Simple Isothermal and Label-Free Strategy for Colorectal Cancer Potential Biomarker miR-625-5p Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Transfection
2.2. CCK-8 Assay
2.3. Colony Formation Assay
2.4. Transwell Assay
2.5. Apoptosis Assay
2.6. RT-qPCR
2.7. Western Blot Analysis
2.8. miRNA Detection Reagents
2.9. miRNA Detection Apparatus
2.10. Optimization of the Reaction Conditions
2.11. miR-625-5p Assay
2.12. Assay of miR-625-5p for Biologic Samples
3. Results
3.1. The Discovery of a Novel Potential CRC Biomarker miR-625-5p
3.2. The Principle of miR-625-5p Detection
3.3. Verifying the Feasibility of the miR-625-5p Assay
3.4. Optimization of Reaction Conditions
3.5. The Determination of the Detection Range and Limit
3.6. Selectivity of the miR-625-5p Assay
3.7. Assay of miR-625-5p in Biologic Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Oh, H.H.; Joo, Y.E. Novel biomarkers for the diagnosis and prognosis of colorectal cancer. Intest. Res. 2020, 18, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Geenen, J.E.; Schmitt, M.G., Jr.; Wu, W.C.; Hogan, W.J. Major complications of coloscopy: Bleeding and perforation. Am. J. Dig. Dis. 1975, 20, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Burch, J.A.; Soares-Weiser, K.; St John, D.J.; Duffy, S.; Smith, S.; Kleijnen, J.; Westwood, M. Diagnostic accuracy of faecal occult blood tests used in screening for colorectal cancer: A systematic review. J. Med. Screen. 2007, 14, 132–137. [Google Scholar] [CrossRef] [Green Version]
- García-Bilbao, A.; Armañanzas, R.; Ispizua, Z.; Calvo, B.; Alonso-Varona, A.; Inza, I.; Larrañaga, P.; López-Vivanco, G.; Suárez-Merino, B.; Betanzos, M. Identification of a biomarker panel for colorectal cancer diagnosis. BMC Cancer 2012, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- Nikolouzakis, T.K.; Vassilopoulou, L.; Fragkiadaki, P.; Mariolis Sapsakos, T.; Papadakis, G.Z.; Spandidos, D.A.; Tsatsakis, A.; Tsiaoussis, J. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review). Oncol. Rep. 2018, 39, 2455–2472. [Google Scholar] [CrossRef] [Green Version]
- Precazzini, F.; Detassis, S.; Imperatori, A.S.; Denti, M.A.; Campomenosi, P. Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis. Int. J. Mol. Sci. 2021, 22, 1176. [Google Scholar] [CrossRef]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Mansoori, B.; Baradaran, B. The role of microRNAs in colorectal cancer. Biomed. Pharmacother. 2016, 84, 705–713. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, T.; Zheng, X.; Yang, S.; Xu, K.; Chen, X.; Xu, F.; Wang, L.; Shen, Y.; Wang, T.; et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis 2018, 39, 1368–1379. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balacescu, O.; Sur, D.; Cainap, C.; Visan, S.; Cruceriu, D.; Manzat-Saplacan, R.; Muresan, M.-S.; Balacescu, L.; Lisencu, C.; Irimie, A. The Impact of miRNA in Colorectal Cancer Progression and Its Liver Metastases. Int. J. Mol. Sci. 2018, 19, 3711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.D.; Sun, X.L. Recent advances in the construction of DNA nanostructure with signal amplification and ratiometric response for miRNA sensing and imaging. TrAC Trends Anal. Chem. 2020, 127, 115900. [Google Scholar] [CrossRef]
- Tian, T.; Wang, J.; Zhou, X. A review: MicroRNA detection methods. Org. Biomol. Chem. 2015, 13, 2226–2238. [Google Scholar] [CrossRef] [PubMed]
- Git, A.; Dvinge, H.; Salmon-Divon, M.; Osborne, M.; Kutter, C.; Hadfield, J.; Bertone, P.; Caldas, C. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. Rna 2010, 16, 991–1006. [Google Scholar] [CrossRef] [Green Version]
- Fan, T.; Mao, Y.; Liu, F.; Zhang, W.; Yin, J.; Jiang, Y. Dual signal amplification strategy for specific detection of Circulating microRNAs based on Thioflavin T. Sens. Actuators B Chem. 2017, 249, 1–7. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, F.; Sun, G.; Zhang, S.; Zhang, X. Homogeneous multiplexed digital detection of microRNA with ligation-rolling circle amplification. Chem. Commun. 2020, 56, 5409–5412. [Google Scholar] [CrossRef]
- Chen, A.; Gui, G.F.; Zhuo, Y.; Chai, Y.Q.; Xiang, Y.; Yuan, R. Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection. Anal. Chem. 2015, 87, 6328–6334. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, H.; Fang, Y.; Ma, C.; Chen, J. Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy. Biosensors 2022, 12, 328. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Xu, Z.; Chai, Y.; Wang, H.; Yuan, R. An ultrasensitive electrochemiluminescence biosensor for multiple detection of microRNAs based on a novel dual circuit catalyzed hairpin assembly. Chem. Commun. 2018, 54, 10148–10151. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Tang, L.; Tian, Q.; Wang, Y.; Lin, L.; Li, J. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew. Chem. 2014, 53, 2389–2393. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Xu, J.; Kim, J.; Chun, H. Improving the robustness of a catalyzed hairpin assembly with a three-arm nanostructure for nonenzymatic signal amplification. Analyst 2022, 147, 1899–1905. [Google Scholar] [CrossRef]
- Duan, R.; Zuo, X.; Wang, S.; Quan, X.; Chen, D.; Chen, Z.; Jiang, L.; Fan, C.; Xia, F. Lab in a tube: Ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. J. Am. Chem. Soc. 2013, 135, 4604–4607. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Erwin, B.; Dames, S.; Voelkerding, K.; Niemz, A. Isothermal DNA amplification with gold nanosphere-based visual colorimetric readout for herpes simplex virus detection. Clin. Chem. 2007, 53, 2017–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Chen, Y.; Li, S.; Lin, S.; Jiang, Y. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor. Sensors 2015, 15, 28244–28256. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wu, L.; Wang, A.; Tang, W.; Zhao, Y.; Zhao, H.; Teschendorff, A.E. dbDEMC 2.0: Updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res. 2017, 45, D812–D818. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [Green Version]
- Pantano, F.; Zalfa, F.; Iuliani, M.; Simonetti, S.; Manca, P.; Napolitano, A.; Tiberi, S.; Russano, M.; Citarella, F.; Foderaro, S.; et al. Large-Scale Profiling of Extracellular Vesicles Identified miR-625-5p as a Novel Biomarker of Immunotherapy Response in Advanced Non-Small-Cell Lung Cancer Patients. Cancers 2022, 14, 2435. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, R.; Wang, Q.; Zhang, P.; Li, D.; Wang, Q.; Wang, J.; Li, H.; Liu, H.; Wang, Z. MiR-625-3p promotes cell migration and invasion via inhibition of SCAI in colorectal carcinoma cells. Oncotarget 2015, 6, 27805–27815. [Google Scholar] [CrossRef]
- Wu, J.; Lv, W.; Yang, Q.; Li, H.; Li, F. Label-free homogeneous electrochemical detection of MicroRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme. Biosens. Bioelectron. 2021, 171, 112707. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, T.; Li, J.; Gong, H.; Chen, C.; Chen, X.; Cai, C. Ratiometric Fluorescence Sensor for the MicroRNA Determination by Catalyzed Hairpin Assembly. ACS Sens. 2017, 2, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, Q.; Zhao, X.; Chen, M.; Sun, X.; Li, H.; Chen, X. Framework Nucleic Acid-Based Spatial-Confinement Amplifier for miRNA Imaging in Living Cells. Anal. Chem. 2022, 94, 2934–2941. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, S.; Zhao, J.; Sun, J.; Yang, X. Fluorescence Light-Up Biosensor for MicroRNA Based on the Distance-Dependent Photoinduced Electron Transfer. Anal. Chem. 2017, 89, 8429–8436. [Google Scholar] [CrossRef]
- Duan, L.Y.; Liu, J.W.; Yu, R.Q.; Jiang, J.H. DNAzyme cascade circuits in highly integrated DNA nanomachines for sensitive microRNAs imaging in living cells. Biosens. Bioelectron. 2021, 177, 112976. [Google Scholar] [CrossRef]
Sequence Name | Sequence (5′-3′) |
---|---|
Hairpin (HP) | CTATAGTCCAAACTATGCTGAGGGGACTATAGAACTTTCCCCCT |
miR-625-5p | AGGGGGAAAGUUCUAUAGUCC |
miR-625-5p (DNA) | AGGGGGAAAGTTCTATAGTCC |
Method | Materials | LOD (pM) | Detection Range (nM) | Reference |
---|---|---|---|---|
Electrochemical | MnO2 nanoflake | 250 | 0.4–100 | [31] |
Fluorescence | 2-Aminopurine/ThT | 72 | 0.5–50 | [32] |
Fluorescence | Framework nucleic acid | 40 | 0–500 | [33] |
Fluorescence | Ag nanocluster | 60 | 0.1–8000 | [34] |
Fluorescence | DNA nanomachine | 80 | 0.1–10 | [35] |
Fluorescence | SYBR Gold | 8.6 | 0.01–200 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Ye, L.; Chen, H.; Fan, T.; Qiu, C.; Chen, Y.; Jiang, Y. Simple Isothermal and Label-Free Strategy for Colorectal Cancer Potential Biomarker miR-625-5p Detection. Biosensors 2023, 13, 78. https://doi.org/10.3390/bios13010078
Chen Y, Ye L, Chen H, Fan T, Qiu C, Chen Y, Jiang Y. Simple Isothermal and Label-Free Strategy for Colorectal Cancer Potential Biomarker miR-625-5p Detection. Biosensors. 2023; 13(1):78. https://doi.org/10.3390/bios13010078
Chicago/Turabian StyleChen, Yifei, Lizhen Ye, Hui Chen, Tingting Fan, Cheng Qiu, Yan Chen, and Yuyang Jiang. 2023. "Simple Isothermal and Label-Free Strategy for Colorectal Cancer Potential Biomarker miR-625-5p Detection" Biosensors 13, no. 1: 78. https://doi.org/10.3390/bios13010078
APA StyleChen, Y., Ye, L., Chen, H., Fan, T., Qiu, C., Chen, Y., & Jiang, Y. (2023). Simple Isothermal and Label-Free Strategy for Colorectal Cancer Potential Biomarker miR-625-5p Detection. Biosensors, 13(1), 78. https://doi.org/10.3390/bios13010078