Nanobiosensors Design Using 2D Materials: Implementation in Infectious and Fatal Disease Diagnosis
Abstract
:1. Introduction
1.1. Principle and Operation of Nanobiosensors
1.2. Desirable Properties of Nanobiosensor
1.3. Graphitic Carbon Nitride-Based Nanobiosensors
1.4. Graphene-Based Nanobiosensors
1.5. Black Phosphorous-Based Nanobiosensor
1.6. MXenes-Based Nanobiosensors
2. Conclusions and Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walcarius, A.; Minteer, S.D.; Wang, J.; Lin, Y.; Merkoci, A. Nanomaterials for bio-functionalized electrodes: Recent trends. J. Mater. Chem. B 2013, 1, 4878–4908. [Google Scholar] [CrossRef]
- Ge, X.; Asiri, A.M.; Du, D.; Wen, W.; Wang, S.; Lin, Y. Nanomaterial-enhanced paper-based biosensors. TrAC Trends. Anal. Chem. 2014, 58, 31–39. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef]
- Bakker, E.; Qin, Y. Electrochemical sensors. Anal. Chem. 2006, 78, 3965–3984. [Google Scholar] [CrossRef] [Green Version]
- Sage, A.T.; Besant, J.D.; Lam, B.; Sargent, E.H.; Kelley, S.O. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes. Acc. Chem. Res. 2014, 47, 2417–2425. [Google Scholar] [CrossRef]
- Eggins, B.R. Chemical Sensors and Biosensors; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Saxena, V.; Chandra, P.; Pandey, L.M. Design and characterization of novel Al-doped ZnO nanoassembly as an effective nanoantibiotic. Appl. Nanosci. 2018, 8, 1925–1941. [Google Scholar] [CrossRef]
- Akhtar, M.H.; Hussain, K.K.; Gurudatt, N.G.; Chandra, P.; Shim, Y.B. Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens. Bioelectron. 2018, 116, 108–115. [Google Scholar] [CrossRef]
- Mahato, K.; Prasad, A.; Maurya, P.; Chandra, P. Nanobiosensors: Next generation point-of-care biomedical devices for personalized diagnosis. J. Anal. Bioanal. Tech. 2016, 7, 1000e125. [Google Scholar]
- Chung, S.; Chandra, P.; Koo, J.P.; Shim, Y.B. Development of a bifunctional nanobiosensor for screening and detection of chemokine ligand in colorectal cancer cell line. Biosens. Bioelectron. 2017, 100, 396–403. [Google Scholar] [CrossRef]
- Chandra, P.; Prakash, R. Nanobiomaterial Engineering; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 1, p. 294. [Google Scholar]
- Purohit, B.; Kumar, A.; Mahato, K.; Roy, S.; Chandra, P. Cancer Cytosensing approaches in miniaturized settings based on advanced nanomaterials and biosensors. In Nanotechnology in Modern Animal Biotechnology: Concepts and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 133–147. [Google Scholar]
- Kumar, A.; Purohit, B.; Mahato, K.; Roy, S.; Srivastava, A.; Chandra, P. Design and development of ultrafast sinapic acid sensor based on electrochemically nanotuned gold nanoparticles and solvothermally reduced graphene oxide. Electroanalysis 2020, 31, 59–69. [Google Scholar] [CrossRef]
- Roy, S.; Malode, S.J.; Shetti, N.P.; Chandra, P. Modernization of biosensing strategies for the development of lab-on-chip integrated systems. In Bioelectrochemical Interface Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 325–342. [Google Scholar]
- Purohit, B.; Mahato, K.; Kumar, A.; Chandra, P. Sputtering enhanced peroxidase like activity of a dendritic nanochip for amperometric determination of hydrogen peroxide in blood samples. Microchim. Acta 2019, 186, 658. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Purohit, B.; Bhardwaj, K.; Jaiswal, A.; Chandra, P. Novel electrochemical biosensor for serotonin detection based on gold nanorattles decorated reduced graphene oxide in biological fluids and in vitro model. Biosens. Bioelectron. 2019, 142, 111502. [Google Scholar] [CrossRef]
- Kashish; Bansal, S.; Jyoti, A.; Mahato, K.; Chandra, P.; Prakash, R. Highly sensitive in Vitro biosensor for enterotoxigenic escherichia coli detection dased on ssDNA anchored on PtNPs-chitosan nanocomposite. Electroanalysis 2017, 29, 2665–2671. [Google Scholar] [CrossRef]
- Chandra, P.; Noh, H.B.; Pallela, R.; Shim, Y.B. Ultrasensitive detection of drug resistant cancer cells in biological matrixes using an amperometric nanobiosensor. Biosens. Bioelectron. 2015, 70, 418–425. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P. Prospects of nanobiomaterials for biosensing. Int. J. Electrochem. 2011, 2011, 125487. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Cui, H. Chitosan-luminol reduced gold nanoflowers: From one-pot synthesis to morphology dependent SPR and chemiluminescence sensing. J. Phys. Chem. C 2008, 112, 10759–10766. [Google Scholar] [CrossRef]
- Luz, R.A.S.; Iost, R.M.; Crespilho, F.N. Nanomaterials for biosensors and implantable biodevices. In Nanobioelectrochemistry; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Dkhar, D.S.; Mahapatra, S.; Divya; Kumar, R.; Tripathi, T.; Chandra, P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int. J. Biol. Macromol. 2022, 18, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Purohit, B.; Mahato, K.; Chandra, P. Advance engineered nanomaterials in point-of-care immunosensing for biomedical diagnostics. In Immunosensors Hand Book; Royal Society of Chemistry: London, UK, 2019; pp. 238–266. [Google Scholar]
- Suman, P.; Chandra, P. Immunodiagnostic Technologies from Laboratory to Point-of-Care Testing; Springer Nature: Singapore, 2021. [Google Scholar]
- Jacobs, C.B.; Peairs, M.J.; Venton, B.J. Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105–127. [Google Scholar] [CrossRef]
- Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical uses for 2D materials beyond graphene: Current advances and challenges ahead. Adv. Mater. 2016, 28, 6052–6074. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial intelligence biosensors: Challenges and prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tan, C.; Zhang, H.; Wang, L. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–2701. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Xu, L.P.; Zhang, X.; Wang, S. Bioinspired superwettable micropatterns for biosensing. Chem. Soc. Rev. 2019, 48, 3153–3165. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Xu, Y.; Duan, W. 2D materials: Rising star for future applications. Innov. 2021, 2, 100115. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S. Nanobiosensors: The future for diagnosis of disease? Nanobiosens. Dis. Diagn. 2014, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Lu, W.; Zhang, J.; Zhang, L. Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@ Pd coreeshell nanocubes. ACS Sustain. Chem. Eng. 2020, 8, 12366–12377. [Google Scholar] [CrossRef]
- Wang, P.; Yao, T.; Li, Z.; Wei, W.; Xie, Q.; Duan, W.; Han, H. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite. Compos. Sci. Technol. 2020, 198, 108307. [Google Scholar] [CrossRef]
- Cui, D.; Li, J.; Zhang, X.; Zhang, L.; Chang, H.; Wang, Q. Pyrolysis temperature effect on compositions of basic nitrogen species in Huadian shale oil using positive-ion ESI FT-ICR MS and GC-NCD. J. Anal. Appl. Pyrol. 2021, 153, 104980. [Google Scholar] [CrossRef]
- Jiang, Q.; Jin, S.; Jiang, Y.; Liao, M.; Feng, R.; Zhang, L.; Liu, G.; Hao, J. Alzheimer’s disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol. Neurobiol. 2017, 54, 594–600. [Google Scholar] [CrossRef]
- Shen, C.L.; Lou, Q.; Zang, J.H.; Liu, K.K.; Qu, S.N.; Dong, L.; Shan, C.X. Near infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv. Sci. 2020, 7, 1903525. [Google Scholar] [CrossRef] [Green Version]
- Liao, G.; He, F.; Li, Q.; Zhong, L.; Zhao, R.; Che, H.; Gao, H.; Fang, B. Emerging graphitic carbon nitride-based materials for biomedical applications. Prog. Mater. Sci. 2020, 112, 100666. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Shen, L.; Ma, Y.; Lei, W.; Cui, Q.; Zou, G. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A 2009, 94, 387–392. [Google Scholar] [CrossRef]
- Jiang, T.; Jiang, G.; Huang, Q.; Zhou, H. High-sensitive detection of dopamine using graphitic carbon nitride by electrochemical method. Mater. Res. Bull. 2016, 74, 271–277. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Wang, C.; Hu, X.; Liu, Y.; Wang, G. Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor. Electrochim. Acta 2019, 317, 341–347. [Google Scholar] [CrossRef]
- Gao, L.F.; Wen, T.; Xu, J.Y.; Zhai, X.P.; Zhao, M.; Hu, G.W.; Chen, P.; Wang, Q.; Zhang, H.L. Iron-doped carbon nitride-type polymers as homogeneous organocatalysts for visible light-driven hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, M.; Barman, S. Bottom-up fabrication of two-dimensional carbon nitride and highly sensitive electrochemical sensors for mercuric ions. J. Mater. Chem. A 2013, 1, 2752–2756. [Google Scholar] [CrossRef]
- Shamsa, K.; Rajaitha, P.S.M.S.; Vinoth, S.; Murugan, C.; Rameshkumar, P.; Pandikumar, A. In situ formed zinc oxide/graphitic carbon nitride nanohybrid for the electrochemical determination of 4-nitrophenol. Microchim. Acta 2020, 187, 552. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Dankwort, T.; Mishra, Y.K.; Kienle, L. Cubic mesoporous Pd-WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: Highly sensitive and temperature dependent VOC sensors. J. Mater. Chem. A 2018, 6, 10718–10730. [Google Scholar] [CrossRef]
- Vinoth, S.; Rajaitha, P.M.; Venkadesh, A.; Devi, K.S.S.; Radhakrishnan, S.; Pandikumar, A. Nickel sulfide-incorporated sulfur-doped graphitic carbon nitride nanohybrid interface for non-enzymatic electrochemical sensing of glucose. Nanoscale Adv. 2020, 2, 4242–4250. [Google Scholar] [CrossRef]
- Ojha, R.P.; Singh, P.; Azad, U.P.; Prakash, R. Impedimetric immunosensor for the NS1 dengue biomarker based on the gold nanorod decorated graphitic carbon nitride modified electrode. Electrochim. Acta 2022, 411, 140069. [Google Scholar] [CrossRef]
- Nirbhaya, V.; Chauhan, D.; Jain, R.; Chandra, R.; Kumar, S. Nanostructured graphitic carbon nitride based ultrasensing electrochemical biosensor for food toxin detection. Bioelectrochemistry 2021, 139, 107738. [Google Scholar] [CrossRef] [PubMed]
- Afzali, M.; Shafiee, M.R.M.; Parhizkar, J. Au nanorods/g-C3N4 composite based biosensor for electrochemical detection of chronic lymphocytic leukemia. Nanomed. Res. J. 2020, 5, 32–43. [Google Scholar]
- Shrestha, B.K.; Ahmad, R.; Shrestha, S.; Park, C.H.; Kim, C.S. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application. Biosens. Bioelectron. 2017, 94, 686–693. [Google Scholar] [CrossRef]
- Gupta, N.; Todi, K.; Narayan, T.; Malhotra, B.D. Graphitic carbon nitride-based nanoplatforms for biosensors: Design strategies and applications. Mater. Today Chem. 2022, 24, 100770. [Google Scholar] [CrossRef]
- Zhu, X.; Kou, F.; Xu, H.; Han, Y.; Yang, G.; Huang, X.; Chen, W.; Chi, Y.; Lin, Z. Label-free ochratoxin A electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet. Sens. Actuators B Chem. 2018, 270, 263–269. [Google Scholar] [CrossRef]
- Dong, W.; Ren, Y.; Zhang, Y.; Chen, Y.; Zhang, C.; Bai, Z.; Ma, R.; Chen, Q. Synthesis of Pb nanowires-Au nanoparticles nanostructure decorated with reduced graphene oxide for electrochemical sensing. Talanta 2017, 165, 604–611. [Google Scholar] [CrossRef]
- Mao, H.Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.A.; Mahmoudi, M. Graphene: Promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev. 2013, 113, 3407–3424. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Jiang, J.-W. Graphene versus MoS2: A short review. Front. Phys. 2015, 10, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Novoselova, K.S.; Geims, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Lee, C.P.; Lai, K.Y.; Lin, C.A.; Li, C.T.; Ho, K.C.; Wu, C.I.; Lau, S.P.; He, J.H. A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells. Nano Energy 2017, 36, 260–267. [Google Scholar] [CrossRef]
- Ghosale, A.; Shrivas, K.K.; Shankar, R.; Ganesan, V. Low-cost paper electrode fabricated by direct writing with silver nanoparticles based ink for detection of hydrogen peroxide in waste water low cost paper electrode fabricated by direct writing with silver nanoparticles based ink for detection of hydrogen peroxide in wastewater. Anal. Chem. 2017, 89, 776–782. [Google Scholar] [PubMed]
- Li, L.; Li, W.; Yang, H.; Ma, C.; Yu, J.; Yan, M.; Song, X. Sensitive origami dual-analyte electrochemical immune device based on polyaniline/Au-paper electrode and multi-labeled 3D graphene sheets. Electrochim. Acta 2014, 120, 102–109. [Google Scholar] [CrossRef]
- Tuteja, S.K.; Kukkar, M.; Suri, C.R.; Paul, A.K.; Deep, A. One step in-situ synthesis of amine functionalized graphene for immunosensing of cardiac marker cTnI. Biosens. Bioelectron. 2015, 66, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Sangili, A.; Kalyani, T.; Chen, S.M.; Rajendran, K.; Jana, S.K. Label-free electrochemical immunosensor based on l-cysteine-functionalized AuNP on reduced graphene oxide for the detection of dengue virus E-protein in dengue blood serum. Compos. Part B Eng. 2022, 238, 109876. [Google Scholar] [CrossRef]
- Chowdhury, A.D.; Takemura, K.; Li, T.C.; Suzuki, T.; Park, E.Y. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun. 2019, 10, 3737. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.H.; Kuo, S.H.; Lin, T.Y.; Lin, C.W.; Fang, P.Y.; Yang, H.W. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosens. Bioelectron. 2017, 89, 598–605. [Google Scholar] [CrossRef]
- Azzouzi, S.; Rotariu, L.; Benito, A.M.; Maser, W.K.; Ali, M.B.; Bala, C. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosens. Bioelectron. 2017, 69, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Wang, Y.; Zhang, Y.; Ma, H.; Yan, T.; Du, B.; Wei, Q. Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 based on NH2-SAPO-34 Supported Pd/Co Nanoparticles. Sci. Rep. 2016, 6, 24551. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Jiao, L.; Zhang, J.; Li, H. Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Microchim. Acta 2017, 184, 169–175. [Google Scholar] [CrossRef]
- Ranjan, P.; Sadique, M.A.; Yadav, S.; Khan, R. An Electrochemical immunosensor based on gold-graphene oxide nanocomposites with ionic liquid for detecting the breast cancer CD44 biomarker. ACS Appl. Mater. Interfaces 2022, 14, 20802–20812. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jiang, D.; Xiang, G.; Liu, L.; Liu, F.; Pu, X. An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle–polyaniline nanocomposite. Analyst 2014, 139, 5460–5465. [Google Scholar] [CrossRef] [PubMed]
- Pei, F.; Wang, P.; Ma, E.; Yang, Q.; Yu, H.; Gao, C.; Li, Y.; Liu, Q.; Dong, Y. A sandwich-type electrochemical immunosensor based on RhPt NDs/NH2-GS and Au NPs/PPy NS for quantitative detection hepatitis B surface antigen. Bioelectrochemistry 2019, 126, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Wang, P.; Zhou, K.; Ren, J.; Wang, S.; Tang, F.; Li, Y.; Liu, Q.; Xue, L. Electrochemical immunosensor based on hollow porous Pt skin AgPt alloy/NGR as a dual signal amplification strategy for sensitive detection of Neuron-specific enolase. Biosens. Bioelectron. 2022, 197, 113779. [Google Scholar] [CrossRef] [PubMed]
- Sainz, R.; delPozo, M.; Vázquez, L.; Varela, M.V.; Esteban, J.C.; Blanco, E.; Domínguez, M.D.P.; Quintana, C.; Casero, E. Lactate biosensing based on covalent immobilization of lactate oxidase onto chevron-like graphene nanoribbons via diazotization-coupling reaction. Anal. Chim. Acta 2022, 1208, 339851. [Google Scholar] [CrossRef]
- Qin, B.; Yang, K. Voltammetric aptasensor for thrombin by using a gold microelectrode modified with graphene oxide decorated with silver nanoparticles. Microchim. Acta 2018, 185, 407. [Google Scholar] [CrossRef]
- Singh, S.; Tuteja, S.K.; Sillu, D.; Deep, A.; Suri, C.R. Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim. Acta 2016, 183, 1729–1738. [Google Scholar] [CrossRef]
- Grabowska, I.; Sharma, N.; Vasilescu, A.; Iancu, M.; Badea, G.; Boukherroub, R.; Ogale, S.; Szunerits, S. Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers. ACS Omega 2018, 3, 12010–12018. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Xu, Z.; Meng, Q.; Xiao, Y.; Cao, Q.; Rathi, B.; Liu, H.; Han, G.; Zhang, J.; Yan, J. A new aptamer/black phosphorous interdigital electrode for malachite green detection. Anal. Chim. Acta 2020, 1099, 39–45. [Google Scholar] [CrossRef]
- Qiao, J.S.; Kong, X.H.; Hu, Z.X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475–4482. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.W.; Park, H.S. Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun. 2014, 5, 4727–4734. [Google Scholar] [CrossRef]
- Tian, B.; Tian, B.; Smith, B.; Scott, M.C.; Hua, R.; Lei, Q.; Tian, Y. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat. Commun. 2018, 9, 1397–1408. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.N.; Liu, B.L.; Chen, L.; Ma, Y.Q.; Cong, S.; Aroonyadet, N.; Kopf, M.; Nilges, T.; Zhou, C.W. Black phosphorus gas sensors. ACS Nano 2015, 9, 5618–5624. [Google Scholar] [CrossRef]
- Chen, C.M.; Xu, J.; Yao, Y. SIW resonator humidity sensor based on layered black phosphorus. Electron. Lett. 2017, 53, 249–251. [Google Scholar] [CrossRef]
- Ahmed, F.; Kim, Y.D.; Yang, Z.; He, P.; Hwang, E.; Yang, H.; Hone, J.; Yoo, W.J. Impact ionization by hot carriers in a black phosphorus field effect transistor. Nat. Commun. 2018, 9, 3414. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chen, C.; Levi, A.; Houben, L.; Deng, B.; Yuan, S.; Ma, C.; Watanabe, K.; Taniguchi, T.; Naveh, D.; et al. Large-velocity saturation in thin-film black phosphorus transistors. ACS Nano 2018, 12, 5003–5010. [Google Scholar] [CrossRef]
- Chen, Y.T.; Ren, R.; Pu, H.H.; Chang, J.B.; Mao, S.; Chen, J.H. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 2017, 89, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Wang, X.; Tang, S.; Kang, Y.; Wang, J.; Yu, Y.; Zhou, Z.K.; Ma, C.; Zhang, X.; Jiang, J.; et al. Black phosphorus/platinum heterostructure: A highly efficient photocatalyst for solar-driven chemical reactions. Adv. Mater. 2018, 30, 1803641–1803648. [Google Scholar] [CrossRef]
- Tan, S.J.R.; Abdelwahab, I.; Chu, L.; Poh, S.M.; Liu, Y.; Lu, J.; Chen, W.; Loh, K.P. Quasimonolayer black phosphorus with high mobility and air stability. Adv. Mater. 2018, 30, 1704619. [Google Scholar] [CrossRef]
- Kumar, V.; Brent, J.R.; Shorie, M.; Kaur, H.; Chadha, G.; Thomas, A.G.; Lewis, E.A.; Rooney, A.P.; Nguyen, L.; Zhong, X.; et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces 2016, 8, 22860–22868. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, H.; Jiang, X.; Gui, R. Assembly of black phosphorus nanosheets and MOF to form functional hybrid thin-film for precise protein capture, dual-signal and intrinsic self-calibration sensing of specific cancer-derived exosomes. Anal. Chem. 2020, 92, 2866–2875. [Google Scholar] [CrossRef]
- Ramalingam, S.; Chand, R.; Singh, C.B.; Singh, A. Phosphorene-gold nanocomposite based microfluidic aptasensor for the detection of okadaic acid. Biosens. Bioelectron. 2019, 135, 14–21. [Google Scholar] [CrossRef]
- Yoon, J.; Shin, M.; Lim, J.; Lee, J.Y.; Choi, J.W. Recent advances in MXene nanocomposite-based biosensors. Biosensors 2020, 10, 185. [Google Scholar] [CrossRef]
- Chen, J.L.; Tong, P.; Huang, L.T.; Yu, Z.H.; Tang, D.P. Ti3C2 MXene nanosheet-based capacitance immunoassay with tyramine-enzyme repeats to detect prostate-specific antigen on interdigitated micro-comb electrode. Electrochim. Acta 2019, 319, 375–381. [Google Scholar] [CrossRef]
- Chen, X.; Sun, X.; Xu, W.; Pan, G.; Zhou, D.; Zhu, J.; Wang, H.; Bai, X.; Dong, B.; Song, H. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale 2018, 10, 1111–1118. [Google Scholar] [CrossRef]
- Wu, X.; Ma, P.; Sun, Y.; Du, F.; Song, D.; Xu, G. Application of MXene in electrochemical sensors: A review. Electroanalysis 2021, 33, 1827–1851. [Google Scholar] [CrossRef]
- Wang, L.; Han, Y.; Wang, H.; Han, Y.; Liu, J.; Lu, G.; Yu, H. A MXene-functionalized paper-based electrochemical immunosensor for label-free detection of cardiac troponin I. J. Semicond. 2021, 42, 92601. [Google Scholar] [CrossRef]
- Sharifuzzaman, M.; Barman, S.C.; Zahed, A.M.; Sharma, S.; Yoon, H.; Nah, J.S.; Kim, H.; Park, J.Y. An electrodeposited MXene-Ti3C2Tx nanosheets functionalized by task-specific ionic liquid for simultaneous and multiplexed detection of bladder cancer biomarkers. Electroanalysis 2020, 16, 2002517. [Google Scholar]
Nanobisensor | Techniques | Analyte | Linear Calibration Range | Limit of Detection | Real Sample | Reference |
---|---|---|---|---|---|---|
GC/g-C3N4 | DPV | Dopamine | 10−8–10−6 M | 10−8 M | - | [40] |
NiS/S-g-C3N4 | LSV, AMP | Glucose | 1–2100 µM | 1.5 µM | - | [46] |
AuNRs-g-C3N4 | IMP | NS1 | 0.6–216 ng mL−1 | 0.09 ng mL−1 | Blood Serum | [47] |
Thn/g-C3N4/ITO | DPV | Aflatoxin B1 | 1 fg mL−1–1 ng mL−1 | 0.328 fg mL−1 | Human Serum | [48] |
Au nanorods/g-C3N4 | DPV | Target DNA | 0.6–6.4 nM | 20 pM | - | [49] |
ChOx-CSPPy-g-C3N4H+ | AMP | Cholesterol | 0.02–5.0 mM | 8.0 μM | Human Serum | [50] |
g-C3N4-Pd NPs | CA | Saxitoxin | 20–400 pg mL−1 | 1.2 pg mL−1 | Seawater and seafood | [51] |
g-C3N4NS | CV | Ochratoxin A | 0.2–500 nM | 0.073 nM | red wines, juices, corns | [52] |
Nanobisensor | Techniques | Analyte | Linear Calibration Range | Limit of Detection | Real Sample | Reference |
---|---|---|---|---|---|---|
f-GN | I-V, LSV | Cardiac Troponin I | 0.01–1 ng mL−1 | 0.01 ng mL−1 | Spiked serum | [62] |
AuNPs/NSG | IMP | Dengue virus E-protein | 0.01–100 ng mL−1 | 1.6 pg mL−1 | Blood serum | [63] |
N,S-GQDs@AuNP-PAni | CV, IMP | Hepatitis E virus | 1 fg mL−1–100 pg mL−1 | 0.8 fg mL−1 | Human serum | [64] |
GO/ssDNA/PLLA NPs | DPV | VEGF | 0.05–100 ng mL−1 | 50 pg mL−1 | Human serum | [65] |
GO/ssDNA/PLLA NPs | DPV | PSA | 1–100 ng mL−1 | 1 ng mL−1 | Human serum | [65] |
rGO-AuNPs | AMP | l-lactate | 10 µM–5 mM | 0.13 µM | Human serum | [66] |
NH2-SAPO-34-Pd/Co-Ab2 | CV | NMP 22 | 0.001–20 ng mL−1 | 0.33 pg mL−1 | Urine sample | [67] |
PDA-rGO | CV | Carcinoembryonic antigen | 0.5 pg mL−1–5 ng mL−1 | 0.23 pg mL−1 | Human Serum | [68] |
GO-IL-AuNPs | DPV | CD44 antigen | 5.0 fg mL−1–50.0 μg mL−1 | 2.0 fg mL−1 | Human Serum | [69] |
GO-IL-AuNPs | IMP | CD44 antigen | 5.0 fg mL−1–50.0 μg mL−1 | 1.90 fg mL−1 | Human Serum | [69] |
rGO-AuNPs | CV, DPV | M-TB | 1.0 × 10−15–1.0 × 10−9 M | - | - | [70] |
Au NPs/PPy NS | AMP | HBsAg | 0.0005–10 ng mL−1 | 166 fg mL−1 | Human Serum | [71] |
HP-Ag/Pt/NGR | AMP | NSE | 50 fg mL−1–100 ng mL−1 | 18.5 fg mL−1 | Human Serum | [72] |
GC/GNR/BzA/LOx | CV | Lactate | 3.4 × 10−5–2.8 × 10−4 M | 11 μM | Apple juices | [73] |
TBA1-AgNP-GO | SWV | Thrombin | 0.05 nM–5 nM | 0.03 nM | Human Serum | [74] |
AuNPs@rGO | DPV | Myoglobin | 1 ng mL−1–1400 ng mL−1 | 0.67 ng mL−1 | Human Serum | [75] |
SPE/rGO/aptamer | DPV | BNP-32 | 1 pg mL−1–1 µg mL−1 | 0.9 pg mL−1 | Human Serum | [76] |
SPE/rGO/aptamer | DPV | cTnI | 1 pg mL−1–10 ng mL−1 | 1 pg mL−1 | Human Serum | [76] |
Nanobisensor | Techniques | Analyte | Linear Calibration Range | Limit of Detection | Real Sample | Reference |
---|---|---|---|---|---|---|
PLL-BP-Apt | CV | Myoglobin | 1 pg mL−1–16 μg mL−1 | 0.524 pg mL–1 | Human Serum | [88] |
Aptamer BPNSs/Fc/ZIF-67/ITO | SWV | Exosomes | 1.3 × 102–2.6 × 105 particles mL−1 | 100 particles mL−1 | Human Serum | [89] |
SPE-BP-Au | DPV | Okadaic acid | 10 nM–250 nM | 8 pM | Mussel extract | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, N.; Dkhar, D.S.; Chandra, P.; Azad, U.P. Nanobiosensors Design Using 2D Materials: Implementation in Infectious and Fatal Disease Diagnosis. Biosensors 2023, 13, 166. https://doi.org/10.3390/bios13020166
Singh N, Dkhar DS, Chandra P, Azad UP. Nanobiosensors Design Using 2D Materials: Implementation in Infectious and Fatal Disease Diagnosis. Biosensors. 2023; 13(2):166. https://doi.org/10.3390/bios13020166
Chicago/Turabian StyleSingh, Nandita, Daphika S. Dkhar, Pranjal Chandra, and Uday Pratap Azad. 2023. "Nanobiosensors Design Using 2D Materials: Implementation in Infectious and Fatal Disease Diagnosis" Biosensors 13, no. 2: 166. https://doi.org/10.3390/bios13020166
APA StyleSingh, N., Dkhar, D. S., Chandra, P., & Azad, U. P. (2023). Nanobiosensors Design Using 2D Materials: Implementation in Infectious and Fatal Disease Diagnosis. Biosensors, 13(2), 166. https://doi.org/10.3390/bios13020166