Anthracycline-Functionalized Dextran as a New Signal Multiplication Tagging Approach for Immunoassay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instruments
2.3. Preparing DexDox
2.4. Synthesizing Biotin-DexDox
2.5. Measuring the CL Intensity of Biotin-DexDox in the Luminometer
2.6. Measurement of Biotin-DexDox in a Colorimetric Microplate Reader
2.7. Colorimetric Measurement of Microplate Immobilized Biotin-Labeled Antibody Using Biotin-DexDox
3. Results and Discussion
3.1. Characterization of the Synthesized Product Biotin-DexDox
3.2. Evaluation and Optimization of the Redox-Cycle-Based CL Reaction of Biotin-DexDox
3.3. Evaluation and Optimization of the Redox-Cycle-Based Colorimetric Reaction of Biotin-DexDox
3.4. Determination of Biotinylated Antibody via Biotin-DexDox Using Avidin and Redox-Cycle-Based Colorimetric Reaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zong, C.; Wu, J.; Wang, C.; Ju, H.; Yan, F. Chemiluminescence Imaging Immunoassay of Multiple Tumor Markers for Cancer Screening. Anal. Chem. 2012, 84, 2410–2415. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Gao, H.; Wang, W.; Wang, Z.; Fu, Z. Time-Resolved Chemiluminescence Strategy for Multiplexed Immunoassay of Clenbuterol and Ractopamine. Biosens. Bioelectron. 2013, 48, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, H.; Zong, C.; Yan, F.; Ju, H. Automated Support-Resolution Strategy for a One-Way Chemiluminescent Multiplex Immunoassay. Anal. Chem. 2009, 81, 5484–5489. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, C.; Fei, R.; Liu, X.; Zhou, Y.; Chen, J.; Chen, H.; Zhou, R.; Hu, Y. Sensitive Chemiluminescence Immunoassay for E. Coli O157:H7 Detection with Signal Dual-Amplification Using Glucose Oxidase and Laccase. Anal. Chem. 2014, 86, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.D.; Patel, K.R. Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. J. Investig. Dermatol. 2013, 133, e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banga-Mboko, H.; Sulon, J.; Closset, J.; Remy, B.; Youssao, I.; de Sousa, N.M.; el Amiri, B.; Sangild, P.T.; Maes, D.; Beckers, J.F. An Improved Radioimmunoassay for Measurement of Pepsinogen in Porcine Blood Samples. Vet. J. 2003, 165, 288–295. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Lin, J.-M.; Ying, X. Development of a Highly Sensitive and Selective Microplate Chemiluminescence Enzyme Immunoassay for the Determination of Free Thyroxine in Human Serum. Int. J. Biol. Sci. 2007, 3, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Marquette, C.A.; Blum, L.J. Chemiluminescent Enzyme Immunoassays: A Review of Bioanalytical Applications. Bioanalysis 2009, 1, 1259–1269. [Google Scholar] [CrossRef]
- Shim, C.; Chong, R.; Lee, J.H. Enzyme-Free Chemiluminescence Immunoassay for the Determination of Thyroid Stimulating Hormone. Talanta 2017, 171, 229–235. [Google Scholar] [CrossRef]
- Zou, P.; Liu, Y.; Wang, H.; Wu, J.; Zhu, F.; Wu, H. G-Quadruplex DNAzyme-Based Chemiluminescence Biosensing Platform Based on Dual Signal Amplification for Label-Free and Sensitive Detection of Protein. Biosens. Bioelectron. 2016, 79, 29–33. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, L.; Chu, X. Chemiluminescence Immunoassay. TrAC Trends Anal. Chem. 2009, 28, 404–415. [Google Scholar] [CrossRef]
- WANG, C.; WU, J.; ZONG, C.; XU, J.; JU, H.-X. Chemiluminescent Immunoassay and Its Applications. Chin. J. Anal. Chem. 2012, 40, 3–10. [Google Scholar] [CrossRef]
- Díaz, A.N.; Sánchez, F.G.; González Garcia, J.A. Phenol Derivatives as Enhancers and Inhibitors of Luminol-H2O2-Horseradish Peroxidase Chemiluminescence. J. Biolumin. Chemilumin. 1998, 13, 75–84. [Google Scholar] [CrossRef]
- Seibert, E.; Tracy, T.S. Fundamentals of Enzyme Kinetics; Elsevier Science: Amsterdam, The Netherlands, 2014; pp. 9–22. [Google Scholar]
- Daniel, L. Purich Enzyme Kinetics: Catalysis and Control: A Reference of Theory and Best-Practice Methods; Elsevier Science: Amsterdam, The Netherlands, 2010; ISBN 9780123809254. [Google Scholar]
- Higashi, Y.; Mazumder, J.; Yoshikawa, H.; Saito, M.; Tamiya, E. Chemically Regulated ROS Generation from Gold Nanoparticles for Enzyme-Free Electrochemiluminescent Immunosensing. Anal. Chem. 2018, 90, 5773–5780. [Google Scholar] [CrossRef]
- Mercadal, P.A.; Fraire, J.C.; Motrich, R.D.; Coronado, E.A. Enzyme-Free Immunoassay Using Silver Nanoparticles for Detection of Gliadin at Ultralow Concentrations. ACS Omega 2018, 3, 2340–2350. [Google Scholar] [CrossRef]
- El-Maghrabey, M.; Kishikawa, N.; Harada, S.; Ohyama, K.; Kuroda, N. Quinone-Based Antibody Labeling Reagent for Enzyme-Free Chemiluminescent Immunoassays. Application to Avidin and Biotinylated Anti-Rabbit IgG Labeling. Biosens. Bioelectron. 2020, 160, 112215. [Google Scholar] [CrossRef]
- Li, F.; Zhao, A.; Li, Z.; Xi, Y.; Jiang, J.; He, J.; Wang, J.; Cui, H. Multifunctionalized Hydrogel Beads for Label-Free Chemiluminescence Imaging Immunoassay of Acute Myocardial Infarction Biomarkers. Anal. Chem. 2022, 94, 2665–2675. [Google Scholar] [CrossRef]
- Chai, F.; Wang, D.; Zhu, L.; Zheng, W.; Jiang, X. Dual Gold Nanoparticle/Chemiluminescent Immunoassay for Sensitive Detection of Multiple Analytes. Anal. Chem. 2022, 94, 6628–6634. [Google Scholar] [CrossRef]
- Li, Y.S.; Zhou, Y.; Meng, X.Y.; Zhang, Y.Y.; Song, F.; Lu, S.Y.; Ren, H.L.; Hu, P.; Liu, Z.S.; Zhang, J.H. Gold Nanoparticle Aggregation-Based Colorimetric Assay for β-Casein Detection in Bovine Milk Samples. Food Chem. 2014, 162, 22–26. [Google Scholar] [CrossRef]
- Li, L.; Chen, B.; Guo, M.; Yang, Q.; Zhang, Y.; Zhang, M. Platinum Janus Nanoparticles as Peroxidase Mimics for Catalytic Immunosorbent Assay. ACS Appl. Nano Mater. 2022, 5, 1397–1407. [Google Scholar] [CrossRef]
- Li, Y.S.; Meng, X.Y.; Zhou, Y.; Zhang, Y.Y.; Meng, X.M.; Yang, L.; Hu, P.; Lu, S.Y.; Ren, H.L.; Liu, Z.S.; et al. Magnetic Bead and Gold Nanoparticle Probes Based Immunoassay for β-Casein Detection in Bovine Milk Samples. Biosens. Bioelectron. 2015, 66, 559–564. [Google Scholar] [CrossRef]
- Galván Márquez, I.; Ghiyasvand, M.; Massarsky, A.; Babu, M.; Samanfar, B.; Omidi, K.; Moon, T.W.; Smith, M.L.; Golshani, A. Zinc Oxide and Silver Nanoparticles Toxicity in the Baker’s Yeast, Saccharomyces Cerevisiae. PLoS ONE 2018, 13, e0193111. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Huang, Y.; Ding, G.; Fan, A. In Situ Generation of Prussian Blue with Potassium Ferrocyanide to Improve the Sensitivity of Chemiluminescence Immunoassay Using Magnetic Nanoparticles as Label. Anal. Chem. 2019, 91, 4906–4912. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Yang, K.; Tao, J.; Liu, Y.; Zhang, Q.; Habibi, S.; Nie, Z.; Xia, X. An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers. ACS Nano 2017, 11, 2052–2059. [Google Scholar] [CrossRef]
- Ray, P.C.; Yu, H.; Fu, P.P. Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. J. Environ. Sci. Health Part C 2009, 27, 1–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, M.; El-Maghrabey, M.H.; Kishikawa, N.; Ikemoto, K.; Kuroda, N. Ultrasensitive Determination of Pyrroloquinoline Quinone in Human Plasma by HPLC with Chemiluminescence Detection Using the Redox Cycle of Quinone. J. Pharm. Biomed. Anal. 2017, 145, 814–820. [Google Scholar] [CrossRef] [PubMed]
- El-Maghrabey, M.; Kishikawa, N.; Kuroda, N. Novel Isotope-Coded Derivatization Method for Aldehydes Using 14 N/ 15 N-Ammonium Acetate and 9,10-Phenanthrenequinone. Anal. Chem. 2018, 90, 13867–13875. [Google Scholar] [CrossRef] [PubMed]
- El-Maghrabey, M.; Kishikawa, N.; Kamimura, S.; Ohyama, K.; Kuroda, N. Design of a Dual Functionalized Chemiluminescence Ultrasensitive Probe for Quinones Based on Their Redox Cycle. Application to the Determination of Doxorubicin in Lyophilized Powder and Human Serum. Sens. Actuators B Chem. 2021, 329, 129226. [Google Scholar] [CrossRef]
- Kishikawa, N.; El-Maghrabey, M.; Nagamune, Y.; Nagai, K.; Ohyama, K.; Kuroda, N. A Smart Advanced Chemiluminescence-Sensing Platform for Determination and Imaging of the Tissue Distribution of Natural Antioxidants. Anal. Chem. 2020, 92, 6984–6992. [Google Scholar] [CrossRef]
- Kishikawa, N.; Ohkubo, N.; Ohyama, K.; Nakashima, K.; Kuroda, N. Chemiluminescence Assay for Quinones Based on Generation of Reactive Oxygen Species through the Redox Cycle of Quinone. Anal. Bioanal. Chem. 2009, 393, 1337–1343. [Google Scholar] [CrossRef] [Green Version]
- Szatylowicz, H.; Krygowski, T.M.; Solà, M.; Palusiak, M.; Dominikowska, J.; Stasyuk, O.A.; Poater, J. Why 1,2-Quinone Derivatives Are More Stable than Their 2,3-Analogues? Theor. Chem. Acc. 2015, 134, 35. [Google Scholar] [CrossRef]
- Kishikawa, N.; Kuroda, N. Analytical Techniques for the Determination of Biologically Active Quinones in Biological and Environmental Samples. J. Pharm. Biomed. Anal. 2014, 87, 261–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Maghrabey, M.; Sato, Y.; Kaladari, F.; Kishikawa, N.; Kuroda, N. Development of Quinone Linked Immunosorbent Assay (QuLISA) Based on Using Folin’s Reagent as a Non-Enzymatic Tag: Application to Analysis of Food Allergens. Sens. Actuators B Chem. 2022, 368, 132167. [Google Scholar] [CrossRef]
- Kaladari, F.; El-Maghrabey, M.; Kishikawa, N.; Kuroda, N. Development of Signal Multiplication System for Quinone Linked Immunosorbent Assay (Multi-QuLISA) by Using Poly-l-Lysine Dendrigraft and 1,2-Naphthoquinone-4-Sulfonate as Enzyme-Free Tag. Talanta 2023, 253, 123911. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Qianjun, L.; Kishikawa, N.; Ohyama, K.; Kuroda, N. Development of Ultrafast Colorimetric Microplate Assay Method for Ubiquinone Utilizing the Redox Cycle of the Quinone. Microchem. J. 2019, 150, 104104. [Google Scholar] [CrossRef]
- Xia, N.; Deng, D.; Mu, X.; Liu, A.; Xie, J.; Zhou, D.; Yang, P.; Xing, Y.; Liu, L. Colorimetric Immunoassays Based on Pyrroloquinoline Quinone-Catalyzed Generation of Fe(II)-Ferrozine with Tris(2-Carboxyethyl)Phosphine as the Reducing Reagent. Sens. Actuators B Chem. 2020, 306, 127571. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Liu, H.; Du, J.; Xia, N. Electrochemical-Chemical-Chemical Redox Cycling Triggered by Thiocholine and Hydroquinone with Ferrocenecarboxylic Acid as the Redox Mediator. Electrochim. Acta 2014, 139, 323–330. [Google Scholar] [CrossRef]
- Zhang, H.; Smanmoo, C.; Kabashima, T.; Lu, J.; Kai, M. Dextran-Based Polymeric Chemiluminescent Compounds for the Sensitive Optical Imaging of a Cytochrome P450 Protein on a Solid-Phase Membrane. Angew. Chem. Int. Ed. 2007, 46, 8226–8229. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T.; Heublein, B.; Hornig, S. Functional Polymers Based on Dextran. In Polysaccharides II; Springer: Berlin/Heidelberg, Germany, 2006; pp. 199–291. [Google Scholar]
- Lee, B.-S.; Krishnanchettiar, S.; Lateef, S.S.; Gupta, S. Biotinylation of Peptides/Proteins Using Biocytin Hydrazide. J. Chin. Chem. Soc. 2007, 54, 541–548. [Google Scholar] [CrossRef]
- Bernstein, A.; Hurwitz, E.; Maron, R.; Arnon, R.; Sela, M.; Wilchek, M. Higher Antitumor Efficacy of Daunomycin When Linked to Dextran: In Vivo and In Vitro Studies 2. JNCI J. Natl. Cancer Inst. 1978, 60, 379–384. [Google Scholar] [CrossRef]
- Su, W.-F. Characterization of Polymer. In Principles of Polymer Design and Synthesis; Springer: Berlin/Heidelberg, Germany, 2013; Volume 82, pp. 89–110. [Google Scholar]
- Thermo SCIENTIFIC Instructions HABA 4′-Hydroxyazobenzene-2-Carboxylic Acid. Available online: https://tools.thermofisher.com/content/sfs/manuals/MAN0011200_HABA_UG.pdf (accessed on 26 April 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaladari, F.; Kishikawa, N.; Shimada, A.; El-Maghrabey, M.; Kuroda, N. Anthracycline-Functionalized Dextran as a New Signal Multiplication Tagging Approach for Immunoassay. Biosensors 2023, 13, 340. https://doi.org/10.3390/bios13030340
Kaladari F, Kishikawa N, Shimada A, El-Maghrabey M, Kuroda N. Anthracycline-Functionalized Dextran as a New Signal Multiplication Tagging Approach for Immunoassay. Biosensors. 2023; 13(3):340. https://doi.org/10.3390/bios13030340
Chicago/Turabian StyleKaladari, Fatema, Naoya Kishikawa, Ai Shimada, Mahmoud El-Maghrabey, and Naotaka Kuroda. 2023. "Anthracycline-Functionalized Dextran as a New Signal Multiplication Tagging Approach for Immunoassay" Biosensors 13, no. 3: 340. https://doi.org/10.3390/bios13030340
APA StyleKaladari, F., Kishikawa, N., Shimada, A., El-Maghrabey, M., & Kuroda, N. (2023). Anthracycline-Functionalized Dextran as a New Signal Multiplication Tagging Approach for Immunoassay. Biosensors, 13(3), 340. https://doi.org/10.3390/bios13030340