Rapid On-Site Detection of Arboviruses by a Direct RT-qPCR Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mosquito Population Sampling
2.2. Virus Strain and Viral Stock Preparations
2.3. Mosquitoes’ Oral Infection
2.4. Mosquito Processing and Virus Detection
2.5. Direct RT-PCR Assay
2.6. Data Analysis
3. Results
3.1. Chikungunya Virus
3.2. Rift Valley Fever Virus
3.3. Zika Virus
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, P.R. Arboviruses: A Family on the Move. Adv. Exp. Med. Biol. 2018, 1062, 1–10. [Google Scholar] [CrossRef]
- Girard, M.; Nelson, C.B.; Picot, V.; Gubler, D.J. Arboviruses: A global public health threat. Vaccine 2020, 38, 3989–3994. [Google Scholar] [CrossRef]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef]
- Weaver, S.C.; Chen, R.; Diallo, M. Chikungunya Virus: Role of Vectors in Emergence from Enzootic Cycles. Annu. Rev. Èntomol. 2020, 65, 313–332. [Google Scholar] [CrossRef]
- Silva, L.A.; Dermody, T.S. Chikungunya virus: Epidemiology, replication, disease mechanisms, and prospective intervention strategies. J. Clin. Investig. 2017, 127, 737–749. [Google Scholar] [CrossRef]
- Song, B.-H.; Yun, S.-I.; Woolley, M.; Lee, Y.-M. Zika virus: History, epidemiology, transmission, and clinical presentation. J. Neuroimmunol. 2017, 308, 50–64. [Google Scholar] [CrossRef]
- Fontenille, D.; Traore-Lamizana, M.; Digoutte, J.-P.; Zeller, H.; Mondo, M.; Diallo, M.; Digoutte, J.P. Short report: Rift Valley fever in western africa: Isolations from Aedes mosquitoes during an interepizootic period. Am. J. Trop. Med. Hyg. 1995, 52, 403–404. [Google Scholar] [CrossRef]
- Linthicum, K.J.; Britch, S.C.; Anyamba, A. Rift Valley Fever: An Emerging Mosquito-Borne Disease. Annu. Rev. Èntomol. 2016, 61, 395–415. [Google Scholar] [CrossRef]
- Her, Z.; Kam, Y.-W.; Lin, R.T.P.; Ng, L.F.P. Chikungunya: A bending reality. Microbes Infect. 2009, 11, 1165–1176. [Google Scholar] [CrossRef]
- Peyre, M.; Chevalier, V.; Abdo-Salem, S.; Velthuis, A.; Antoine-Moussiaux, N.; Thiry, E.; Roger, F. A Systematic Scoping Study of the Socio-Economic Impact of Rift Valley Fever: Research Gaps and Needs. Zoonoses Public Health 2015, 62, 309–325. [Google Scholar] [CrossRef]
- Singer, M. The spread of Zika and the potential for global arbovirus syndemics. Glob. Public Health 2016, 12, 1–18. [Google Scholar] [CrossRef]
- Khan, A.H.; Morita, K.; Parquet, M.D.C.; Hasebe, F.; Mathenge, E.G.M.; Igarashi, A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol. 2002, 83, 3075–3084. [Google Scholar] [CrossRef]
- Solignat, M.; Gay, B.; Higgs, S.; Briant, L.; Devaux, C. Replication cycle of chikungunya: A re-emerging arbovirus. Virology 2009, 393, 183–197. [Google Scholar] [CrossRef]
- Boyer, S.; Calvez, E.; Chouin-Carneiro, T.; Diallo, D.; Failloux, A.-B. An overview of mosquito vectors of Zika virus. Microbes Infect. 2018, 20, 646–660. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef]
- Cao-Lormeau, V.-M.; Roche, C.; Teissier, A.; Robin, E.; Berry, A.-L.; Mallet, H.-P.; Sall, A.A.; Musso, D. Zika virus, French polynesia, South pacific, 2013. Emerg. Infect. Dis. 2014, 20, 1085–1086. [Google Scholar] [CrossRef]
- Musso, D.; Nilles, E.J.; Cao-Lormeau, V.-M. Rapid spread of emerging Zika virus in the Pacific area. Clin. Microbiol. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, O595–O596. [Google Scholar] [CrossRef]
- Haddow, A.D.; Schuh, A.J.; Yasuda, C.Y.; Kasper, M.R.; Heang, V.; Huy, R.; Guzman, H.; Tesh, R.B.; Weaver, S.C. Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage. PLoS Negl. Trop. Dis. 2012, 6, e1477. [Google Scholar] [CrossRef]
- Faizan, M.I.; Abdullah, M.; Ali, S.; Naqvi, I.H.; Ahmed, A.; Parveen, S. Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism. Intervirology 2016, 59, 152–158. [Google Scholar] [CrossRef]
- Pielnaa, P.; Al-Saadawe, M.; Saro, A.; Dama, M.F.; Zhou, M.; Huang, Y.; Huang, J.; Xia, Z. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology 2020, 543, 34–42. [Google Scholar] [CrossRef]
- Liu, L.; Celma, C.C.; Roy, P. Rift Valley fever virus structural proteins: Expression, characterization and assembly of recombinant proteins. Virol. J. 2008, 5, 82. [Google Scholar] [CrossRef] [PubMed]
- Hartman, A. Rift Valley Fever. Clin. Lab. Med. 2017, 37, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Kortekaas, J.; Bowden, T.A.; Warimwe, G.M. Rift Valley fever: Biology and epidemiology. J. Gen. Virol. 2019, 100, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef]
- Espy, M.J.; Uhl, J.R.; Sloan, L.M.; Buckwalter, S.P.; Jones, M.F.; Vetter, E.A.; Yao, J.D.C.; Wengenack, N.L.; Rosenblatt, J.E.; Cockerill, F.R.; et al. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing. Clin. Microbiol. Rev. 2006, 19, 165–256. [Google Scholar] [CrossRef]
- Leland, D.S.; Ginocchio, C.C. Role of Cell Culture for Virus Detection in the Age of Technology. Clin. Microbiol. Rev. 2007, 20, 49–78. [Google Scholar] [CrossRef]
- Najioullah, F.; Viron, F.; Paturel, L.; Césaire, R. Diagnostic biologique de la dengue. Virol. Montrouge Fr. 2012, 16, 18–31. [Google Scholar] [CrossRef]
- Zhong, J.F.; Weiner, L.P.; Burke, K.; Taylor, C.R. Viral RNA extraction for in-the-field analysis. J. Virol. Methods 2007, 144, 98–102. [Google Scholar] [CrossRef]
- Fomsgaard, A.S.; Rosenstierne, M.W. An alternative workflow for molecular detection of SARS-CoV-2—Escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020. Eurosurveillance 2020, 25, 2000398. [Google Scholar] [CrossRef]
- Li, L.; He, J.-A.; Wang, W.; Xia, Y.; Song, L.; Chen, Z.-H.; Zuo, H.-Z.; Tan, X.-P.; Ho, A.H.-P.; Kong, S.-K.; et al. Development of a direct reverse-transcription quantitative PCR (dirRT-qPCR) assay for clinical Zika diagnosis. Int. J. Infect. Dis. 2019, 85, 167–174. [Google Scholar] [CrossRef]
- Traoré-Lamizana, M.; Fontenille, D.; Diallo, M.; Bâ, Y.; Zeller, H.G.; Mondo, M.; Adam, F.; Thonon, J.; Maïga, A. Arbovirus Surveillance from 1990 to 1995 in the Barkedji area (Ferlo) of Senegal, a possible natural focus of Rift Valley fever virus. J. Med. Èntomol. 2001, 38, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Ba, Y.; Diallo, D.; Kebe, C.M.F.; Dia, I.; Diallo, M. Aspects of Bioecology of Two Rift Valley Fever Virus Vectors in Senegal (West Africa): Aedes vexans and Culex poicilipes (Diptera: Culicidae). J. Med. Èntomol. 2005, 42, 739–750. [Google Scholar] [CrossRef]
- Diagne, C.T.; Weaver, S.C.; Dia, I.; Knight, R.; Guerbois, M.; Faye, O.; Diallo, D.; Faye, O.; Sall, A.A.; Diallo, M.; et al. Vector Competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde Archipelago for West African Lineages of Chikungunya Virus. Am. J. Trop. Med. Hyg. 2014, 91, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Diouf, B.; Gaye, A.; Diagne, C.T.; Diallo, M.; Diallo, D. Zika virus in southeastern Senegal: Survival of the vectors and the virus during the dry season. BMC Infect. Dis. 2020, 20, 371. [Google Scholar] [CrossRef]
- Gerberg, E.J. Manual for mosquito rearing and experimental techniques. Am. Mosq. Control Assoc. Bull. 1970, 5, 72–73. [Google Scholar]
- Gaye, A.; Diagne, M.M.; Ndiaye, E.H.; Ndione, M.H.D.; Faye, M.; Talla, C.; Fall, G.; Ba, Y.; Diallo, D.; Dia, I.; et al. Vector competence of anthropophilic mosquitoes for a new mesonivirus in Senegal. Emerg. Microbes Infect. 2020, 9, 496–504. [Google Scholar] [CrossRef]
- Digoutte, J.P.; Calvo-Wilson, M.A.; Mondo, M.; Traore-Lamizana, M.; Adam, F. Continuous cell lines and immune ascitic fluid pools in arbovirus detection. Res. Virol. 1992, 143, 417–422. [Google Scholar] [CrossRef]
- de Madrid, A.T.; Porterfield, J.S. A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ. 1969, 40, 113–121. [Google Scholar]
- Payne, A.F.; Binduga-Gajewska, I.; Kauffman, E.B.; Kramer, L.D. Quantitation of flaviviruses by fluorescent focus assay. J. Virol. Methods 2006, 134, 183–189. [Google Scholar] [CrossRef]
- Rutledge, L.C.; Ward, R.A.; Gould, D.J. Studies on the feeding response of mosquitoes to nutritive solutions in a new membrane feeder. Mosq. News 1964, 24, 407–409. [Google Scholar]
- Diallo, D.; Diagne, C.T.; A Hanley, K.; A Sall, A.; Buenemann, M.; Ba, Y.; Dia, I.; Weaver, S.C.; Diallo, M. Larval ecology of mosquitoes in sylvatic arbovirus foci in southeastern Senegal. Parasites Vectors 2012, 5, 286. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, B.; Bessaud, M.; Grandadam, M.; Murri, S.; Tolou, H.J.; Peyrefitte, C.N. Development of a TaqMan® RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J. Virol. Methods 2005, 124, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, M.; Sanchez-Seco, M.P.; Sall, A.A.; Ly, P.O.; Thiongane, Y.; Lô, M.M.; Schley, H.; Hufert, F.T. Rapid detection of important human pathogenic Phleboviruses. J. Clin. Virol. 2008, 41, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Faye, O.; Faye, O.; Diallo, D.; Diallo, M.; Weidmann, M.; Sall, A.A. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught Mosquitoes. Virol. J. 2013, 10, 311. [Google Scholar] [CrossRef] [PubMed]
- Al-Soud, W.A.; Rådström, P. Purification and Characterization of PCR-Inhibitory Components in Blood Cells. J. Clin. Microbiol. 2001, 39, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.; Bell, A.; Miles, R.; Carne, S.; Wooldridge, D.; Manso, C.; Hennessy, N.; Bailey, D.; Pullan, S.T.; Gharbia, S.; et al. The Effect of Nucleic Acid Extraction Platforms and Sample Storage on the Integrity of Viral RNA for Use in Whole Genome Sequencing. J. Mol. Diagn. 2017, 19, 303–312. [Google Scholar] [CrossRef]
- Dieng, I.; Hedible, B.G.; Diagne, M.M.; El Wahed, A.A.; Diagne, C.T.; Fall, C.; Richard, V.; Vray, M.; Weidmann, M.; Faye, O.; et al. Mobile Laboratory Reveals the Circulation of Dengue Virus Serotype I of Asian Origin in Medina Gounass (Guediawaye), Senegal. Diagnostics 2020, 10, 408. [Google Scholar] [CrossRef]
- Weidmann, M.; Faye, O.; Faye, O.; El Wahed, A.A.; Patel, P.; Batejat, C.; Manugerra, J.C.; Adjami, A.; Niedrig, M.; Hufert, F.T.; et al. Development of Mobile Laboratory for Viral Hemorrhagic Fever Detection in Africa. J. Infect. Dis. 2018, 218, 1622–1630. [Google Scholar] [CrossRef]
- Gao, M.; Daniel, D.; Zou, H.; Jiang, S.; Lin, S.; Huang, C.; Hecht, S.M.; Chen, S. Rapid detection of a dengue virus RNA sequence with single molecule sensitivity using tandem toehold-mediated displacement reactions. Chem. Commun. 2018, 54, 968–971. [Google Scholar] [CrossRef]
Virus | Strain | Source | Year | Location | Passage History | Lineage | Viral Titer (PFU/mL) |
---|---|---|---|---|---|---|---|
CHIKV | S27 | Homo sapiens | 1953 | Tanzania | P8 | East Africa | 8 × 107 |
ZIKV | ArD275569 | Aedes leptocephalus | 2017 | Senegal | P7 | West Africa | 1.5 × 107 |
RVFV | ArD141967 | Culex poicilipes | 2000 | Mauritania | P5 | West Africa | 5 × 107 |
Virus | Primers/Probes | Sequences 5′→3′ |
---|---|---|
CHIKV [42] | Forward primer | AAGCTYCGCGTCCTTTACCAAG |
Reverse primer | CCAAATTGTCCYGGTCTTCCT | |
Probe | FAM-CCAATGTCYTCMGCCTGGACACCTTT-BBQ | |
RVFV [43] | Forward primer | TGCCACGAGTYAGAGCCA |
Reverse primer | GTGGGTCCGAGAGTYTGC | |
Probe | FAM-TCCTTCTCCCAGTCAGCCCCAC-BBQ | |
ZIKV [44] | Forward primer | AARTACACATACCARAACAAAGTG GT |
Reverse primer | TCCRCTCCCYCTYTGGTCTTG | |
Probe | FAM-CTYAGACCAGCTGAAR-BBQ |
CHIKV S27 | RVFV ArD141967 | ZIKV ARD275569 | ||||
---|---|---|---|---|---|---|
Infected | Non-Infected | Infected | Non-Infected | Infected | Non-Infected | |
PM1 | 8 | 0 | 9 | 0 | 9 | 0 |
PM2 | 7 | 1 | 8 | 1 | 8 | 1 |
PM3 | 6 | 2 | 7 | 2 | 7 | 2 |
PM4 | 5 | 3 | 6 | 3 | 6 | 3 |
PM5 | 4 | 4 | 5 | 4 | 5 | 4 |
PM6 | 3 | 5 | 4 | 5 | 4 | 5 |
PM7 | 2 | 6 | 3 | 6 | 3 | 6 |
PM8 | 1 | 7 | 2 | 7 | 2 | 7 |
PM9 | 0 | 8 | 1 | 8 | 1 | 8 |
PM10 | NA | NA | 0 | 9 | 0 | 9 |
Extracted Viral RNA (±SD) | Pure The Supernatant (±SD) | Diluted The Supernatant (±SD) | |
---|---|---|---|
PM1 | 22.5 (2.30) | 29.9 (0.41) | 30.6 (0.07) |
PM2 | 27.4 (0.34) | 31.5 (0.03) | 33.8 (0.06) |
PM3 | 24.3 (0.71) | 30.6 (0.71) | 31.9 (0.20) |
PM4 | 21.6 (0.21) | 32.2 (3.84) | 29.6 (0.08) |
PM5 | 27.7 (0.53) | N/A = 40 | 34.4 (0.69) |
PM6 | 31.1 (1.30) | N/A = 40 | 36.9 (1.14) |
PM7 | 30.8 (0.38) | N/A = 40 | N/A = 40 |
PM8 | N/A = 40 | N/A = 40 | N/A = 40 |
PM9 | N/A = 40 | N/A = 40 | N/A = 40 |
Pure Supernatant | Diluted Supernatant | |
---|---|---|
R2 | 0.77 | 0.92 |
CI [95%] | [0.29–0.94] | [0.71–0.98] |
Sensitivity | 100.00% | 100.00% |
Specificity | 20.00% | 33.33% |
Accuracy | 55.56% | 77.78% |
Extracted Viral RNA (±SD) | Pure Supernatant (±SD) | Diluted Supernatant (±SD) | |
---|---|---|---|
PM1 | 31.1 (0.45) | 38.9 (0.89) | 38.9 (0.45) |
PM2 | 27.9 (0.46) | 36.1 (1.20) | 30.4 (0.29) |
PM3 | 25.8 (0.10) | 32.6 (1.54) | 29.9 (0.45) |
PM4 | 27.7 (0.30) | 36.5 (3.16) | 30.7 (0.05) |
PM5 | 27.3 (0.16) | N/A = 40 | 30.3 (0.16) |
PM6 | 31.3 (0.34) | N/A = 40 | 37.3 (0.70) |
PM7 | 24.4 (3.03) | N/A = 40 | 31.9 (0.38) |
PM8 | 27.8 (0.13) | N/A = 40 | 34.5 (0.54) |
PM9 | 32.0 (0.04) | N/A = 40 | N/A = 40 |
PM10 | N/A = 40 | N/A = 40 | N/A = 40 |
Pure Supernatant | Diluted Supernatant | |
---|---|---|
R2 | 0.38 | 0.80 |
CI [95%] | [0.32–0.81] | [0.35–0.95] |
Sensitivity | 100.00% | 100.00% |
Specificity | 20.00% | 50.00% |
Accuracy | 60.00% | 90.00% |
RNA (±SD) | Pure Supernatant (±SD) | Diluted Supernatant (±SD) | |
---|---|---|---|
PM1 | 24.1 (0.59) | 25.9 (0.33) | 28.7 (0.32) |
PM2 | 20.7 (0.08) | 23.9 (0.15) | 26.4 (0.17) |
PM3 | 22.5 (0.26) | 24.8 (0.15) | 27.6 (0.02) |
PM4 | 20.8 (0.52) | 25.0 (0.21) | 27.6 (0.05) |
PM5 | 24.5 (0.17) | 26.7 (0.31) | 29.2 (0.32) |
PM6 | 22.4 (0.13) | 24.9 (0.48) | 28.0 (0.24) |
PM7 | 23.6 (0.27) | 25.9 (0.29) | 28.8 (0.12) |
PM8 | 23.8 (0.18) | 26.7 (0.11) | 29.5 (0.15) |
PM9 | 25.2 (0.35) | 27.7 (0.13) | 29.5 (0.53) |
PM10 | N/A = 40 | N/A = 40 | N/A =40 |
Pure Supernatant | Diluted Supernatant | |
---|---|---|
R2 | 0.99 | 0.99 |
CI [95%] | [0.97–0.99] | [0.97–0.99] |
Sensitivity | 100.00% | 100.00% |
Specificity | 100.00% | 100.00% |
Accuracy | 100.00% | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mhamadi, M.; Mencattelli, G.; Gaye, A.; Ndiaye, E.H.; Sow, A.A.; Faye, M.; Ndione, M.H.D.; Diagne, M.M.; Mhamadi, M.; Faye, O.; et al. Rapid On-Site Detection of Arboviruses by a Direct RT-qPCR Assay. Biosensors 2023, 13, 1035. https://doi.org/10.3390/bios13121035
Mhamadi M, Mencattelli G, Gaye A, Ndiaye EH, Sow AA, Faye M, Ndione MHD, Diagne MM, Mhamadi M, Faye O, et al. Rapid On-Site Detection of Arboviruses by a Direct RT-qPCR Assay. Biosensors. 2023; 13(12):1035. https://doi.org/10.3390/bios13121035
Chicago/Turabian StyleMhamadi, Moufid, Giulia Mencattelli, Alioune Gaye, El Hadji Ndiaye, Aïssatou Aïcha Sow, Martin Faye, Marie Henriette Dior Ndione, Moussa Moïse Diagne, Moundhir Mhamadi, Ousmane Faye, and et al. 2023. "Rapid On-Site Detection of Arboviruses by a Direct RT-qPCR Assay" Biosensors 13, no. 12: 1035. https://doi.org/10.3390/bios13121035
APA StyleMhamadi, M., Mencattelli, G., Gaye, A., Ndiaye, E. H., Sow, A. A., Faye, M., Ndione, M. H. D., Diagne, M. M., Mhamadi, M., Faye, O., Weidmann, M., Faye, O., Diallo, M., & Diagne, C. T. (2023). Rapid On-Site Detection of Arboviruses by a Direct RT-qPCR Assay. Biosensors, 13(12), 1035. https://doi.org/10.3390/bios13121035