Integration of Glutamate Dehydrogenase and Nanoporous Gold for Electrochemical Detection of Glutamate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Preparation of Electrodes
2.3. Feasibility Analysis of Indirect Electrochemical Detection of Glutamic Acid
2.4. Optimization of Enzymatic Reactions
2.5. The Detection Performance and Anti-Interference Ability of Biosensor
3. Results and Discussion
3.1. Feasibility Verification of Glutamate Indirect Detection Sensor
3.2. Construction of Electrochemical Detection System for NADH
3.3. Optimization of Glutamate Dehydrogenase Reaction
3.4. Glutamate Indirect Detection by GLDH-NPG/GCE Bioelectrode
3.5. Selectivity and Anti-Interference of GLDH-NPG/GCE Biosensor
3.6. Actual Sample Testing of GLDH-NPG/GCE Biosensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loomba, R.; Friedman, S.L. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184, 2537–2564. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, E.; Janas, D.; Eftekhari, A.; Zare, N. Application of carbon nanotubes in sensing/monitoring of pancreas and liver cancer. Chemosphere 2022, 303, 134826. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic cancer: Pathogenesis, screening, diagnosis and treatment. Gastroenterology 2022, 163, 386–402.e1. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.V.; Markussen, K.H.; Jakobsen, E.; Schousboe, A.; Waagepetersen, H.S.; Rosenberg, P.A.; Aldana, B.I. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021, 196, 108719. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Wang, R.; Zhao, Y.-F.; Song, Y.; Sui, H.; Wu, Y.; Miao, H.; Lyu, B. Monosodium glutamate intake and risk assessment in China nationwide, and a comparative analysis worldwide. Nutrients 2023, 15, 2444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Sui, H.; Wang, Y.; Yong, L.; Zhang, L.; Liang, J.; Zhou, J.; Xu, L.; Zhong, Y.; Chen, J. Dietary exposure to glutamates of 2- to 5-year-old toddlers in China using the duplicate diet method. Foods 2023, 12, 1898. [Google Scholar] [CrossRef]
- Sheng, Q.; Wu, X.-Y.; Xu, X.; Tan, X.; Li, Z.; Zhang, B. Production of L-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth. Syst. Biotechnol. 2021, 6, 302–325. [Google Scholar] [CrossRef]
- Johnson, L.C.; Akinmola, A.T.; Scholz, C. Poly(glutamic acid): From natto to drug delivery systems. Biocatal. Agric. Biotech. 2022, 40, 102292. [Google Scholar] [CrossRef]
- Kamson, D.O.; Chinnasamy, V.; Grossman, S.A.; Bettegowda, C.; Barker, P.B.; Stacpoole, P.W.; Oeltzschner, G. In-vivo magnetic resonance spectroscopy of lactate as a non-invasive biomarker of dichloroacetate activity in cancer and non-cancer central nervous system disorders. Front. Oncol. 2023, 13, 1077461. [Google Scholar] [CrossRef]
- Karádi, D.Á.; Galambos, A.R.; Lakatos, P.P.; Apenberg, J.; Abbood, S.K.; Balogh, M.; Király, K.; Riba, P.; Essmat, N.; Szűcs, E. Telmisartan is a promising agent for managing neuropathic pain and delaying opioid analgesic tolerance in rats. Int. J. Mol. Sci. 2023, 24, 7970. [Google Scholar] [CrossRef]
- Rossetti, Z.L.; Marcangione, C.; Wise, R.A. Increase of extracellular glutamate and expression of Fos-like immunoreactivity in the ventral tegmental area in response to electrical stimulation of the prefrontal cortex. J. Neurochem. 1998, 70, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Periñán, E.; Domínguez-Saldaña, A.; Villa-Manso, A.M.; Gutiérrez-Sánchez, C.; Revenga-Parra, M.; Mateo-Martí, E.; Pariente, F.; Lorenzo, E. Azure A embedded in carbon dots as NADH electrocatalyst: Development of a glutamate electrochemical biosensor. Sensor Actuat. B Chem. 2023, 374, 132761. [Google Scholar] [CrossRef]
- Kanamori, K.; Kondrat, R.W.; Ross, B.D. 13C enrichment of extracellular neurotransmitter glutamate in rat brain--combined mass spectrometry and NMR studies of neurotransmitter turnover and uptake into glia in vivo. Cell. Mol. Biol. 2003, 49, 819–836. [Google Scholar] [PubMed]
- Yang, D.; Brunengraber, H. Glutamate, a window on liver intermediary metabolism. J. Nutr. 2000, 130, 991S–994S. [Google Scholar] [CrossRef]
- Singh, A.P.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, T.; Zhang, W.; Chen, B.; Liu, J.; Liu, G.; Zhou, H.; Zhao, P.; Wang, H.; Wang, B. Microperoxidase-11 functionalized nanozyme with enhanced peroxidase-mimicking activities for visual detection of cysteine. Anal. Chim. Acta 2023, 1267, 341386. [Google Scholar] [CrossRef] [PubMed]
- Valsalakumar, V.C.; Joseph, A.S.; Piyus, J.; Vasudevan, S. Polyaniline–graphene oxide composites decorated with ZrO2 nanoparticles for use in screen-printed electrodes for real-time L-tyrosine sensing. ACS Appl. Nano Mater. 2023, 6, 8382–8395. [Google Scholar] [CrossRef]
- Abdel-Aal, F.A.M.; Kamel, R.M.; Abdeltawab, A.A.; Mohamed, F.A.; Mohamed, A.M.I. Polypyrrole/carbon dot nanocomposite as an electrochemical biosensor for liquid biopsy analysis of tryptophan in the human serum of normal and breast cancer women. Anal. Bioanal. Chem. 2023, 415, 4985–5001. [Google Scholar] [CrossRef]
- Schultz, J.; Uddin, Z.; Singh, G.; Howlader, M.M.R. Glutamate sensing in biofluids: Recent advances and research challenges of electrochemical sensors. Analyst 2020, 145, 321–347. [Google Scholar] [CrossRef]
- Huang, I.-W.; Clay, M.; Wang, S.; Guo, Y.; Nie, J.; Monbouquette, H.G. Electroenzymatic glutamate sensing at near the theoretical performance limit. Analyst 2020, 145, 2602–2611. [Google Scholar] [CrossRef]
- Fahimitabar, A.; Razavian, S.M.H.; Rezaei, S.A. Application of RSM for optimization of glutamic acid production by Corynebacterium glutamicum in bath culture. Heliyon 2021, 7, e07359. [Google Scholar] [CrossRef] [PubMed]
- Baciu, D.D.; Bȋrjega, R.; Mărăscu, V.; Zăvoianu, R.; Matei, A.; Vlad, A.; Cojocaru, A.; Vişan, T. Enhanced voltammetric response of monosodium glutamate on screen-printed electrodes modified with NiAl layered double hydroxide films. Surf. Interfaces 2021, 24, 101055. [Google Scholar] [CrossRef]
- Kelly, A.; Stanley, C.A. Disorders of glutamate metabolism. Ment. Retard. Dev. Disabil. Res. Rev. 2001, 7, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, J.; Zhang, L.; Su, H.; Liu, X.; Liu, J. A sensitive H2O2 biosensor based on carbon nanotubes/tetrathiafulvalene and its application in detecting NADH. Anal. Biochem. 2020, 589, 113493. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, T.; Li, Z.; Xu, X.; Zhang, X.; Li, D. An electrochemical enzyme biosensor for ammonium detection in aquaculture using screen-printed electrode modified by gold nanoparticle/polymethylene blue. Biosensors 2021, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Ying, Y. Recent progress on nanopore electrochemistry and advanced data processing. Curr. Opin. Electroche. 2021, 26, 100675. [Google Scholar] [CrossRef]
- Wang, J.; Li, N.; Xu, Y.-X.; Pang, H. Two-dimensional MOF and COF nanosheets: Synthesis and applications in electrochemistry. Chemistry 2020, 26, 6402–6422. [Google Scholar] [CrossRef]
- Shang, K.; Wang, S.; Chen, S.; Wang, X. Sensitivity detection of uric acid and creatinine in human urine based on nanoporous gold. Biosensors 2022, 12, 588. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, S.; Wang, X.; Xu, P. Nanoporous gold: A review and potentials in biotechnological and biomedical applications. Nano Select 2021, 2, 1437–1458. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, T.; Ma, X.; Shen, Y.; Deng, Q.; Zhang, W.; Zhao, Y. Hydrogen production from urea sewage on NiFe-based porous electrocatalysts. ACS Sustain. Chem. Eng. 2020, 8, 11007–11015. [Google Scholar] [CrossRef]
- Othman, A.; Bilan, H.K.; Katz, E.; Smutok, O. Highly porous gold electrodes–preparation and characterization. Chemelectrochem 2022, 9, e202200099. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2014, 87, 230–249. [Google Scholar] [CrossRef]
- Bollella, P. Porous gold: A new frontier for enzyme-based electrodes. Nanomaterials 2020, 10, 722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Y.; Zhang, X.; Wang, H.; Xia, T.; Bian, C.; Liang, S.; Tang, X.; Wang, X. Electrochemical immunosensor for HBe antigen detection based on a signal amplification strategy: The co-catalysis of horseradish peroxidase and nanoporous gold. Sensor Actuat. B Chem. 2019, 284, 296–304. [Google Scholar] [CrossRef]
- Xiao, S.; Shang, K.; Li, W.; Wang, X. An efficient biosensor based on the synergistic catalysis of Helicobacter pylori urease b subunit and nanoplatinum for urease inhibitors screening and antagonistic mechanism analyzing. Sensors Actuat. B-Chem. 2021, 355, 131284. [Google Scholar] [CrossRef]
- Wang, P.; Tang, X.; Tang, J.; Pei, Y. Density functional theory (DFT) studies of CO oxidation over nanoporous gold: Effects of residual Ag and CO self-promoting oxidation. J. Phys. Chem. C. 2015, 119, 10345–10354. [Google Scholar] [CrossRef]
- Wang, K.; Ding, Y. Carbon-free nanoporous gold based membrane electrocatalysts for fuel cells. Prog. Nat. Sci. Mater. 2020, 30, 775–786. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, Y. Unsupported nanoporous gold for heterogeneous catalysis. Catal. Sci. Technol. 2013, 3, 2862–2868. [Google Scholar] [CrossRef]
- Zangeneh, M.M.; Norouzi, H.; Mahmoudi, M.; Goicoechea, H.C.; Jalalvand, A.R. Fabrication of a novel impedimetric biosensor for label free detection of DNA damage induced by doxorubicin. Int. J. Biol. Macromol. 2019, 124, 963–971. [Google Scholar] [CrossRef]
- Ito, Y.; Okuda-Shimazaki, J.; Tsugawa, W.; Loew, N.; Shitanda, I.; Lin, C.-E.; Belle, L.J.; Sode, K. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Biosens. Bioelectron. 2019, 129, 189–197. [Google Scholar] [CrossRef]
- Chen, S.; Shang, K.; Gao, X.; Wang, X. The development of NAD+-dependent dehydrogenase screen-printed biosensor based on enzyme and nanoporous gold co-catalytic strategy. Biosens. Bioelectron. 2022, 211, 114376. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, R.R.; Anandhakumar, S.; Mathiyarasu, J. Electrocatalytic oxidation of NADH at low overpotential using nanoporous poly(3,4)-ethylenedioxythiophene modified glassy carbon electrode. J. Electroanal. Chem. 2015, 746, 75–81. [Google Scholar] [CrossRef]
- Banks, C.E.; Compton, R.G. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: An edge plane pyrolytic graphite electrode study. Analyst 2005, 130, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Istrate, O.-M.; Rotariu, L.; Bala, C. A Novel Amperometric biosensor based on poly(allylamine hydrochloride) for determination of ethanol in beverages. Sensors 2021, 21, 6510. [Google Scholar] [CrossRef] [PubMed]
- Perevezentseva, D.O.; Gorchakov, E.V. Voltammetric determination of cysteine at a graphite electrode modified with gold nanoparticles. J. Solid State Electr. 2012, 16, 2405–2410. [Google Scholar] [CrossRef]
- Kantor, A.G.; Markwalter, C.F.; Nourani, A.; Wright, D.W. An antibody-free dual-biomarker rapid enrichment workflow (AnDREW) improves the sensitivity of malaria rapid diagnostic tests. Anal. Biochem. 2020, 612, 114020. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.A.; Pemberton, R.M.; Fielden, P.R.; Hart, J.P. Development of a novel reagentless, screen-printed amperometric biosensor based on glutamate dehydrogenase and NAD+, integrated with multi-walled carbon nanotubes for the determination of glutamate in food and clinical applications. Sensor Actuat. B Chem. 2015, 216, 614–621. [Google Scholar] [CrossRef]
- Dalkıran, B.; Erden, P.E.; Kılıç, E. Graphene and tricobalt tetraoxide nanoparticles based biosensor for electrochemical glutamate sensing. Artif. Cells Nanomed. Biotechnol. 2017, 45, 340–348. [Google Scholar] [CrossRef]
Electrode Modification | Method | Detection Range (μM) | LOD (μM) | Reference |
---|---|---|---|---|
GluOx/[C3(OH)2mim] [BF4]/Au-Pt NPs/Nafion | IT | 0.5–20 | 0.17 | [45] |
Pt-disc/PEI/GlutOx/PPD-BSA | IT | 5–50 | 2.5 | [46] |
MWCNT-MB/GLDH-NAD/MWCNT-CHIT | IT | 7.5–105 | 3 | [47] |
GluOx/Co3O4/CS/GR/GCE | IT | 4–600 | 2 | [48] |
GLDH-NPG/GCE | DPV | 50–700 | 6.82 | This work |
Samples | Spiked Glutamate (μΜ) | Detected by NPG/GCE (μΜ) | Recovery Rate (%) | RSD (%) |
---|---|---|---|---|
1 | 100.00 | 104.06 ± 0.39 | 104.06 | 0.38 |
2 | 400.00 | 419.89 ± 5.50 | 104.97 | 1.31 |
3 | 700.00 | 719.06 ± 35.75 | 102.72 | 4.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, T.; Shang, K.; Wang, X.; Qi, X.; Liu, R.; Wang, X. Integration of Glutamate Dehydrogenase and Nanoporous Gold for Electrochemical Detection of Glutamate. Biosensors 2023, 13, 1023. https://doi.org/10.3390/bios13121023
Cai T, Shang K, Wang X, Qi X, Liu R, Wang X. Integration of Glutamate Dehydrogenase and Nanoporous Gold for Electrochemical Detection of Glutamate. Biosensors. 2023; 13(12):1023. https://doi.org/10.3390/bios13121023
Chicago/Turabian StyleCai, Ting, Keshuai Shang, Xiaolei Wang, Xiaoyan Qi, Ruijun Liu, and Xia Wang. 2023. "Integration of Glutamate Dehydrogenase and Nanoporous Gold for Electrochemical Detection of Glutamate" Biosensors 13, no. 12: 1023. https://doi.org/10.3390/bios13121023
APA StyleCai, T., Shang, K., Wang, X., Qi, X., Liu, R., & Wang, X. (2023). Integration of Glutamate Dehydrogenase and Nanoporous Gold for Electrochemical Detection of Glutamate. Biosensors, 13(12), 1023. https://doi.org/10.3390/bios13121023