Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Spectral Acquisition
2.3. Spectral Preprocessing
2.4. Data Augmentation and Data Set
2.5. The 2D-CNN Model Building and Training
3. Results
3.1. Raman Spectral Analysis
3.2. The 2D-CNN Discrimination Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Bray, F. Cancer statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Daniela, L.P.; Shaaban, A.M.; Rehman, S.; Rehman, I. Raman Spectroscopy of Breast Cancer. Appl. Spectrosc. Rev. 2019, 55, 439–475. [Google Scholar] [CrossRef]
- Takei, J.; Tsunoda-Shimizu, H.; Kikuchi, M.; Kawasaki, T.; Yagata, H.; Tsugawa, K.; Suzuki, K.; Nakamura, S.; Saida, Y. Clinical Implications of Architectural Distortion Visualized by Breast Ultrasonography. Breast Cancer 2009, 16, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Ravert, P.K.; Huffaker, C. Breast Cancer Screening in Women: An Integrative Literature Review. J. Am. Acad. Nurse Pract. 2010, 22, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Rzhevskii, A. The Recent Advances in Raman Microscopy and Imaging Techniques for Biosensors. Biosensors 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zhao, Q.; Li, B.; Zhao, X. Raman Spectroscopy: A Novel Technology for Gastric Cancer Diagnosis. Front. Bioeng. Biotechnol. 2022, 10, 856591. [Google Scholar] [CrossRef]
- Sabtu, S.N.; Sani, S.; Bradley, D.A.; Looi, L.M.; Osman, Z. A Review of the Applications of Raman Spectroscopy for Breast Cancer Tissue Diagnostic and Their Histopathological Classification of Epithelial to Mesenchymal Transition. J. Raman Spectrosc. 2020, 51, 380–389. [Google Scholar] [CrossRef]
- Li, H.; Ning, T.; Yu, F.; Chen, Y.; Zhang, B.; Wang, S. Raman Microspectroscopic Investigation and Classification of Breast Cancer Pathological Characteristics. Molecules 2021, 26, 921. [Google Scholar] [CrossRef]
- Carter, R.; Martin, A.A.; Netto, M.M.; Soares, F.A. FT-Raman Spectroscopy Study of Human Breast Tissue. Proc. SPIE Int. Soc. Opt. Eng. 2004, 5321, 190–197. [Google Scholar] [CrossRef]
- Vanna, R.; Morasso, C.; Piccotti, F.; Torti, E.; Altamura, D.; Albasini, S.; Agozzino, M.; Villani, L.; Sorrentino, L.; Bunk, O. Raman Spectroscopy Reveals That Biochemical Composition of Breast Microcalcifications Correlates with Histopathologic Features. Cancer Res. 2020, 80, 1762–1772. [Google Scholar] [CrossRef]
- Ma, D.Y.; Shang, L.W.; Tang, J.L.; Bao, Y.L.; Fu, J.J.; Yin, J.H. Classifying Breast Cancer Tissue by Raman Spectroscopy with One-dimensional Convolutional Neural Network. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 256, 119732. [Google Scholar] [CrossRef]
- Shang, L.W.; Ma, D.Y.; Fu, J.J.; Lu, Y.F.; Yin, J.H. Fluorescence Imaging and Raman Spectroscopy Applied for the Accurate Diagnosis of Breast Cancer with Deep Learning Algorithms. Biomed. Opt. Express 2020, 11, 3673–3683. [Google Scholar] [CrossRef]
- Kothari, R.; Fong, Y.; Storrie-Lombardi, M.C. Review of laser Raman spectroscopy for surgical breast cancer detection: Stochastic backpropagation neural networks. Sensors 2020, 20, 6260. [Google Scholar] [CrossRef]
- Ly, E.; Piot, O.; Durlach, A.; Bernard, P.; Manfait, M. Polarized Raman Microspectroscopy Can Reveal Structural Changes of Peritumoral Dermis in Basal Cell Carcinoma. Appl. Spectrosc. 2008, 62, 1088–1094. [Google Scholar] [CrossRef]
- Daniel, A.; Prakasarao, A.; Dornadula, K.; Ganesan, S. Polarized Raman Spectroscopy Unravels the Biomolecular Structural Changes in Cervical Cancer. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 152, 58–63. [Google Scholar] [CrossRef]
- Lin, D.; Huang, H.; Qiu, S.F.; Feng, S.Y.; Chen, G.N.; Chen, R. Diagnostic potential of polarized surface enhanced Raman spectroscopy technology for colorectal cancer detection. Opt. Express 2016, 24, 2222–2234. [Google Scholar] [CrossRef]
- Abramczyk, H.; Brozek-Pluska, B.; Kopec, M. Polarized Raman microscopy imaging: Capabilities and challenges for cancer research. J. Mol. Liq. 2018, 259, 102–111. [Google Scholar] [CrossRef]
- Lee, W.; Lenferink, A.; Otto, C.; Offerhaus, H.L. Classifying Raman Spectra of Extracellular Vesicles Based on Convolutional Neural Networks for Prostate Cancer Detection. J. Raman Spectrosc. 2020, 51, 293–300. [Google Scholar] [CrossRef]
- Yan, H.; Yu, M.; Xia, J.; Zhu, L.; Sun, G. Diverse Region-Based CNN for Tongue Squamous Cell Carcinoma Classification with Raman Spectroscopy. IEEE Access 2020, 8, 127313–127328. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Shang, L.W.; Zhao, Y.; Yin, J.H.; Huang, B.K. Design and Application of Small NIR-Raman Spectrometer Based on Dichroic and Transmission Collimating. Spectrosc. Spect. Anal. 2018, 38, 1933–1937. [Google Scholar] [CrossRef]
- Zhao, J.; Lui, H.; Mclean, D.I.; Zeng, H. Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy. Appl. Spectrosc. 2007, 61, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, R.; Wang, Y.; Feld, M.S. Histochemical Analysis of Biological Tissues Using Raman Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1996, 52, 215–249. [Google Scholar] [CrossRef]
- Monaco, M.E. Fatty Acid Metabolism in Breast Cancer Subtypes. Oncotarget 2017, 8, 29487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinlaw, W.B.; Baures, P.W.; Lupien, L.E.; Davis, W.L.; Kuemmerle, N.B. Fatty Acids and Breast Cancer: Make Them on Site or Have Them Delivered. J. Cell. Physiol. 2016, 231, 2128–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, S.; Movasaghi, Z.; Tucker, A.T.; Joel, S.P.; Rehman, I.U. Raman Spectroscopic Analysis of Breast Cancer Tissues: Identifying Differences between Normal, Invasive Ductal Carcinoma and Ductal Carcinoma in Situ of the Breast Tissue. J. Raman Spectrosc. 2010, 38, 1345–1351. [Google Scholar] [CrossRef]
- Kneipp, J.; Schut, T.B.; Kliffen, M.; Menke-Pluijmers, M.; Puppels, G. Characterization of Breast Duct Epithelia: A Raman Spectroscopic Study. Vib. Spectrosc. 2003, 32, 67–74. [Google Scholar] [CrossRef]
- Haka, A.S.; Volynskaya, Z.I.; Gardecki, J.A.; Nazemi, J.; Shenk, R.; Wang, N.; Rao Dasari, R.; Fitzmaurice, M.; Feld, M.S. Diagnosing Breast Cancer Using Raman Spectroscopy: Prospective Analysis. J. Biomed. Opt. 2009, 14, 054023. [Google Scholar] [CrossRef] [Green Version]
- Stone, N.; Kendall, C.; Smith, J.; Crow, P.; Barr, H. Raman Spectroscopy for Identification of Epithelial Cancers. Faraday Discuss. 2004, 126, 141–157. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Evans, C.A.; Holen, I.; Coleman, R.E.; Ur Rehman, I. Raman Spectroscopic Analysis Differentiates between Breast Cancer Cell Lines. J. Raman Spectrosc. 2015, 46, 421–427. [Google Scholar] [CrossRef]
- You, S.; Tu, H.; Zhao, Y.; Liu, Y.; Chaney, E.J.; Marjanovic, M.; Boppart, S.A. Raman Spectroscopic Analysis Reveals Abnormal Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer. Sci. Rep. 2016, 6, 32922. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Du, Y.; Fu, T.; Fan, Z.; Xu, S.; Hu, C.; Bi, L.; Gao, T.; Zhang, H.; Xu, W. Differences and Relationships between Normal and Atypical Ductal Hyperplasia, Ductal Carcinoma in Situ, and Invasive Ductal Carcinoma Tissues in the Breast Based on Raman Spectroscopy. Appl. Spectrosc. 2017, 71, 300–307. [Google Scholar] [CrossRef]
- Parker, F.S. Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry; Plenum Press: New York, NY, USA, 1983. [Google Scholar]
- Dehring, K.A.; Crane, N.J.; Smukler, A.R.; Mchugh, J.B.; Morris, M.D. Identifying Chemical Changes in Subchondral Bone Taken from Murine Knee Joints Using Raman Spectroscopy. Appl. Spectrosc. 2006, 60, 1134–1141. [Google Scholar] [CrossRef]
- Dehring, K.A.; Smukler, A.R.; Roessler, B.J.; Morris, M.D. Correlating Changes in Collagen Secondary Structure with Aging and Defective Type II Collagen by Raman Spectroscopy. Appl. Spectrosc. 2006, 60, 366–372. [Google Scholar] [CrossRef]
- Wisniewski, M.; Sionkowska, A.; Kaczmarek, H.; Lazare, S.; Tokarev, V.; Belin, C. Spectroscopic Study of a KrF Excimer Laser Treated Surface of the Thin Collagen Films. J. Photochem. Photobiol. A Chem. 2007, 188, 192–199. [Google Scholar] [CrossRef]
- Bonifacio, A.; Sergo, V. Effects of Sample Orientation in Raman Microspectroscopy of Collagen Fibers and Their Impact on the Interpretation of the Amide III Band. Vib. Spectrosc. 2010, 53, 314–317. [Google Scholar] [CrossRef]
- Han, W.; Chen, S.; Wei, Y.; Fan, Q.; Liu, L. Oriented Collagen Fibers Direct Tumor Cell Intravasation. Proc. Natl. Acad. Sci. USA 2016, 113, 11208. [Google Scholar] [CrossRef] [Green Version]
- Holmes, D.F.; Lu, Y.; Starborg, T.; Kadler, K.E. Collagen Fibril Assembly and Function. Curr. Top. Dev. Biol. 2018, 130, 107–142. [Google Scholar] [CrossRef]
- Xu, Z.B.; Wu, J.J.; Ding, L.; Wang, Z.H.; Zhou, S.W.; Shang, H.; Wang, H.J.; Yin, J.H. Intelligent Diagnosis of Breast Cancer Based on Polarization and Bright-field Multimodal Microscopic Imaging. Chin. J. Lasers 2022, 49, 2407102. [Google Scholar] [CrossRef]
Raman Shift (cm−1) of Normal (Cancerous) Tissues | Mode of Vibration | Assignment | Spectral Difference and Cancer vs. Normal Breast |
---|---|---|---|
875 | ν(C—C) | Hydroxyproline in collagen | Decrease, more obvious in polarized spectra |
921 | ν(C—C) | Proline in collagen | Decrease, more obvious in polarized spectra |
1003 | ν(C—C) | Phenylalanine | Decrease |
1032 | δ(CH2CH3) | Phenylalanine in collagen | Decrease |
1247 | δ(N—H) | Amide III | Increase |
1269 | ν(C—N) | Amide III | \ |
1302 | γt(CH2) | Collagen | Increase, more obvious in polarized spectra |
1318 | γt(CH2) | Collagen | Decrease, more obvious in polarized spectra |
1450 | δ(CH2, CH3) | Proteins | Decrease |
1660 (1656) | ν(C=O) | Amide I, α-helix | Red shift, increase, more obvious in conventional spectra |
Method | Raman Band (cm−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
875 | 921 | 1003 | 1032 | 1247 | 1269 | 1302 | 1318 | 1450 | 1660 | |
Polarized | 0.019 | 0.008 | 0.026 | 0.034 | 0.562 | 0.397 | 0.035 | 0.067 | 0.319 | 0.072 |
Conventional | 0.023 | 0.113 | 0.025 | 0.96 | 0.681 | 0.685 | 0.063 | 0.167 | 0.271 | 0.02 |
Raman Band (cm−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
875 | 921 | 1003 | 1032 | 1247 | 1269 | 1302 | 1318 | 1450 | 1660 | ||
Cancerous Polarized | Area | 1.03 | 1.17 | 4.16 | 2.66 | 5.88 | 1.64 | 0.37 | 0.18 | 40.82 | 49.99 |
Std | 0.64 | 0.54 | 0.85 | 0.87 | 1.64 | 0.86 | 0.57 | 0.28 | 3.94 | 9.23 | |
Normal Polarized | Area | 1.22 | 1.46 | 4.33 | 2.72 | 5.76 | 1.72 | 0.13 | 0.27 | 43.94 | 48.21 |
Std | 0.62 | 0.5 | 0.79 | 0.78 | 1.56 | 0.86 | 0.55 | 0.31 | 4.38 | 8.26 | |
Cancerous Conventional | Area | 1.09 | 1.34 | 4.78 | 2.73 | 6.42 | 1.42 | 0.32 | 0.24 | 39.07 | 56.52 |
Std | 0.63 | 0.51 | 1.28 | 0.77 | 1.53 | 0.7 | 0.68 | 0.26 | 5.38 | 7.43 | |
Normal Conventional | Area | 1.15 | 1.49 | 4.9 | 2.82 | 6.24 | 1.52 | 0.25 | 0.29 | 42.2 | 48.68 |
Std | 0.49 | 0.53 | 1.31 | 0.94 | 2.18 | 0.97 | 0.95 | 0.34 | 5.61 | 8.94 |
Raman Shift (cm−1) of Normal Tissues | Mode of Vibration | Assignment | Spectral Difference and Cancer vs. Normal Breast |
---|---|---|---|
871 | ν(N+(CH3)3) | Phospholipids | Decrease, more obvious in polarized spectra |
971 | ν(C—C) | Phospholipids | Decrease, more obvious in polarized spectra |
1032 | δ(CH2CH3) | Phospholipids | Decrease |
1084 | ν(C—O—C) | Phospholipids | Decrease, more obvious in polarized spectra |
1269 | ν(PO2), δ(=C—H) | Lipids | \ |
1302 | δ(=C—H) | Lipids | \ |
1442 | δ(CH2) | Lipids | \ |
1652 | ν(C=C) | Unsaturated bonds of lipids | Increase |
1745 | ν(C=O) | Lipids | Increase |
Method | Raman Band (cm−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
871 | 971 | 1032 | 1084 | 1269 | 1302 | 1442 | 1652 | 1745 | |
Polarized | 0.005 | 0.011 | 0.052 | 0.043 | 0.68 | 0.375 | 0.214 | 0.033 | 0.008 |
Conventional | 0.767 | 0.539 | 0.852 | 0.781 | 0.726 | 0.454 | 0.139 | 0.077 | 0.045 |
Raman Band (cm−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
871 | 971 | 1032 | 1084 | 1269 | 1302 | 1442 | 1652 | 1745 | ||
Cancerous Polarized | Area | 0.24 | 1.06 | 1.18 | 1.36 | 6.94 | 8.47 | 37.55 | 17.54 | 2.98 |
Std | 0.28 | 1.07 | 0.76 | 0.83 | 3.41 | 2.30 | 5.74 | 4.38 | 1.09 | |
Normal Polarized | Area | 0.43 | 1.49 | 1.31 | 1.72 | 6.81 | 8.68 | 36.89 | 14.21 | 1.89 |
Std | 0.63 | 1.13 | 1.2 | 2.45 | 4.71 | 4.49 | 8.64 | 4.59 | 1.76 | |
Cancerous Conventional | Area | 0.63 | 1.23 | 0.76 | 2.12 | 7.89 | 8.72 | 38.91 | 19.93 | 3.98 |
Std | 0.30 | 0.58 | 0.96 | 0.63 | 3.82 | 1.70 | 1.80 | 1.83 | 0.98 | |
Normal Conventional | Area | 0.64 | 1.31 | 0.83 | 2.25 | 8.08 | 8.52 | 37.33 | 18.43 | 3.15 |
Std | 0.46 | 0.63 | 0.50 | 0.35 | 1.43 | 1.22 | 2.77 | 0.93 | 0.46 |
Algorithm | Training Set | Validation Set | Test Set |
---|---|---|---|
2D-CNN | 97.71% | 97.75% | 96.01% |
1D-CNN | 92.0% | 92.8% | 92.0% |
Ratios (I875/I921) | ||
---|---|---|
Conventional | Polarized | |
Cancerous | 0.79 ± 0.15 | 0.81 ± 0.22 |
Normal | 0.74 ± 0.09 | 0.76 ± 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, L.; Tang, J.; Wu, J.; Shang, H.; Huang, X.; Bao, Y.; Xu, Z.; Wang, H.; Yin, J. Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer. Biosensors 2023, 13, 65. https://doi.org/10.3390/bios13010065
Shang L, Tang J, Wu J, Shang H, Huang X, Bao Y, Xu Z, Wang H, Yin J. Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer. Biosensors. 2023; 13(1):65. https://doi.org/10.3390/bios13010065
Chicago/Turabian StyleShang, Linwei, Jinlan Tang, Jinjin Wu, Hui Shang, Xing Huang, Yilin Bao, Zhibing Xu, Huijie Wang, and Jianhua Yin. 2023. "Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer" Biosensors 13, no. 1: 65. https://doi.org/10.3390/bios13010065
APA StyleShang, L., Tang, J., Wu, J., Shang, H., Huang, X., Bao, Y., Xu, Z., Wang, H., & Yin, J. (2023). Polarized Micro-Raman Spectroscopy and 2D Convolutional Neural Network Applied to Structural Analysis and Discrimination of Breast Cancer. Biosensors, 13(1), 65. https://doi.org/10.3390/bios13010065