Development of an Electrochemical Sensor for SARS-CoV-2 Detection Based on Loop-Mediated Isothermal Amplification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Methods
2.2.1. Clinical Samples and Spiked Samples
2.2.2. RT-PCR Reaction
2.2.3. Design of Primer Sets and Experimental Optimization
2.2.4. Clinical Sample Preparation and RNA Extraction
2.2.5. Electrochemical RT-LAMP Reaction and Measurements
3. Results
3.1. Optimisation of RT-LAMP Reaction
3.2. Off-Chip Electrochemical Measurements
3.3. Clinical Sample Pre-Treatment Assays
3.4. Sensor Design and Fabrication
3.5. On-Chip Measurements
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/europe/emergencies/situations/covid-19 (accessed on 5 July 2022).
- Song, Q.; Sun, X.; Dai, Z.; Gao, Y.; Gong, X.; Zhou, B.; Wu, J.; Wen, W. Point-of-Care Testing Detection Methods for COVID-19. Lab Chip 2021, 21, 1634–1660. [Google Scholar] [CrossRef]
- Roque, M.; Proudfoot, K.; Mathys, V.; Yu, S.; Krieger, N.; Gernon, T.; Gokli, K.; Hamilton, S.; Cook, C.; Fong, Y. A Review of Nasopharyngeal Swab and Saliva Tests for SARS-CoV-2 Infection: Disease Timelines, Relative Sensitivities, and Test Optimization. J. Surg. Oncol. 2021, 124, 465–475. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Fohlerova, Z.; Chang, H.; Iliescu, C.; Neuzil, P. LAMP-on-a-Chip: Revising Microfluidic Platforms for Loop-Mediated DNA Amplification. TrAC—Trends Anal. Chem. 2019, 113, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.J.; Lu, J.F.; Su, X.R.; Jin, J.L.; Li, S.Y.; Zhou, Y.; Wang, L.; Shao, X.B.; Wang, Y.H.; Yan, M.C.; et al. Simultaneous Detection of Multiple Bacterial and Viral Aquatic Pathogens Using a Fluorogenic Loop-Mediated Isothermal Amplification-Based Dual-Sample Microfluidic Chip. J. Fish Dis. 2020, 44, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Kitao, M.; Tomita, N.; Notomi, T. Real-Time Turbidimetry of LAMP Reaction for Quantifying Template DNA. J. Biochem. Biophys. Methods 2004, 59, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Nawattanapaiboon, K.; Pasomsub, E.; Prombun, P.; Wongbunmak, A.; Jenjitwanich, A.; Mahasupachai, P.; Vetcho, P.; Chayrach, C.; Manatjaroenlap, N.; Samphaongern, C.; et al. Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) as a Visual Diagnostic Platform for Detection of the Emerging Coronavirus SARS-CoV-2. R. Soc. Chem. 2020, 146, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Wu, X.; Wan, Z.; Li, Y.; Jin, X.; Zhang, C. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of Sars-Cov-2. Int. J. Mol. Sci. 2020, 21, 2826. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.E.; Lim, B.; Hsu, C.C.; Xiong, D.; Wu, W.; Yu, Y.; Jia, H.; Wang, Y.; Zeng, Y.; Ji, M.; et al. RT-LAMP for Rapid Diagnosis of Coronavirus SARS-CoV-2. Microb. Biotechnol. 2020, 13, 950–961. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Coelho, B.; Sanchuki, H.B.S.; Zanette, D.L.; Nardin, J.M.; Morales, H.M.P.; Fornazari, B.; Aoki, M.N.; Blanes, L. Essential Properties and Pitfalls of Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification as a Point-of-Care Test for SARS-CoV-2 Diagnosis. Mol. Med. 2021, 27, 30. [Google Scholar] [CrossRef] [PubMed]
- Baba, M.M.; Bitew, M.; Fokam, J.; Lelo, E.A.; Ahidjo, A.; Asmamaw, K.; Beloumou, G.A.; Bulimo, W.D.; Buratti, E.; Chenwi, C.; et al. Diagnostic Performance of a Colorimetric RT -LAMP for the Identification of SARS-CoV-2: A Multicenter Prospective Clinical Evaluation in Sub-Saharan Africa. EClinicalMedicine 2021, 40, 101101. [Google Scholar] [CrossRef] [PubMed]
- Chukwudi, I.C.; Ogbu, K.I.; Luka, P.D.; Malesa, R.P.; Heath, L.E.; Ugochukwu, E.I.; Chah, K.F. Comparison of Colorimetric Loop-Mediated Isothermal Amplification Kit and Reverse Transcription-Polymerase Chain Reaction in the Diagnosis of Peste Des Petits Ruminants in Sheep and Goats in Southeast Nigeria. Vet. World 2020, 13, 2358–2363. [Google Scholar] [CrossRef] [PubMed]
- Odiwuor, N.; Xiong, J.; Ogolla, F.; Hong, W.; Li, X.; Khan, F.M.; Wang, N.; Yu, J.; Wei, H. A Point-of-Care SARS-CoV-2 Test Based on Reverse Transcription Loop-Mediated Isothermal Amplification without RNA Extraction with Diagnostic Performance Same as RT-PCR. Anal. Chim. Acta 2022, 1200, 339590. [Google Scholar] [CrossRef] [PubMed]
- Avetyan, D.; Chavushyan, A.; Ghazaryan, H.; Melkonyan, A.; Stepanyan, A.; Zakharyan, R.; Hayrapetyan, V.; Atshemyan, S.; Khachatryan, G.; Sirunyan, T.; et al. SARS-CoV-2 Detection by Extraction-Free QRT-PCR for Massive and Rapid COVID-19 Diagnosis during a Pandemic in Armenia. J. Virol. Methods 2021, 295, 114199. [Google Scholar] [CrossRef] [PubMed]
- Janíková, M.; Hodosy, J.; Boor, P.; Klempa, B.; Celec, P. Loop-Mediated Isothermal Amplification for the Detection of SARS-CoV-2 in Saliva. Microb. Biotechnol. 2020, 14, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Y.; Gao, Q.; Jiang, C.; Tian, Q.; Ma, C.; Shi, C. Real-Time Monitoring of Isothermal Nucleic Acid Amplification on a Smartphone by Using a Portable Electrochemical Device for Home-Testing of SARS-CoV-2. Anal. Chim. Acta 2022, 1229, 340343. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Alvarez, C.; Lam, Q.; Baldwin, D.A.; Chernoff, J. Low Saliva PH Can Yield False Positives Results in Simple RT-LAMP-Based SARS-CoV-2 Diagnostic Tests. PLoS ONE 2021, 16, e0250202. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Macho, A.; Eletxigerra, U.; Diez-Ahedo, R.; Merino, S.; Sanjuan, A.; Bou-Ali, M.M.; Ruiz-Rubio, L.; del Campo, J.; Vilas-Vilela, J.L.; Goñi-de-Cerio, F.; et al. Design and 3D Printing of an Electrochemical Sensor for Listeria Monocytogenes Detection Based on Loop Mediated Isothermal Amplification. Heliyon 2023, 9, e12637. [Google Scholar] [CrossRef]
- Olabarria, G.; Eletxigerra, U.; Rodriguez, I.; Bilbao, A.; Berganza, J.; Merino, S. Highly Sensitive and Fast Legionella Spp. in Situ Detection Based on a Loop Mediated Isothermal Amplification Technique Combined to an Electrochemical Transduction System. Talanta 2020, 217, 121061. [Google Scholar] [CrossRef]
- Ramírez-Chavarría, R.G.; Castillo-Villanueva, E.; Alvarez-Serna, B.E.; Carrillo-Reyes, J.; Ramírez-Zamora, R.M.; Buitrón, G.; Alvarez-Icaza, L. Loop-Mediated Isothermal Amplification-Based Electrochemical Sensor for Detecting SARS-CoV-2 in Wastewater Samples. J. Environ. Chem. Eng. 2022, 10, 107488. [Google Scholar] [CrossRef] [PubMed]
- Yakoh, A.; Pimpitak, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Paper-Based Electrochemical Biosensor for Diagnosing COVID-19: Detection of SARS-CoV-2 Antibodies and Antigen. Biosens. Bioelectron. 2021, 176, 112912. [Google Scholar] [CrossRef] [PubMed]
- Mahari, S.; Roberts, A.; Shahdeo, D.; Gandhi, S. ECovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of NCovid-19 Antigen, a Spike Protein Domain 1 of SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Kumar, N.; Shetti, N.P.; Jagannath, S.; Aminabhavi, T.M. Electrochemical Sensors for the Detection of SARS-CoV-2 Virus. Chem. Eng. J. 2022, 430, 132966. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.; Patterson, A.S.; Ferguson, B.S.; Plaxco, K.W.; Soh, H.T. Rapid, Sensitive, and Quantitative Detection of Pathogenic DNA at the Point of Care through Microfluidic Electrochemical Quantitative Loop-Mediated Isothermal Amplification. Angew. Chem.-Int. Ed. 2012, 51, 4896–4900. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 Novel Coronavirus (2019-NCoV) by Real-Time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Li, L.; Liu, X.; Chen, Q.; Fang, X.; Kong, J.; Draz, M.S.; Cao, H. Loop-Mediated Isothermal Amplification Technique: Principle, Development and Wide Application in Food Safety. Anal. Methods 2020, 12, 5551–5561. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mu, S. The Electrochemical Polymerization of Methylene Blue and Properties of Polymethylene Blue. Synth. Met. 1999, 107, 159–165. [Google Scholar] [CrossRef]
- Wagler, P.; Scheible, J.; Habekost, A. Methylene Blue—New Chemistry Experiments for University Education. World J. Chem. Educ. 2022, 10, 137–148. [Google Scholar] [CrossRef]
- Eiken Chemical Genome Site Primer Explorer V5. Available online: http://primerexplorer.jp/elamp4.0.0/index.html (accessed on 23 May 2022).
- LAMP Designer 2019, Premier Biosoft. Available online: www.premierbiosoft.com (accessed on 23 May 2022).
- Klymus, K.E.; Merkes, C.M.; Allison, M.J.; Goldberg, C.S.; Helbing, C.C.; Hunter, M.E.; Jackson, C.A.; Lance, R.F.; Mangan, A.M.; Monroe, E.M.; et al. Reporting the Limits of Detection and Quantification for Environmental DNA Assays. Environ. DNA 2020, 2, 271–282. [Google Scholar] [CrossRef]
- Song, J.; El-Tholoth, M.; Li, Y.; Graham-Wooten, J.; Liang, Y.; Li, J.; Li, W.; Weiss, S.R.; Collman, R.G.; Bau, H.H. Single- And Two-Stage, Closed-Tube, Point-of-Care, Molecular Detection of SARS-CoV-2. Anal. Chem. 2021, 93, 13063–13071. [Google Scholar] [CrossRef] [PubMed]
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR-Cas12–Based Detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, Z.; Li, C.; Hao, Y.; Tang, Y.; Al Hartomy, O.A.; Wageh, S.; Al Sehemi, A.G.; Luo, Z.; He, Y.; et al. CRISPR-Cas12a-Empowered Electrochemical Biosensor for Rapid and Ultrasensitive Detection of SARS-CoV-2 Delta Variant. Nano-Micro Lett. 2022, 14, 159. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Lin, C.-W.; Chuang, H.-S. On-Chip Screening of SARS-CoV-2 CDNA by LAMP-Integrated Rotational Diffusometry. Talanta 2024, 267, 125253. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Liu, Y.; Fang, S.; Wu, Q.; Fan, M.; Lin, D.; Lin, J.; Feng, S. Ultrasensitive Detection of SARS-CoV-2 Antigen Using Surface-Enhanced Raman Spectroscopy-Based Lateral Flow Immunosensor. J. Biophotonics 2023, 16, e202300004. [Google Scholar] [CrossRef] [PubMed]
Inclusive and Exclusive Virus | Name |
---|---|
Inclusive: SARS-CoV-2 | SARS-CoV-2 |
Exclusive: Other common respiratory viruses | Coronavirus OC43 |
Enterovirus 68 | |
Rhinovirus | |
MERS coronavirus | |
Coronavirus SARS-2003 | |
Pool of respiratory virus:
|
Viral Copies | ND1-1 | ND3B | S.45 | E.105 | ORF1ab.99 |
---|---|---|---|---|---|
1000 | 10/10 (100%) | 10/10 (100%) | 10/10 (100%) | 10/10 (100%) | 10/10 (100%) |
500 | 10/10 (100%) | 10/10 (100%) | 10/10 (100%) | 10/10 (100%) | 10/10 (100%) |
250 | 10/10 (100%) | 10/10 (100%) | 10/10 (100%) | 10/10 (100%) | 10/10 (100%) |
125 | 10/10 (100%) | 10/10 (100%) | 9/10 (90%) | 9/10 (90%) | 9/10 (90%) |
62 | 9/10 (90%) | 10/10 (100%) | 10/10 (100%) | 5/10 (50%) | 5/10 (50%) |
41 | 8/10 (80%) | 8/10 (80%) | 6/10 (60%) | NT 1 | NT |
31 | 6/10 (60%) | 8/10 (80%) | 6/10 (60%) | 3/10 (30%) | 2/10 (20%) |
16 | 6/10 (60%) | 5/10 (50%) | 4/10 (40%) | NT | NT |
Column-Based | 95 °C 10 min | Extraction-Free | |
---|---|---|---|
RT-LAMP | 100% | 100% | 73% |
Mean TTD | 11.64 | 11.62 | 18.60 |
Sample pre-treatment time | 40 min | 10 min | 0 min |
Method | Extraction-Free | Detection Method | LoD | Disadvantage | Reference |
---|---|---|---|---|---|
LAMP-RPA | Yes | Colourimetric | 5 copies | Two temperatures | [33] |
LAMP-CRISPR-Cas-Lateral-flow | No | Colourimetric | 20 copies | Extraction step Two temperatures | [34] |
CRISPR-Cas | No | Electrochemical | 50 fM | Extraction step Less sensitive | [35] |
LAMP | No | Diffusometry analysis | 20 pg | Extraction step Works with cDNA | [36] |
Lateral-flow immunoassay | Yes | RAMAN | 0.03 ng/mL | Less sensitive | [37] |
LAMP | Yes | Electrochemical | 62 copies | - | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas-Macho, A.; Eletxigerra, U.; Diez-Ahedo, R.; Barros, Á.; Merino, S.; Goñi-de-Cerio, F.; Olabarria, G. Development of an Electrochemical Sensor for SARS-CoV-2 Detection Based on Loop-Mediated Isothermal Amplification. Biosensors 2023, 13, 924. https://doi.org/10.3390/bios13100924
Rivas-Macho A, Eletxigerra U, Diez-Ahedo R, Barros Á, Merino S, Goñi-de-Cerio F, Olabarria G. Development of an Electrochemical Sensor for SARS-CoV-2 Detection Based on Loop-Mediated Isothermal Amplification. Biosensors. 2023; 13(10):924. https://doi.org/10.3390/bios13100924
Chicago/Turabian StyleRivas-Macho, Ane, Unai Eletxigerra, Ruth Diez-Ahedo, Ángela Barros, Santos Merino, Felipe Goñi-de-Cerio, and Garbiñe Olabarria. 2023. "Development of an Electrochemical Sensor for SARS-CoV-2 Detection Based on Loop-Mediated Isothermal Amplification" Biosensors 13, no. 10: 924. https://doi.org/10.3390/bios13100924
APA StyleRivas-Macho, A., Eletxigerra, U., Diez-Ahedo, R., Barros, Á., Merino, S., Goñi-de-Cerio, F., & Olabarria, G. (2023). Development of an Electrochemical Sensor for SARS-CoV-2 Detection Based on Loop-Mediated Isothermal Amplification. Biosensors, 13(10), 924. https://doi.org/10.3390/bios13100924