Tapered Fiber Bioprobe Based on U-Shaped Fiber Transmission for Immunoassay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Working Principle
2.3. Surface Functionalization
- (1)
- Growing hydroxyl groups (-OH). First, the sensor surface was thoroughly cleaned with deionized water, then it was immersed in piranha solution 1 h for growing -OH, and finally cleaned with deionized water again and dried in air.
- (2)
- Silanization treatment. The proposed sensor was immersed in 10% (v/v) APTES ethanol solution 3 h for silanization treatment and subsequently washed with ethanol and dried.
- (3)
- Activating the aldehyde group (-CHO). The proposed sensor was immersed in 10% (v/v) glutaraldehyde solution 1 h for -CHO activation and subsequently washed with PBS buffer.
- (4)
- Growing antibodies. The proposed sensor was immersed in antihuman IgG solution at a concentration of 50 μg/mL 90 min for growing antibodies, and then unbound antibodies were washed with PBS buffer [28].
- (5)
- Surface blocking. To prevent nonspecific binding of other substances, the proposed sensor was immersed in 1% (w/v) BSA solution (in PBS buffer) 1 h to block unoccupied surface-binding sites, then washed with PBS buffer.
2.4. Measurement System
3. Results and Discussion
3.1. Sensing Performance of the Tapered Fiber Bioprobe
3.2. Immunoassay Performed with the Tapered Fiber Bioprobe
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lequin, R.M. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef]
- Aoyagi, K.; Ohue, C.; Iida, K.; Kimura, T.; Tanaka, E.; Kiyosawa, K.; Yagi, S. Development of a Simple and Highly Sensitive Enzyme Immunoassay for Hepatitis C Virus Core Antigen. J. Clin. Microbiol. 1999, 37, 1802–1808. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, L.; Chu, X. Chemiluminescence Immunoassay. TrAC Trends Anal. Chem. 2009, 28, 404–415. [Google Scholar] [CrossRef]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Xiang, S.; Hu, H.; Zhan, Y.; Yu, Y.; Zhang, J.; Wu, P.; Liu, F.Y.; Kai, T.; et al. Recent Advances in Immunoassay Technologies for the Detection of Human Coronavirus Infections. Front. Cell. Infect. Microbiol. 2023, 12, 1040248. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Optical Biosensors: An Exhaustive and Comprehensive Review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef] [PubMed]
- Algaar, F.; Eltzov, E.; Vdovenko, M.M.; Sakharov, I.Y.; Fajs, L.; Weidmann, M.; Mirazimi, A.; Marks, R.S. Fiber-Optic Immunosensor for Detection of Crimean-Congo Hemorrhagic Fever IgG Antibodies in Patients. Anal. Chem. 2015, 87, 8394–8398. [Google Scholar] [CrossRef] [PubMed]
- Rivero, D.S.; Urrutia, A.; Ruiz-Zamarreno, C.; Villar, I.D. Advances in Fiber Optic DNA-Based Sensors: A Review. IEEE Sens. J. 2021, 21, 12679–12691. [Google Scholar] [CrossRef]
- Sun, D.; Ran, Y.; Wang, G. Label-Free Detection of Cancer Biomarkers Using an In-Line Taper Fiber-Optic Interferometer and a Fiber Bragg Grating. Sensors 2017, 17, 2559. [Google Scholar] [CrossRef] [PubMed]
- Mustapha Kamil, Y.; Abu Bakar, M.H.; Mustapa, M.A.; Yaacob, M.H.; Abidin, N.H.Z.; Syahir, A.; Lee, H.J.; Mahdi, M.A. Label-Free Dengue E Protein Detection Using a Functionalized Tapered Optical Fiber Sensor. Sens. Actuators B Chem. 2018, 257, 820–828. [Google Scholar] [CrossRef]
- Halkare, P.; Punjabi, N.; Wangchuk, J.; Nair, A.; Kondabagil, K.; Mukherji, S. Bacteria Functionalized Gold Nanoparticle Matrix Based Fiber-Optic Sensor for Monitoring Heavy Metal Pollution in Water. Sens. Actuators B Chem. 2019, 281, 643–651. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Z.; Zhang, Y.; Li, S.; Zhang, Y.; Yang, X.; Zhang, J.; Yuan, L. Specialty Optical Fibers and 2D Materials for Sensitivity Enhancement of Fiber Optic SPR Sensors: A Review. Opt. Laser Technol. 2022, 152, 108167. [Google Scholar] [CrossRef]
- Camara, A.R.; Gouvêa, P.M.P.; Dias, A.C.M.S.; Braga, A.M.B.; Dutra, R.F.; De Araujo, R.E.; Carvalho, I.C.S. Dengue Immunoassay with an LSPR Fiber Optic Sensor. Opt. Express 2013, 21, 27023. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, C.; Sun, Z.; Mao, H.; Zhang, L.; Yu, X.; Zhao, J.; Chen, X. Black Phosphorus Based Fiber Optic Biosensor for Ultrasensitive Cancer Diagnosis. Biosens. Bioelectron. 2019, 137, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Hua, P.; Ding, Z.; Liu, K.; Guo, H.; Pan, M.; Zhang, T.; Li, S.; Jiang, J.; Liu, T. Distributed Optical Fiber Biosensor Based on Optical Frequency Domain Reflectometry. Biosens. Bioelectron. 2023, 228, 115184. [Google Scholar] [CrossRef]
- Li, X.; Chen, N.; Zhou, X.; Gong, P.; Wang, S.; Zhang, Y.; Zhao, Y. A Review of Specialty Fiber Biosensors Based on Interferometer Configuration. J. Biophotonics 2021, 14, e202100068. [Google Scholar] [CrossRef]
- Li, X.; Chen, N.; Zhou, X.; Zhang, Y.; Zhao, Y.; Nguyen, L.V.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. In-Situ DNA Detection with an Interferometric-Type Optical Sensor Based on Tapered Exposed Core Microstructured Optical Fiber. Sens. Actuators B Chem. 2022, 351, 130942. [Google Scholar] [CrossRef]
- Wen, H.-Y.; Huang, C.-W.; Li, Y.-L.; Chen, J.-L.; Yeh, Y.-T.; Chiang, C.-C. A Lamping U-Shaped Fiber Biosensor Detector for MicroRNA. Sensors 2020, 20, 1509. [Google Scholar] [CrossRef]
- Wang, L.; Yi, D.; Geng, Y.; Duan, T.; Tong, Z.; Chen, S.; Ning, Z.; Du, Y.; Hong, X.; Li, X. Ultrasensitive Deafness Gene DNA Hybridization Detection Employing a Fiber Optic Mach-Zehnder Interferometer: Enabled by a Black Phosphorus Nanointerface. Biosens. Bioelectron. 2023, 222, 114952. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Y.; Guo, J.; Liu, W.; Liu, L.; Meng, Y.; Yu, X. Temperature-Insensitive Label-Free Sensors for Human IgG Based on S-Tapered Optical Fiber Sensors. IEEE Access 2021, 9, 116286–116293. [Google Scholar] [CrossRef]
- Luo, W.; Liu, B.; Liu, J.; Wu, T.; Liu, Q.; Wang, M.-Y.; Wan, S.-P.; Yuan, J.; Lu, P.; Wang, D.; et al. Tapered Side-Polished Microfibre Sensor for High Sensitivity HCG Detection. IEEE Sens. J. 2022, 22, 7727–7733. [Google Scholar] [CrossRef]
- Qiu, S.; Leng, Y.; Yuan, J.; Zhang, Z.; Zhou, X.; Liu, B.; Mei, C.; Yan, B.; Wang, K.; Sang, X.; et al. Ultrahigh-Sensitivity Label-Free Single Mode-Tapered Multimode-Single Mode Fiber U-Shaped Biosensor for Staphylococcus Aureus Detection. Sens. Actuators B Chem. 2023, 375, 132927. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, Y.; Hu, S. Low-Cost High-Performance Temperature Sensor Based on Unsymmetrical U-Shaped Microfiber. Opt. Fiber Technol. 2021, 65, 102597. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Kishor, K.; Sharma, A.C. Tapered Optical Fiber Geometries and Sensing Applications Based on Mach-Zehnder Interferometer: A Review. Opt. Fiber Technol. 2020, 58, 102302. [Google Scholar] [CrossRef]
- Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered Fiber Mach-Zehnder Interferometer for Simultaneous Measurement of Refractive Index and Temperature. Appl. Phys. Lett. 2009, 94, 131110. [Google Scholar] [CrossRef]
- Lacroix, S.; Gonthier, F.; Black, R.J.; Bures, J. Tapered-Fiber Interferometric Wavelength Response: The Achromatic Fringe. Opt. Lett. 1988, 13, 395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, M.; Wang, X.; Tong, Z.; Dong, M.; Yan, G. Temperature Insensitive Salinity Sensor with U-Shaped Structure Based on Few-Mode Fiber. Opt. Fiber Technol. 2023, 76, 103218. [Google Scholar] [CrossRef]
- Dai, S.; Li, X.; Chen, Y.; Zhang, J.; Hong, X. Highly Reproducible Fiber Optic Surface Plasmon Resonance Biosensors Modified by CS2 for Disposable Immunoassays. Sens. Actuators B Chem. 2023, 374, 132801. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Yi, D.; Hong, X.; Chen, Y. Plasmonic Tapered-Fiber Interference Sensor for Simultaneously Detecting Refractive Index and Temperature. Opt. Lett. 2021, 46, 6071. [Google Scholar] [CrossRef]
- Tan, A.J.Y.; Ng, S.M.; Stoddart, P.R.; Chua, H.S. Trends and Applications of U-Shaped Fiber Optic Sensors: A Review. IEEE Sens. J. 2021, 21, 120–131. [Google Scholar] [CrossRef]
- Liu, C.; Cai, Q.; Xu, B.; Zhu, W.; Zhang, L.; Zhao, J.; Chen, X. Graphene Oxide Functionalized Long Period Grating for Ultrasensitive Label-Free Immunosensing. Biosens. Bioelectron. 2017, 94, 200–206. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Gouveia, C.; Jorge, P.; Baldini, F. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors. Biosensors 2017, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, Y.; Xu, G.; Rao, X.; Zhang, J.; Wu, X.; Liao, C.; Wang, Y. Compact Surface Plasmon Resonance IgG Sensor Based on H-Shaped Optical Fiber. Biosensors 2022, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Cardona-Maya, Y.; Socorro, A.B.; Del Villar, I.; Cruz, J.L.; Corres, J.M.; Botero-Cadavid, J.F. Label-Free Wavelength and Phase Detection Based SMS Fiber Immunosensors Optimized with Cladding Etching. Sens. Actuators B Chem. 2018, 265, 10–19. [Google Scholar] [CrossRef]
- Wang, Q.; Song, H.; Zhu, A.; Qiu, F. A Label-Free and Anti-Interference Dual-Channel SPR Fiber Optic Sensor with Self-Compensation for Biomarker Detection. IEEE Trans. Instrum. Meas. 2021, 70, 7002007. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, S.; Zou, T.; Yan, W.; Zhou, M.; Liu, B.; Rao, X.; Wang, Y.; Sun, Z.; Wang, Y. All Fiber-Optic Immunosensors Based on Elliptical Core Helical Intermediate-Period Fiber Grating with Low-Sensitivity to Environmental Disturbances. Biosensors 2022, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Wang, B.; Qiao, M.; Zhang, X.; Liu, B.; Zhang, H.; Song, B.; Wu, J. Hydrophobin HGFI-Based Fibre-Optic Biosensor for Detection of Antigen-Antibody Interaction. Nanophotonics 2020, 9, 177–186. [Google Scholar] [CrossRef]
Sensor Type | Detection Range | LOD | Expense | Practicality | Reference |
---|---|---|---|---|---|
Fiber optic SPR | 10–100 μg/mL | 3.4 μg/mL | High | Sample-injection | [33] |
Etched SMS fiber | 4 mg/L–200 mg/L | 0.2 mg/L | Moderate | Sample-injection | [34] |
Fiber optic SPR | 0–80 μg/mL | 0.104 μg/mL | High | Insert-probe | [35] |
Elliptical core helical Intermediate period Fiber grating | 0–100 μg/mL | 4.7 μg/mL | High | Sample-injection | [36] |
S-tapered fiber | -- | 1 μg/mL | Low | Sample-injection | [37] |
Tapered fiber bioprobe | 0–200 μg/mL | 45 ng/mL | Low | Insert-probe | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xiao, L.; Li, X.; Yi, D.; Zhang, J.; Yuan, H.; Ning, Z.; Hong, X.; Chen, Y. Tapered Fiber Bioprobe Based on U-Shaped Fiber Transmission for Immunoassay. Biosensors 2023, 13, 940. https://doi.org/10.3390/bios13100940
Chen X, Xiao L, Li X, Yi D, Zhang J, Yuan H, Ning Z, Hong X, Chen Y. Tapered Fiber Bioprobe Based on U-Shaped Fiber Transmission for Immunoassay. Biosensors. 2023; 13(10):940. https://doi.org/10.3390/bios13100940
Chicago/Turabian StyleChen, Xinghong, Lei Xiao, Xuejin Li, Duo Yi, Jinghan Zhang, Hao Yuan, Zhiyao Ning, Xueming Hong, and Yuzhi Chen. 2023. "Tapered Fiber Bioprobe Based on U-Shaped Fiber Transmission for Immunoassay" Biosensors 13, no. 10: 940. https://doi.org/10.3390/bios13100940
APA StyleChen, X., Xiao, L., Li, X., Yi, D., Zhang, J., Yuan, H., Ning, Z., Hong, X., & Chen, Y. (2023). Tapered Fiber Bioprobe Based on U-Shaped Fiber Transmission for Immunoassay. Biosensors, 13(10), 940. https://doi.org/10.3390/bios13100940