Gold Nanorod Density-Dependent Label-Free Bacteria Sensing on a Flake-like 3D Graphene-Based Device by SERS
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Flake-like Graphene and Hydrophobic AuNR Synthesis
2.2. Bacteria Culture
2.3. Device Fabrication and Raman Measurements
2.4. Characterization of the 3D Flake-like Graphene and Hydrophobic AuNRs
3. Results and Discussion
3.1. Measurement of Bacterial SERS Enhancement on Different Densities of AuNRs
3.2. Mechanisms of SERS Enhancement with Bacteria and the Differentiation of Bacteria
3.3. Differentiation of Bacteria and Concentration-Based Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Baker, M.J.; Hussain, S.R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R.A.; Thiéfin, G.; Sockalingum, G.D. Developing and Understanding Biofluid Vibrational Spectroscopy: A Critical Review. Chem. Soc. Rev. 2016, 45, 1803–1818. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X. Plasmon Resonance Enhanced Multicolour Photodetection by Graphene. Nat. Commun. 2011, 2, 579. [Google Scholar] [CrossRef]
- Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M.S.; Zhang, J.; Liu, Z. Can Graphene Be Used as a Substrate for Raman Enhancement? Nano Lett. 2010, 10, 553–561. [Google Scholar] [CrossRef]
- Ling, X.; Moura, L.G.; Pimenta, M.A.; Zhang, J. Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering. J. Phys. Chem. C 2012, 116, 25112–25118. [Google Scholar] [CrossRef]
- Xu, W.; Mao, N.; Zhang, J. Graphene: A Platform for Surface-Enhanced Raman Spectroscopy. Small 2013, 9, 1206–1224. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.-I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, Applications, and the Future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Leem, J.; Kang, H.W.; Ko, S.H.; Sung, H.J. Controllable Ag Nanostructure Patterning in a Microfluidic Channel for Real-Time SERS Systems. Nanoscale 2014, 6, 2895–2901. [Google Scholar] [CrossRef]
- Kong, X.; Chen, Q.; Sun, Z. Enhanced SERS of the Complex Substrate Using Au Supported on Graphene with Pyridine and R6G as the Probe Molecules. Chem. Phys. Lett. 2013, 564, 54–59. [Google Scholar] [CrossRef]
- Wang, P.; Liang, O.; Zhang, W.; Schroeder, T.; Xie, Y.-H. Ultra-Sensitive Graphene-Plasmonic Hybrid Platform for Label-Free Detection. Adv. Mater. 2013, 25, 4918–4924. [Google Scholar] [CrossRef]
- Park, J.-U.; Nam, S.; Lee, M.-S.; Lieber, C.M. Synthesis of Monolithic Graphene—Graphite Integrated Electronics. Nat. Mater. 2012, 11, 120–125. [Google Scholar] [CrossRef]
- Choi, J.; Kim, H.J.; Wang, M.C.; Leem, J.; King, W.P.; Nam, S. Three-Dimensional Integration of Graphene via Swelling, Shrinking, and Adaptation. Nano Lett. 2015, 15, 4525–4531. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.T.; Park, I.; Heiranian, M.; Taqieddin, A.; You, S.; Faramarzi, V.; Pak, A.A.; van der Zande, A.M.; Aluru, N.R.; Bashir, R. Ultrasensitive Detection of Dopamine, IL-6 and SARS-CoV-2 Proteins on Crumpled Graphene FET Biosensor. Adv. Mater. Technol. 2021, 6, 2100712. [Google Scholar] [CrossRef]
- Nam, S.; Choi, I.; Fu, C.; Kim, K.; Hong, S.; Choi, Y.; Zettl, A.; Lee, L.P. Graphene Nanopore with a Self-Integrated Optical Antenna. Nano Lett. 2014, 14, 5584–5589. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Zhang, J.; Li, J.; Zhang, X.; Wang, M.; Wang, N.; Zhu, Y. Three-Dimensional AgNPs-Graphene-AgNPs Sandwiched Hybrid Nanostructures with Sub-Nanometer Gaps for Ultrasensitive Surface-Enhanced Raman Spectroscopy. Carbon 2019, 147, 105–111. [Google Scholar] [CrossRef]
- Kang, P.; Kim, K.-H.; Park, H.-G.; Nam, S. Crumple Nanostructured Graphene for Mechanically Reconfigurable Plasmonic Resonances. In Frontiers in Optics/Laser Science; Optica Publishing Group: Washington, DC, USA, 2018; p. JW3A.44. [Google Scholar]
- Srichan, C.; Ekpanyapong, M.; Horprathum, M.; Eiamchai, P.; Nuntawong, N.; Phokharatkul, D.; Danvirutai, P.; Bohez, E.; Wisitsoraat, A.; Tuantranont, A. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-Based Chemical Sensor Using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS Substrate. Sci. Rep. 2016, 6, 23733. [Google Scholar] [CrossRef]
- Bubnova, O. Plasmonics: Graphene Crumpling. Nat. Nanotechnol. 2015. [Google Scholar] [CrossRef]
- Leem, J.; Wang, M.C.; Kang, P.; Nam, S. Mechanically Self-Assembled, Three-Dimensional Graphene-Gold Hybrid Nanostructures for Advanced Nanoplasmonic Sensors. Nano Lett. 2015, 15, 7684–7690. [Google Scholar] [CrossRef]
- Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M.S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J. Surface Enhanced Raman Spectroscopy on a Flat Graphene Surface. Proc. Natl. Acad. Sci. USA 2012, 109, 9281–9286. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Li, H.; Liusman, C.; Yin, Z.; Wu, S.; Zhang, H. Surface Enhanced Raman Scattering of Ag or Au Nanoparticle-Decorated Reduced Graphene Oxide for Detection of Aromatic Molecules. Chem. Sci. 2011, 2, 1817–1821. [Google Scholar] [CrossRef]
- Losurdo, M.; Bergmair, I.; Dastmalchi, B.; Kim, T.-H.; Giangregroio, M.M.; Jiao, W.; Bianco, G.V.; Brown, A.S.; Hingerl, K.; Bruno, G. Graphene as an Electron Shuttle for Silver Deoxidation: Removing a Key Barrier to Plasmonics and Metamaterials for SERS in the Visible. Adv. Funct. Mater. 2014, 24, 1864–1878. [Google Scholar] [CrossRef]
- Rodrigo, D.; Limaj, O.; Janner, D.; Etezadi, D.; García de Abajo, F.J.; Pruneri, V.; Altug, H. Mid-Infrared Plasmonic Biosensing with Graphene. Science 2015, 349, 165–168. [Google Scholar] [CrossRef]
- Chen, Y.; Michael, Z.P.; Kotchey, G.P.; Zhao, Y.; Star, A. Electronic Detection of Bacteria Using Holey Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2014, 6, 3805–3810. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, N.; Berry, V. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett. 2008, 8, 4469–4476. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; et al. Destructive Extraction of Phospholipids from Escherichia coli Membranes by Graphene Nanosheets. Nat. Nanotechnol. 2013, 8, 594–601. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Zhang, L.-H.; Yun, K.; Kim, S.J. Antibacterial Efficiency of Graphene Nanosheets against Pathogenic Bacteria via Lipid Peroxidation. J. Phys. Chem. C 2012, 116, 17280–17287. [Google Scholar] [CrossRef]
- He, Y.; Lu, G.; Shen, H.; Cheng, Y.; Gong, Q. Strongly Enhanced Raman Scattering of Graphene by a Single Gold Nanorod. Appl. Phys. Lett. 2015, 107, 053104. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.; Romero-Gonzalez, M.; Banwart, S.A.; Huang, W.E. Single Cell Raman Spectroscopy for Cell Sorting and Imaging. Curr. Opin. Biotechnol. 2012, 23, 56–63. [Google Scholar] [CrossRef]
- Nolan, J.P.; Duggan, E.; Liu, E.; Condello, D.; Dave, I.; Stoner, S.A. Single Cell Analysis Using Surface Enhanced Raman Scattering (SERS) Tags. Methods 2012, 57, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.S.; Kim, B.J.; Kim, K.-W.; Nasir, T.; Park, J.; Yun, K.; Hembram, K.P.S.S.; Papaefthymiou, G.C.; Choi, J.-Y.; Yi, D.K. A New Device Concept for Bacterial Sensing by Raman Spectroscopy and Voltage-Gated Monolayer Graphene. Nanoscale 2019, 11, 8528–8537. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Zhao, Y.; Wang, M.; Xu, Z.; Zhu, L.; Xu, L.; Wang, Q. Advances in metal-organic framework-plasmonic metal composites based SERS platforms: Engineering strategies in chemical sensing, practical applications and future perspectives in food safety. Chem. Eng. J. 2023, 459, 141539. [Google Scholar] [CrossRef]
- Tsao, C.-W.; Zheng, Y.-S.; Sun, Y.-S.; Cheng, Y.-C. Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticle-decorated porous silicon substrate. Analyst 2021, 146, 7645–7652. [Google Scholar] [CrossRef]
- Giovannini, G.; Garoli, D.; Rupper, P.; Neels, A.; Rossi, R.M.; Boesel, L.F. Metal-Modified Montmorillonite as Plasmonic Microstructure for Direct Protein Detection. Sensors 2021, 21, 2655. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Tian, D.; Li, B.; Shao, L.; Lou, Z. Assembly of gold nanorods functionalized by zirconium-based metal—Organic frameworks for surface enhanced Raman scattering. Nanoscale 2022, 14, 5561–5568. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, J.; Song, L.; Zhang, L.; Chen, Z.; Li, J.; Xiao, Z.; Su, F.; Huang, Y. Etched-spiky Au@Ag plasmonic-superstructure monolayer films for triple amplification of surface-enhanced Raman scattering signals. Nanoscale Horiz. 2022, 7, 554–561. [Google Scholar] [CrossRef]
- Brauchle, E.; Thude, S.; Brucker, S.Y.; Schenke-Layland, K. Cell Death Stages in Single Apoptotic and Necrotic Cells Monitored by Raman Microspectroscopy. Sci. Rep. 2014, 4, 4698. [Google Scholar] [CrossRef]
- Nasir, T.; Kim, B.J.; Lee, S.H.; Jeong, B.J.; Cho, S.; Lee, B.; Yoon, S.O.; Jang, H.E.; Yu, H.K.; Choi, J.-Y. Wafer-Scale Growth of 3D Graphene on SiO2 by Remote Metal Catalyst-Assisted MOCVD and Its Application as a NO2 Gas Sensor. Cryst. Growth Des. 2022, 22, 4192–4202. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, T.; Nanda, S.S.; Yi, D.K.; Lee, E.-C. Plasmonic Organic Bulk-Heterojunction Solar Cells Based on Hydrophobic Gold Nanorod Insertion into Active Layers. J. Appl. Polym. Sci. 2018, 135, 45920. [Google Scholar] [CrossRef]
- Begot, C.; Desnier, I.; Daudin, J.D.; Labadie, J.C.; Lebert, A. Recommendations for Calculating Growth Parameters by Optical Density Measurements. J. Microbiol. Methods 1996, 25, 225–232. [Google Scholar] [CrossRef]
- Lin, K.-Q.; Yi, J.; Hu, S.; Liu, B.-J.; Liu, J.-Y.; Wang, X.; Ren, B. Size Effect on SERS of Gold Nanorods Demonstrated via Single Nanoparticle Spectroscopy. J. Phys. Chem. C 2016, 120, 20806–20813. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, D.; Jang, B.C.; Kim, D.J.; Park, H.; Jung, D.Y.; Hong, W.; Kim, T.K.; Choi, Y.K.; Choi, S.Y. Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling. Adv. Funct. Mater. 2016, 26, 5093–5101. [Google Scholar] [CrossRef]
- Huang, C.; Kim, M.; Wong, B.M.; Safron, N.S.; Arnold, M.S.; Gopalan, P. Raman Enhancement of a Dipolar Molecule on Graphene. J. Phys. Chem. C 2014, 118, 2077–2084. [Google Scholar] [CrossRef]
- Nanda, S.S.; Kaushal, S.; Shin, Y.; Yun, K.; An, S.S.A.; Hembram, K.P.S.S.; Papaefthymiou, G.C.; Yi, D.K. Cancer Cell Detection on the Surface of Top-Gated Monolayer Graphene via Raman Spectroscopy. ACS Appl. Bio Mater. 2021, 4, 1493–1498. [Google Scholar] [CrossRef]
- Yi, N.; Zhang, C.; Song, Q.; Xiao, S. A Hybrid System with Highly Enhanced Graphene SERS for Rapid and Tag-Free Tumor Cells Detection. Sci. Rep. 2016, 6, 25134. [Google Scholar] [CrossRef]
- van der Zande, B.M.I.; Böhmer, M.R.; Fokkink, L.G.J.; Schönenberger, C. Colloidal Dispersions of Gold Rods: Synthesis and Optical Properties. Langmuir 2000, 16, 451–458. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, J.; Zhang, Y.; Martinez, A.; Wang, S.; He, S.; White, T.J.; Smalyukh, I.I. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals. Phys. Rev. E 2014, 89, 052505. [Google Scholar]
- Elias, D.C.; Nair, R.R.; Mohiuddin, T.M.G.; Morozov, S.V.; Blake, P.; Halsall, M.P.; Ferrari, A.C.; Boukhvalov, D.W.; Katsnelson, M.I.; Geim, A.K.; et al. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science 2009, 323, 610–613. [Google Scholar] [CrossRef]
- Ranjan, P.; Tulika; Laha, R.; Balakrishnan, J. Au Concentration-Dependent Quenching of Raman 2D Peak in Graphene. J. Raman Spectrosc. 2017, 48, 586–591. [Google Scholar] [CrossRef]
- Bonifacio, A.; Sergo, V. Effects of Sample Orientation in Raman Microspectroscopy of Collagen Fibers and Their Impact on the Interpretation of the Amide III Band. Vib. Spectrosc. 2010, 53, 314–317. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; ur Rehman, G.; Basavarajappa, S.; Al Khuraif, A.A.; Durgesh, B.H.; Khan, A.S.; ur Rehman, I. Applications of Raman Spectroscopy in Dentistry: Analysis of Tooth Structure. Appl. Spectrosc. Rev. 2015, 50, 332–350. [Google Scholar] [CrossRef]
- Harden, V.P.; Harris, J.O. The Isoelectric Point of Bacterial Cells. J. Bacteriol. 1953, 65, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Delgado, C.; Torres-Torres, D.; Trejo-Valdez, M.; Rebollo, N.R.; Hernández-Gómez, L.H.; Torres-Torres, C. Bidirectional optical Kerr transmittance in a bilayer nanocomposite with Au nanoparticles and carbon nanotubes. Phys. Scr. 2015, 90, 8. [Google Scholar] [CrossRef]
- Al-Jumaili, A.; Zafar, M.A.; Bazaka, K.; Weerasinghe, J.; Jacob, M.V. Bactericidal Vertically Aligned Graphene Networks Derived from Renewable Precursor. Carbon. Trends 2022, 7, 100157. [Google Scholar] [CrossRef]
- Nanda, S.S.; Kim, M.J.; Yeom, K.S.; An, S.S.A.; Ju, H.; Yi, D.K. Raman Spectrum of Graphene with Its Versatile Future Perspectives. TrAC-Trends Anal. Chem. 2016, 80, 125–131. [Google Scholar] [CrossRef]
- Das, G.M.; Managò, S.; Mangini, M.; De Luca, A.C. Biosensing Using SERS Active Gold Nanostructures. Nanomaterials 2021, 11, 2679. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.I.; Nanda, S.S.; Cho, S.; Lee, B.; Kim, B.J.; Choi, J.-Y.; Yi, D.K. Gold Nanorod Density-Dependent Label-Free Bacteria Sensing on a Flake-like 3D Graphene-Based Device by SERS. Biosensors 2023, 13, 962. https://doi.org/10.3390/bios13110962
Hossain MI, Nanda SS, Cho S, Lee B, Kim BJ, Choi J-Y, Yi DK. Gold Nanorod Density-Dependent Label-Free Bacteria Sensing on a Flake-like 3D Graphene-Based Device by SERS. Biosensors. 2023; 13(11):962. https://doi.org/10.3390/bios13110962
Chicago/Turabian StyleHossain, Md Imran, Sitansu Sekhar Nanda, Sooheon Cho, Bom Lee, Bum Jun Kim, Jae-Young Choi, and Dong Kee Yi. 2023. "Gold Nanorod Density-Dependent Label-Free Bacteria Sensing on a Flake-like 3D Graphene-Based Device by SERS" Biosensors 13, no. 11: 962. https://doi.org/10.3390/bios13110962
APA StyleHossain, M. I., Nanda, S. S., Cho, S., Lee, B., Kim, B. J., Choi, J. -Y., & Yi, D. K. (2023). Gold Nanorod Density-Dependent Label-Free Bacteria Sensing on a Flake-like 3D Graphene-Based Device by SERS. Biosensors, 13(11), 962. https://doi.org/10.3390/bios13110962