Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Procedure
2.2. Sample Preparation
2.3. Separation of CD34+ to Build Training Data
2.3.1. Extraction of MNCs from Bone Marrow Blood
2.3.2. Isolation of CD34+ Cells from MNCs
2.3.3. Purity Check of Extracted CD34+ Cells
2.4. Building the Training Dataset
2.4.1. Cell Image Acquisition
2.4.2. Building the Dataset
2.5. Cell Analysis
2.6. Performance Verification
3. Results and Discussion
- Compact, low-cost LSIT-based device: The Cellytics device, in conjunction with the customized deep learning model, offers a cost-effective and portable solution for CD34+ cell detection. This compact and user-friendly device eliminates the need for complex sample preparation and dedicated facilities, making it suitable for point-of-care applications in clinical settings and resource-limited environments.
- Enhanced accuracy and efficiency: The customized deep learning model demonstrates high accuracy in classifying CD34+ cells, outperforming other models. The validation of its performance in patient samples indicates its potential to improve the precision of leukemia diagnoses, allowing healthcare professionals to make informed decisions more reliably.
- Streamlined diagnostic process: By eliminating the need for labor-intensive and expertise-dependent techniques, such as flow cytometry, this approach simplifies the diagnostic process. The combination of the Cellytics device and deep learning model may reduce the time and resources required for diagnosis.
- Potential for clinical applications: Beyond leukemia diagnosis, this technology holds promise for various clinical applications, including hematopoietic stem cell transplantation monitoring. Accurate quantification of CD34+ cells can inform treatment decisions and enhance patient outcomes. To realize its potential, integration into clinical workflows would necessitate validation, standardization, regulatory approval, and data integration.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tahmasebi, E.; Alikhani, M.; Yazdanian, A.; Yazdanian, M.; Tebyanian, H.; Seifalian, A. The Current Markers of Cancer Stem Cell in Oral Cancers. Life Sci. 2020, 249, 117483. [Google Scholar] [CrossRef]
- Civin, C.I.; Strauss, L.C.; Brovall, C.; Fackler, M.J.; Schwartz, J.F.; Shaper, J.H. Antigenic Analysis of Hematopoiesis. III. A Hematopoietic Progenitor Cell Surface Antigen Defined by a Monoclonal Antibody Raised against KG-1a Cells. J. Immunol. 1984, 133, 157–165. [Google Scholar] [CrossRef]
- Mallard, B.W.; Tiralongo, J. Cancer Stem Cell Marker Glycosylation: Nature, Function and Significance. Glycoconj. J. 2017, 34, 441–452. [Google Scholar] [CrossRef]
- Sidney, L.E.; Branch, M.J.; Dunphy, S.E.; Dua, H.S.; Hopkinson, A. Concise Review: Evidence for CD34 as a Common Marker for Diverse Progenitors. Stem Cells 2014, 32, 1380–1389. [Google Scholar] [CrossRef]
- Chin-Yee, I.; Keeney, M.; Anderson, L.; Nayar, R.; Robert Sutherland, D. Current Status of CD34+ Cell Analysis by Flow Cytometry: The ISHAGE Guidelines. Clin. Immunol. Newsl. 1997, 17, 21–29. [Google Scholar] [CrossRef]
- Nielsen, J.S.; McNagny, K.M. Novel Functions of the CD34 Family. J. Cell Sci. 2008, 121, 3683–3692. [Google Scholar] [CrossRef]
- Sutherland, D.R.; Keating, A. The CD34 Antigen: Structure, Biology, and Potential Clinical Applications. J. Hematother. 1992, 1, 115–129. [Google Scholar] [CrossRef]
- Aglietta, M.; De Vincentiis, A.; Lanata, L.; Lanza, F.; Lemoli, R.M.; Menichella, G.; Tafuri, A.; Zanon, P.; Tura, S. Peripheral Blood Stem Cells in Acute Myeloid Leukemia: Biology and Clinical Applications. Haematologica 1996, 81, 77–92. [Google Scholar]
- Ponchel, F.; Morgan, A.W.; Bingham, S.J.; Quinn, M.; Buch, M.; Verburg, R.J.; Henwood, J.; Douglas, S.H.; Masurel, A.; Conaghan, P.; et al. Dysregulated Lymphocyte Proliferation and Differentiation in Patients with Rheumatoid Arthritis. Blood 2002, 100, 4550–4556. [Google Scholar] [CrossRef]
- Schuurhuis, G.J.; Kelder, A.; Terwijn, M.; Rutten, A.P.; Smit, L.; Zweegman, S.; Ossenkoppele, G. The Prognostic Value of CD34 Expression in Acute Myeloid Leukemia. A Mystery Solved. Blood 2010, 116, 2725. [Google Scholar] [CrossRef]
- Suárez, L.; Vidriales, M.-B.; García-Laraña, J.; Sanz, G.; Moreno, M.-J.; López, A.; Barrena, S.; Martínez, R.; Tormo, M.; Palomera, L.; et al. CD34+ Cells from Acute Myeloid Leukemia, Myelodysplastic Syndromes, and Normal Bone Marrow Display Different Apoptosis and Drug Resistance–Associated Phenotypes. Clin. Cancer Res. 2004, 10, 7599–7606. [Google Scholar] [CrossRef]
- Hanekamp, D.; Cloos, J.; Schuurhuis, G.J. Leukemic Stem Cells: Identification and Clinical Application. Int. J. Hematol. 2017, 105, 549–557. [Google Scholar] [CrossRef]
- Percival, M.-E.; Lai, C.; Estey, E.; Hourigan, C.S. Bone Marrow Evaluation for Diagnosis and Monitoring of Acute Myeloid Leukemia. Blood Rev. 2017, 31, 185–192. [Google Scholar] [CrossRef]
- Chennamadhavuni, A.; Lyengar, V.; Mukkamalla, S.K.R.; Shimanovsky, A. Leukemia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Aoki, Y.; Watanabe, T.; Saito, Y.; Kuroki, Y.; Hijikata, A.; Takagi, M.; Tomizawa, D.; Eguchi, M.; Eguchi-Ishimae, M.; Kaneko, A.; et al. Identification of CD34+ and CD34− Leukemia-Initiating Cells in MLL-Rearranged Human Acute Lymphoblastic Leukemia. Blood 2015, 125, 967–980. [Google Scholar] [CrossRef]
- Heo, S.-K.; Noh, E.-K.; Ju, L.J.; Sung, J.Y.; Jeong, Y.K.; Cheon, J.; Koh, S.J.; Min, Y.J.; Choi, Y.; Jo, J.-C. CD45dimCD34+CD38−CD133+ Cells Have the Potential as Leukemic Stem Cells in Acute Myeloid Leukemia. BMC Cancer 2020, 20, 285. [Google Scholar] [CrossRef]
- Pang, A.; Huo, Y.; Shen, B.; Zheng, Y.; Jiang, E.; Feng, S.; Han, M. Optimizing Autologous Hematopoietic Stem Cell Transplantation for Acute Leukemia. Stem Cells Transl. Med. 2021, 10 (Suppl. S2), S75–S84. [Google Scholar] [CrossRef]
- Ho, J.M.; Dobson, S.M.; McLeod, J.; Voisin, V.; Murison, A.; Kennedy, J.; Zandi, S.; Eppert, K.; Minden, M.D.; Lupien, M.; et al. Isolation of CD34− and CD34+ Leukemia Stem Cells from Acute Myeloid Leukemia Blasts Using CD200. Blood 2018, 132, 2790. [Google Scholar] [CrossRef]
- Schots, R.; Van Riet, I.; Damiaens, S.; Flament, J.; Lacor, P.; Staelens, Y.; Steenssens, L.; van Camp, B.; De Waele, M. The Absolute Number of Circulating CD34+ Cells Predicts the Number of Hematopoietic Stem Cells That Can Be Collected by Apheresis. Bone Marrow Transplant. 1996, 17, 509–515. [Google Scholar]
- Remes, K.; Matinlauri, I.; Grenman, S.; Itälä, M.; Kauppila, M.; Pelliniemi, T.T.; Salminen, E.; Vanharanta, R.; Rajamäki, A. Daily Measurements of Blood CD34+ Cells after Stem Cell Mobilization Predict Stem Cell Yield and Posttransplant Hematopoietic Recovery. J. Hematother. 1997, 6, 13–19. [Google Scholar] [CrossRef]
- Möhle, R.; Murea, S.; Pförsich, M.; Witt, B.; Haas, R. Estimation of the Progenitor Cell Yield in a Leukapheresis Product by Previous Measurement of CD34+ Cells in the Peripheral Blood. Vox Sang. 1996, 71, 90–96. [Google Scholar] [CrossRef]
- Hosing, C. Hematopoietic Stem Cell Mobilization with G-CSF. In Stem Cell Mobilization; Methods in Molecular Biology (Clifton, N.J.); Humana Press: Totowa, NJ, USA, 2012; pp. 37–47. ISBN 9781617799426. [Google Scholar]
- McCartney, E.; Snelling, S.; Denney, M.; Kung, R.; Rachel, M.; Yang, Z.F.; Guan, Q.D.; Hermans, K.G.; Wall, D.A. G-CSF Use in Mobilization and Post-Hematopoietic Stem Cell Transplant Induces Regulatory Myeloid Populations. Blood 2022, 140, 12659–12660. [Google Scholar] [CrossRef]
- Duong, H.K.; Savani, B.N.; Copelan, E.; Devine, S.; Costa, L.J.; Wingard, J.R.; Shaughnessy, P.; Majhail, N.; Perales, M.-A.; Cutler, C.S.; et al. Peripheral Blood Progenitor Cell Mobilization for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2014, 20, 1262–1273. [Google Scholar] [CrossRef]
- Kalina, T. Reproducibility of Flow Cytometry through Standardization: Opportunities and Challenges. Cytom. A 2020, 97, 137–147. [Google Scholar] [CrossRef]
- Sutherland, D.R.; Anderson, L.; Keeney, M.; Nayar, R.; Chin-Yee, I. The ISHAGE Guidelines for CD34+ Cell Determination by Flow Cytometry. International Society of Hematotherapy and Graft Engineering. J. Hematother. 1996, 5, 213–226. [Google Scholar] [CrossRef]
- Robert Sutherland, D.; Keeney, M. Enumeration of CD34+ Cells by Flow Cytometry. In Cellular Therapy: Principles, Methods, and Regulations; Areman, E.M., Loper, K., Eds.; AABB (Association for the Advancement of Blood & Biotherapies): Bethesda, MD, USA, 2016; pp. 558–569. ISBN 9781563959264. [Google Scholar]
- Dauber, K.; Becker, D.; Odendahl, M.; Seifried, E.; Bonig, H.; Tonn, T. Enumeration of Viable CD34+ Cells by Flow Cytometry in Blood, Bone Marrow and Cord Blood: Results of a Study of the Novel BDTM Stem Cell Enumeration Kit. Cytotherapy 2011, 13, 449–458. [Google Scholar] [CrossRef]
- Bender, J.G.; Unverzagt, K.L.; Walker, D.E.; Lee, W.; Van Epps, D.E.; Smith, D.H.; Stewart, C.C.; To, L.B. Identification and Comparison of CD34-Positive Cells and Their Subpopulations from Normal Peripheral Blood and Bone Marrow Using Multicolor Flow Cytometry. Blood 1991, 77, 2591–2596. [Google Scholar] [CrossRef]
- Manohar, S.M.; Shah, P.; Nair, A. Flow Cytometry: Principles, Applications and Recent Advances. Bioanalysis 2021, 13, 181–198. [Google Scholar] [CrossRef]
- Alvarez-Barrientos, A.; Arroyo, J.; Cantón, R.; Nombela, C.; Sánchez-Pérez, M. Applications of Flow Cytometry to Clinical Microbiology. Clin. Microbiol. Rev. 2000, 13, 167–195. [Google Scholar] [CrossRef]
- Yu, H.; Yoo, J.; Hwang, J.S.; Kim, M.; Bae, K.H.; Jekarl, D.W.; Oh, J.H.; Lee, J.Y.; Han, S.; Chung, C.; et al. Enumeration of CD34-Positive Stem Cells Using the ADAMII Image-Based Fluorescence Cell Counter. Ann. Lab. Med. 2019, 39, 388–395. [Google Scholar] [CrossRef]
- Rah, W.-J.; Shin, E.-K.; Koh, H.; Suh, J.Y.; Chang, M.; Nam, E.; Oh, J.H.; Jung, Y.; Lee, J.-Y.; Bong, S.R.; et al. Clinical Applicability of Newly Developed Image-Based Cell Counter for Counting CD34+ Cells: Comparison with Flow Cytometric Analysis. Clin. Pediatr. Hematol. Oncol. 2016, 23, 125–132. [Google Scholar] [CrossRef]
- Kim, J.S.; Nam, M.H.; An, S.S.A.; Lim, C.S.; Hur, D.S.; Chung, C.; Chang, J.K. Comparison of the Automated Fluorescence Microscopic Viability Test with the Conventional and Flow Cytometry Methods. J. Clin. Lab. Anal. 2011, 25, 90–94. [Google Scholar] [CrossRef]
- Vaghashiya, R.; Shin, S.; Chauhan, V.; Kapadiya, K.; Sanghavi, S.; Seo, S.; Roy, M. Machine Learning Based Lens-Free Shadow Imaging Technique for Field-Portable Cytometry. Biosensors 2022, 12, 144. [Google Scholar] [CrossRef]
- Roy, M.; Seo, D.; Oh, S.; Yang, J.-W.; Seo, S. A review of recent progress in lens-free imaging and sensing. Biosens. Bioelectron. 2017, 88, 130–143. [Google Scholar] [CrossRef]
- Ozcan, A.; McLeod, E. Lensless Imaging and Sensing. Annu. Rev. Biomed. Eng. 2016, 18, 77–102. [Google Scholar] [CrossRef]
- Seo, D.; Han, E.; Kumar, S.; Jeon, E.; Nam, M.-H.; Jun, H.S.; Seo, S. Field-Portable Leukocyte Classification Device Based on Lens-Free Shadow Imaging Technique. Biosensors 2022, 12, 47. [Google Scholar] [CrossRef]
- Shin, S.; Oh, S.; Seo, D.; Kumar, S.; Lee, A.; Lee, S.; Kim, Y.-R.; Lee, M.; Seo, S. Field-Portable Seawater Toxicity Monitoring Platform Using Lens-Free Shadow Imaging Technology. Water Res. 2023, 230, 119585. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, N.; Wang, R.; Su, D. An on-chip instrument for white blood cells classification based on a lens-less shadow imaging technique. PLoS ONE 2017, 12, e0174580. [Google Scholar] [CrossRef]
- Sasagawa, K.; Kimura, A.; Haruta, M.; Noda, T.; Tokuda, T.; Ohta, J. Highly Sensitive Lens-Free Fluorescence Imaging Device Enabled by a Complementary Combination of Interference and Absorption Filters. Biomed. Opt. Express 2018, 9, 4329. [Google Scholar] [CrossRef]
- Boominathan, V.; Robinson, J.T.; Waller, L.; Veeraraghavan, A. Recent Advances in Lensless Imaging. Optica 2022, 9, 1. [Google Scholar] [CrossRef]
- Yang, K.; Wu, J.; Santos, S.; Liu, Y.; Zhu, L.; Lin, F. Recent Development of Portable Imaging Platforms for Cell-Based Assays. Biosens. Bioelectron. 2019, 124–125, 150–160. [Google Scholar] [CrossRef]
- Roy, M.; Seo, D.; Oh, C.-H.; Nam, M.-H.; Kim, Y.J.; Seo, S. Low-cost telemedicine device performing cell and particle size measurement based on lens-free shadow imaging technology. Biosens. Bioelectron. 2015, 67, 715–723. [Google Scholar] [CrossRef]
- Seo, D.; Oh, S.; Lee, M.; Hwang, Y.; Seo, S. A Field-Portable Cell Analyzer without a Microscope and Reagents. Sensors 2017, 18, 85. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Adaptive Computation and Machine Learning Series; MIT Press: London, UK, 2016; ISBN 9780262337434. [Google Scholar]
- Abiodun, O.I.; Kiru, M.U.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U. Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-Art in Artificial Neural Network Applications: A Survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Yin, Y.; Zhang, J.; Grzegorzek, M. Applications of Artificial Neural Networks in Microorganism Image Analysis: A Comprehensive Review from Conventional Multilayer Perceptron to Popular Convolutional Neural Network and Potential Visual Transformer. Artif. Intell. Rev. 2023, 56, 1013–1070. [Google Scholar] [CrossRef]
- Mosavi, A.; Ardabili, S.; Várkonyi-Kóczy, A.R. List of Deep Learning Models. In Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2020; pp. 202–214. ISBN 9783030368401. [Google Scholar]
- Tian, Y.; Shu, M.; Jia, Q. Artificial Neural Network. In Encyclopedia of Mathematical Geosciences; Encyclopedia of Earth Sciences; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–4. ISBN 9783030260507. [Google Scholar]
- Katal, A.; Singh, N. Artificial Neural Network: Models, Applications, and Challenges. In EAI/Springer Innovations in Communication and Computing; Springer International Publishing: Cham, Switzerland, 2022; pp. 235–257. ISBN 9783030782832. [Google Scholar]
- Latha, R.S.; Sreekanth, G.R.R.; Suganthe, R.C.; Selvaraj, R.E. A Survey on the Applications of Deep Neural Networks. In Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; IEEE: Piscataway Township, NJ, USA, 2021. [Google Scholar]
- Chen, Y.; Li, J. Recurrent Neural Networks Algorithms and Applications. In Proceedings of the 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Zhuhai, China, 24–26 September 2021; IEEE: Piscataway Township, NJ, USA, 2021. [Google Scholar]
- Vaz, J.M.; Balaji, S. Convolutional Neural Networks (CNNs): Concepts and Applications in Pharmacogenomics. Mol. Divers. 2021, 25, 1569–1584. [Google Scholar] [CrossRef]
- Heaton, J. Applications of Deep Neural Networks with Keras. arXiv 2020, arXiv:2009.05673. [Google Scholar] [CrossRef]
- Baik, M.; Shin, S.; Kumar, S.; Seo, D.; Lee, I.; Jun, H.S.; Kang, K.-W.; Kim, B.S.; Nam, M.-H.; Seo, S. Dataset of shadow images of CD34+ cells and residual cells from bone marrow blood. 2023. [Google Scholar] [CrossRef]
- Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High Gradient Magnetic Cell Separation with MACS. Cytometry 1990, 11, 231–238. [Google Scholar] [CrossRef]
- Gnecchi, M.; Melo, L.G. Bone Marrow-Derived Mesenchymal Stem Cells: Isolation, Expansion, Characterization, Viral Transduction, and Production of Conditioned Medium. In Methods in Molecular Biology; Methods in Molecular Biology (Clifton, N.J.); Humana Press: Totowa, NJ, USA, 2009; pp. 281–294. ISBN 9781588297976. [Google Scholar]
- Kusunose, S.; Shinomiya, Y.; Ushiwaka, T.; Maeda, N.; Hoshino, Y. Improving Individually Selectness for Immune Cells Using GradCAM. In Proceedings of the 2021 5th IEEE International Conference on Cybernetics (CYBCONF), Sendai, Japan, 8–10 June 2021; IEEE: Piscataway Township, NJ, USA, 2021. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baik, M.; Shin, S.; Kumar, S.; Seo, D.; Lee, I.; Jun, H.S.; Kang, K.-W.; Kim, B.S.; Nam, M.-H.; Seo, S. Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology. Biosensors 2023, 13, 993. https://doi.org/10.3390/bios13120993
Baik M, Shin S, Kumar S, Seo D, Lee I, Jun HS, Kang K-W, Kim BS, Nam M-H, Seo S. Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology. Biosensors. 2023; 13(12):993. https://doi.org/10.3390/bios13120993
Chicago/Turabian StyleBaik, Minyoung, Sanghoon Shin, Samir Kumar, Dongmin Seo, Inha Lee, Hyun Sik Jun, Ka-Won Kang, Byung Soo Kim, Myung-Hyun Nam, and Sungkyu Seo. 2023. "Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology" Biosensors 13, no. 12: 993. https://doi.org/10.3390/bios13120993
APA StyleBaik, M., Shin, S., Kumar, S., Seo, D., Lee, I., Jun, H. S., Kang, K. -W., Kim, B. S., Nam, M. -H., & Seo, S. (2023). Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology. Biosensors, 13(12), 993. https://doi.org/10.3390/bios13120993