a surge in interest in metal–organic frameworks (MOFs) as
promising new materials due to their tailorable pore size, functional groups, and biocom-
patibility. In comparison to previous porous solid supports (such as zeolites, mesoporous
silica, sol-gel hydrogels, and porous polymers), MOFs have greatly broadened the pos-
sibilities for immobilizing enzymes, and are seen as a highly promising platform for
researching enzyme–host material interactions [120,121]. Therefore, for the immobilizing
of nanoparticles, they are also widely utilized as a matrix [122]. For the sensitive detection
of Hg2+, Wang’s team decorated zirconium MOFs with a complex of gold and palladium
(AuPd@UiO-67), which served as a nanozyme to amplify the signal [32]. Electrode modifi-
cation was accomplished by the use of gold-modified thiol graphene (Au@HS-rGO). As
part of the platform construction, an Au-S bond was made to the substrate strand (Apt1).
Nanozyme AuPd@UiO-67 was used to label Apt2, and it exhibited catalase-like charac-
teristics (Figure 5A). AuPd@UiO-67 nanozyme’s catalytic action toward H2O2 allowed
for the recording of the current signal. It was reported that the designed electrochemical
aptasensor for Hg2+ has a low detection limit of 0.16 nmol/L and a wide linear range of
1.0 nmol/L to 1.0 mmol/L.

DNA-based homogeneous electrochemical sensing is a novel approach among elec-
trochemical sensors since it enables target identification in a single, diluted solution [123].
Unlike traditional heterogeneous sensors, homogeneous sensors do not require the im-
mobilization of DNA recognition elements, the laborious functionalization of electrodes,
or the washing stages [124]. In a dynamic system, where target identification, real-time
assay, and regeneration will be conducted in succession, homogeneous electrochemistry
provides additional benefits. Nanomaterials with a uniform size and shape can be pro-
duced through cost-effective and sustainable wet chemical synthesis, which is guided
by a soft template [85]. 2D MnO2 nanoflakes were synthesized by this method by Wu
and colleagues [125], and their functionality resembled that of oxidase and peroxidase
enzymes (Figure 5B). As a result of their enzyme-like properties, 2D MnO2 nanoflakes
have been shown to be highly active in catalyzing the oxidation of O2 into ROS and greatly
lowering the differential pulse voltammetry (DPV) peak current by removing methylene
blue (MB). More so, 2D MnO2 nanoflakes showed off a peculiar reaction to ssDNA. A
homogeneous electrochemical 2D MnO2 nanoflake-based biosensor for miRNA, let-7a,
was created (Figure 5C), with a linear range of 0.4–100 nM and a LOD of 0.25 nM, due
to its sensitivity to ssDNA and dual enzyme-like activities. Similarly, Wang et al. [110]
proposed a flow homogenous electrochemical microRNA detection devoid of immobilized
DNA recognition components and time-consuming electrode functionalization. This article
describes the ultrasonic production of a 2D MOF nanozyme with a thickness of roughly 1
nm with peroxidase-like activity. As part of the DNA-based homogeneous electrochemical
sensing system, Co-MOF nanozymes were used as ssDNA collectors and signal amplifiers.
Even after being subjected to six cycles of regeneration, the system maintained its peak
performance. A 0.12 pM LOD and successful detection of the target microRNA in biological
samples demonstrated the system’s exceptional long-term stability. As their sensitivity
extends over large dynamic ranges, electrochemical biosensors find widespread use in
initial, semi-quantitative, and qualitative screening. In spite of their excellent accuracy and
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practicality, these biosensors still have some ways to go before they are entirely problem-free
because of their poor replication and low stability.
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Figure 5. (A) Schematic diagram of the synthesis of Apt2-AuPd@UiO-67 and illustration of the
construction of the electrochemical aptasensor. (B) Graphical representation of 2D MnO2 nanoflake
interaction with enzymatic substrates through oxidase mimetic and peroxidase mimetic activities.
The substrate concentrations of TMB, OPD, and ABTS are all 0.5 mM, and the 2D MnO2 nanoflake
concentration is 2.6 µg/mL. (C) Illustration of the detection concept of a homogeneous electrochemical
biosensor for miRNA assay. Reprinted with permission from refs. [32,125].

3.4. Surface-Enhanced Raman Spectroscopy (SERS) Biosensors

In the field of bioanalysis and detection, surface-enhanced Raman spectroscopy (SERS)-
based biosensors have recently attracted a lot of interest due to their high sensitivity, ef-
ficiency, accuracy, low sample demand, and non-destructive nature [126,127]. Raman
spectroscopy receives its signal from Raman scattering produced by a Raman reporter
on the surface of plasmonic nanomaterials like gold, silver, silicon, porous alumina, or
their combinations [128]. The SERS signal can be modified through the reaction of reporter
molecules by incorporating peroxidase nanozymes with the plasmonic nanostructures [129].
For example, Wu and colleagues grew silver nanoparticles (AgNPs) on the surface of a
metal–organic framework (MOF) named MIL-101 (Fe) to develop a peroxidase-mimicking
nanozyme AgNPs@MOF [88] (Figure 6A). The high adsorption capacity of MOFs makes
them suitable for usage as SERS substrates. The AgNPs@MOF were used as a substrate
for surface-enhanced Raman spectroscopy (SERS) and as peroxidase mimics to convert
inert leucomalachite green to Raman-active malachite green. A sensitive and precise SERS
sensing platform was proposed for cholesterol monitoring based on the strong peroxidase-
mimicking activity and high SERS enhancement of AgNPs@MOF. The constructed biosen-
sor was able to detect concentrations as low as 0.36 µM under the best possible conditions,
with a dynamic detection range of 1.0–100 µM.
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Likewise, Hu and colleagues developed a non-invasive method of measuring blood
glucose levels in saliva [87]. Metalloporphyrin-based metal–organic frameworks are a
recently discovered class of peroxidase mimic enzymes that can catalyze the interaction
between hydrogen peroxide and 3,3′,5,5′-tetramethylbenzidine (TMB) to generate oxidized
TMB (oxTMB). Incorporating AuNPs into MOF-based hybrid nanomaterials has been
shown to improve their performance in SERS measurement (Figure 6B). Susceptible to
water but not sinking, after synthesizing water-stable 2D metalloporphyrin Cu-TCPP(Fe)
nanosheets, hybrid nanosheets of AuNPs/Cu-TCPP(Fe) were formed through in situ
growth. It was found that in the presence of oxygen, glucose may be oxidized catalyti-
cally by AuNPs, yielding gluconic acid and H2O2. On the other hand, the Cu-TCPP(Fe)
nanosheets can act as a catalyst for transforming oxide-caged leucomalachite green (LMG),
which lacks Raman activity, into MG by utilizing H2O2 that is generated on-site, resulting
in a Raman-active signal. GOx-like activities were observed in “naked” gold nanoparticles
(Au NPs) that were prepared without stabilizers or protectors [64]. However, it has been
observed that the usage of protectors may prevent GOx-like activity. Peroxidase-like activi-
ties and SERS activities were both found to be high in Ag nanoparticles [130]. To catalyze
the sequential oxidation of glucose, Xia’s group has created synthetic tandem nanozyme
Au@Ag NPs that mimic the actions of both GOx and peroxidase [131]. In the realm of
surface-enhanced Raman scattering (SERS), core–shell plasmonic nanostructures have
recently emerged as an exciting new area of study [132,133]. Shell-isolated nanoparticle-
enhanced Raman spectroscopy (SHINERS), which uses plasmonic nanoparticles (NPs) as
the core and inert or semiconductor materials as the shell, has emerged as a promising
and potent technique in a wide range of chemical and biological investigations. Some of
the most promising SHINERS built for biological research, including biosensing, imaging,
and treatment, are graphene-isolated metal nanoparticles (GIMNs). Jin’s group designed
a monodispersed Ag/oxidized GQDs (o-GQDs) nanohybrid with a small core–shell con-
figuration (ca. 10 nm). Small Ag/o-GQDs have improved biocompatibility and good
nucleus-mitochondria dual-targeting capacity without change to the targeting ligand, pre-
senting unparalleled potential for intracellular applications. In addition, the SERS-active
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Ag/o-GQDs demonstrate a peroxidase (POD)-like response, allowing accurate subcellular
detection of intracellular H2O2 [134].

4. Market Opportunities and Commercialization

Bringing nanozyme-based biosensors to the market is a challenging process that
involves considerable industry input and market analysis. Despite the clear potential
benefits of these biosensors, such as personalized medicine and cost savings, it may take
up to a decade to commercialize a biosensor and another decade or more before it becomes
profitable. Biosensors have to adhere to a number of different regulations and requirements
before they can be commercially supplied, and this is a costly and time-consuming process.
It may be difficult to reliably and consistently scale up the manufacturing of biosensors
built in the lab to industrial levels. Furthermore, researchers may have limited access to real
samples and limited expertise in commercialization, both of which might make validating
novel biosensor concepts developed in the lab difficult in the real world. Competing
technologies and conventional platforms have lower development costs and a guaranteed
market share, due to their longer experience in product formulation. However, advances in
micro- and nano-systems, such as polymers and hydrogels, and 3D printing manufacturing,
have led to a surge in interest in these technologies despite their higher development costs.
Investors have shown a willingness to invest in the healthcare industry when the benefits
of new technologies, such as shortened assay times, improved specificity, and point-of-care
testing, offset the high research costs. The profitability of nanozyme-based biosensor R&D is
also dependent on the supporting technologies and infrastructure. To conclude, successfully
commercializing nanozyme-based biosensors requires a comprehensive understanding of
market trends, development of enabling technologies, and significant industry involvement.
Although there are challenges, the potential benefits of these biosensors make them a
promising area for research and development in the healthcare industry.

5. Challenges in the Development of Personalized Biosensors

Personalized biosensors provide comprehensive data on an individual’s health and
physical activities. This promising development is made possible by the superior precision
and robustness of detecting biomarkers in the body [135]. To better translate and use per-
sonalized biosensors, there has been an increase in the usage of collaborative system design,
which brings together user-defined needs with technological innovation. Moreover, the
utilization of personalized biosensors is expanding as sensor technologies progress beyond
the conventional biomarker classes of nucleic acids and proteins to encompass metabolites
and direct detection of infections. Nanozymes have several properties that make them
attractive for personalized diagnostics. Firstly, (a) nanozymes can mimic the catalytic
activities of enzymes and can be designed to have high selectivity and sensitivity towards
specific biomolecules. This allows for the detection and quantification of biomarkers in
biological samples, which can provide valuable information about an individual’s health
status. Additionally, (b) nanozymes are highly stable and robust, making them ideal for use
in point-of-care diagnostic devices. This could enable real-time monitoring of biomarkers,
allowing for early detection and intervention in diseases. Furthermore, (c) nanozymes can
be engineered to have unique surface properties, which can enable their integration into
personalized diagnostic platforms. For example, nanozymes can be functionalized with
targeting moieties such as antibodies or aptamers, allowing for the selective detection of
specific biomolecules in complex biological matrices.

Despite significant progress, designing personalized biosensors still faces critical
challenges and technological gaps that need to be addressed. One of the biggest challenges
is the extremely complex nature of biological samples. Sample matrices can contain a
diverse range of non-target compounds at varying concentrations, which can lead to
inaccurate detection of the target analyte, either overestimating or underestimating its
concentration. This can be further complicated by sensor fouling, especially when the
sample matrix includes proteins. Detecting both low and high concentrations with a
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single sensor presents a significant challenge. As a result, it may be necessary to design
multiple sensors to cover the full concentration range. Another option is to create a sensor
that functions optimally in the medium-to-low concentration range, with the caveat that
samples with higher analyte levels will need to be diluted. As the sample gets more diluted,
it becomes increasingly important to consider the sensing threshold.

6. Conclusions and Outlook

Clinical diagnosis specialists and medical offices are not the only ones who need
these simple and cutting-edge tools; regular people using them in their homes or the field
with limited resources also need them. When compared to using natural enzymes as key
functional components for analyte detection, the application of nanomaterials exhibiting
enzyme-mimicking activity (nanozymes) incorporated in POC-based biosensor systems
shows various advantages. This review has covered a wide range of topics pertaining
to the use of nanozymes for biosensor creation. The most up-to-date examples of each
kind of nanozymes used in POC biosensor development are summarized in this article.
Recent advances in these instances show that the study of nanozymes and their biosens-
ing applications has increased steadily. The huge potential of nanozymes in POC-based
biosensor development, however, has yet to be realized because of various research gaps
and hurdles that have been recognized and need to be handled at this frontier. To produce
high-performance nanozymes, it is essential to comprehend their catalytic mechanism and
the structure–activity relationship. This understanding can be achieved by combining
experimental and computational research. Despite testing several nanomaterials for their
ability to imitate natural enzymes, peroxidase mimics, primarily redox enzyme mimics,
are still the most popular choice for biosensing. Furthermore, understanding the catalytic
mechanism of nanozymes is crucial in determining their efficacy. Given the diversity of
natural enzymes, more work needs to go into engineering nanozymes with new catalytic
capabilities like synthetase and hydrolase. Similarly, enzyme-active sites are the primary
focus of current research. The protein scaffold of an enzyme is crucial to the selectivity and
effectiveness of an enzymatic reaction, yet its analogues have not been well investigated.
This might be accomplished by taking a page out of the book of building new functional
proteins and combining experimental methods with computational and/or theoretical
strategies for designing nanozymes. If this were to happen, not only would the versatility
of nanozyme applications in biosensor development be greatly increased, but the cost of
detecting a wider variety of analytes would also be reduced. Substrate specificity is a
vital characteristic of natural enzymes, and the reduced specificity of nanozymes poses a
significant challenge. Combining natural enzymes with nanozymes may help mitigate this
issue, but it could compromise the stability and cost of the entire catalyst system. While
nanozymes show promise as an enzyme replacement, further study is needed before they
can compete with normal enzymes. Since chemical processes are typically employed to
generate nanozymes, it is essential to increase batch-to-batch reproducibility if these prod-
ucts are to be used in industrial or clinical contexts. Nanozyme-based point-of-care (POC)
biosensors will only be widely used if scientists can design them to be easy to use, highly
automated, and require minimal user input. Scalability, mobility, and ease of application
are all crucial early design considerations that must be made before mass manufacturing
can begin.
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