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Abstract: Raman spectroscopy has been efficiently used to recognize breast cancer tissue by detecting
the characteristic changes in tissue composition in cancerization. In addition to chemical composition,
the change in bio-structure may be easily obtained via polarized micro-Raman spectroscopy, aiding
in identifying the cancerization process and diagnosis. In this study, a polarized Raman spectral
technique is employed to obtain rich structural features and, combined with deep learning technology,
to achieve discrimination of breast cancer tissue. The results reconfirm that the orientation of collagen
fibers changes from parallel to vertical during breast cancerization, and there are significant structural
differences between cancerous and normal tissues, which is consistent with previous reports. Optical
anisotropy of collagen fibers weakens in cancer tissue, which is closely related with the tumor’s
progression. To distinguish breast cancer tissue, a discrimination model is established based on a
two-dimensional convolutional neural network (2D-CNN), where the input is a matrix containing
the Raman spectra acquired at a set of linear polarization angles varying from 0◦ to 360◦. As a result,
an average discrimination accuracy of 96.01% for test samples is achieved, better than that of the
KNN classifier and 1D-CNN that are based on non-polarized Raman spectra. This study implies that
polarized Raman spectroscopy combined with 2D-CNN can effectively detect changes in the structure
and components of tissues, innovatively improving the identification and automatic diagnosis of
breast cancer with label-free probing and analysis.

Keywords: polarized micro-Raman spectroscopy; breast cancer; 2D-convolutional neural network;
discrimination

1. Introduction

According to the GLOBOCAN database released by the International Agency for
Research on Cancer in 2020, female breast cancer was the most commonly diagnosed cancer
worldwide and the most common cause of cancer death in women [1]. However, no drug
has been developed to prevent breast cancer. Nowadays, breast cancer mortality can only
be reduced by early diagnosis and treatment, which requires rapid and accurate detection.

The current gold standard for breast cancer screening is triple assessment using
imaging (a combination of X-ray mammography and ultrasound), clinical examination,
and histological assessment [2]. Mammograms generally provide 10–14% false positives
and requires further testing. Ultrasound can reveal the shape, location and structure of
tumors [3]. However, ultrasound has not enough specificity in distinguishing between
benign and malignant tumors. Magnetic resonance imaging (MRI) can also be used to detect
breast cancer and has a lower false positive rate at the middle and late stages; however,
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it is limited by high cost [4]. Once a tumor is suspected to be cancerous, the core biopsy
procedure is performed. At present, the commonly used sampling methods mainly include
needle core biopsy and surgical biopsy. Needle core biopsies will produce false negatives
due to either small sampling volumes or sampling error, while surgical biopsies are an
invasive method, causing pain and even complications for patients.

Raman spectroscopy is a powerful label-free technique with incredible potential for
biological analysis; it can detect biochemical composition without any complex sample
preparation and external reagents, and therefore, reduces the overall time consumption for
rapid detection [5]. Moreover, in vivo and ex vivo analyses can be performed with special
attachments such as an optical fiber Raman probe. Liu et al. [6] introduced the applications
of Raman spectroscopy for the in vivo and ex vitro diagnosis of gastric cancer, and the
methodology related to spectroscopy data analysis. In this sense, Raman spectroscopy
can be applied for the early diagnosis of breast cancer [7]. Several groups have validated
the feasibility of Raman microscopic spectroscopy in breast cancer diagnosis in form
of tissue sections and have achieved valuable results [8–10]. However, the sectioning
process increases the complexity of sample preparation, and the sectioning samples can
hardly provide the complete biochemical information of the whole tissue. Microscopic
Raman spectroscopy has been able to collect information concerning the composition and
content changes of fatty acids and collagen, etc., in breast tissue [11,12]. Furthermore,
Ragini et al. [13] discussed significant advancements in the use of laser Raman spectroscopy
in surgical breast cancer diagnosis, with an emphasis on statistical and machine learning
strategies employed for precise, transparent and real-time analysis of Raman spectra.
However, the cancerization information concerning the structural organization of the main
components in breast tissue, which might be involved in cancer invasion and metastasis, is
hard to acquire.

Polarized micro-Raman spectra can provide meaningful information about the con-
formation and orientation of the tested biomolecule. Breast tissue consists of adipose
tissue and connective tissue. The distribution of collagen fibers, the main component of
connective tissue, is often optically anisotropic. This property makes compositional and
structural differences of collagen fibers likely to become significant under polarization
conditions. Ly et al. [14] applied polarized microscopic Raman spectroscopy to study
basal cell carcinoma, finding the enhanced spectral changes between tumors and healthy
tissues and the related structural changes. Daniel et al. [15] used polarized Raman spec-
troscopy for cervical cancerous tissue detection, which achieved a better recognition effect
and obtained additional information about tyrosine, collagen and DNA orientation in the
polarization spectra of cancerous tissue. Lin et al. [16] developed a more powerful blood
analysis method based on polarized surface enhanced Raman spectroscopy technology for
non-invasive and sensitive colorectal cancer (CRC) detection. Abramczyk et al. [17] used
polarized Raman spectroscopy and imaging technology to characterize the isotropic and
anisotropic vibrational responses in noncancerous and cancerous human breast tissues.
The results revealed that polarized Raman spectroscopy has better diagnostic potential
than conventional Raman spectroscopy. Based on the above publications, this research will
be more valuable by adding deep learning to it for cancer diagnosis.

Introducing deep learning into Raman spectroscopy can make spectral analysis more
effective and automatic. A convolutional neural network (CNN) is a representative struc-
ture of the deep learning model and is currently a research focus in deep learning. It has a
strong capability for extracting higher-level features. A platform for the Raman signature
discrimination of extracellular vesicles based on CNN was suggested by Lee’s group, which
can identify prostate cancer with no less than 93% accuracy [18]. Yan proposed an ensemble
CNN framework to distinguish tongue squamous cell carcinoma from non-tumor tissue
and obtained a high discrimination accuracy of 99.2% [19].

This paper will experimentally demonstrate that polarized Raman spectroscopy has
greater potential for breast cancer research and identification than conventional Raman
spectroscopy. A spectral analysis and T-test for band intensity will be performed to evalu-
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ate the bio-structural changes and statistical significance of spectral differences between
normal and cancerous tissues by conventional and polarized Raman spectroscopy. A two-
dimensional CNN (2D-CNN) model based on the polarization Raman spectral image will
be constructed to identify breast cancer tissue.

2. Materials and Methods
2.1. Sample Preparation

The breast tissues were harvested from Jiangsu cancer hospital patients, which was
approved by the local Ethics Committee after informed consent. The samples were taken
into the lab at −5 ◦C for 1 h after being extracted from their biological surroundings and
cleaned with normal saline. Then, they were detected directly with our lab-made Raman
spectrometer without any sample preparation. The operations were selected to make our
results and clinical outcome as consistent as possible. The breast tissue samples were
collected from 20 patients. All patients provided cancerous tissues, 10 of the patients
provided normal tissues, 12 of the patients provided paracancer tissues (20 cancerous
samples, 10 normal samples and 12 paracancer samples in total). The patients’ ages were
between 27 and 68 years and they were at different stages of the disease. The samples were
identified in clinic and taken from different positions with specific distances. The size of
the samples were about 0.3 cm × 0.3 cm × 1 cm.

2.2. Spectral Acquisition

A lab-made micro-Raman spectroscopy system was used in the experiment [20]. It
is composed of a 785 nm laser light source (IPS), a cooling CCD detector (Andor), an
external optical path system, a microscopic system, a dispersion system and a computer
processing and display system. The dispersion system contains a Holo blazed grating
(Newport, 53006BK01-230H, 1200 G 800 nm Holo) and a slit of 50 µm. The spectral range
is 500~2000 cm−1 with a resolution of 3 cm−1. During spectral detection, the laser light
excitation light (50 mW) entered the microscope system and was focused on the sample
in a circular area of 20 µm diameter through the 20× objective lens, the excitation time
was 30 s to not burn the samples. Subsequently, the Raman scattering was collected by the
collection system into the CCD and converted into the required spectrum by the computer
processing system. The sample was moved for spectral collection with a ca. 2 mm interval
on the stage each time to obtain the statistical results.

The polarization angle of the incident light was adjusted by a half-wave plate installed at
the entrance of the microscope, and then this was rotated to change the polarization angle
of the incident light while keeping the excitation power constant. The polarized spectra
were detected at every 30◦ from 0◦ to 360◦ at the points where the conventional spectra were
detected. All detection conditions remain consistent with the conventional spectra detection.
In total, 10 points were detected for each sample with the same space interval.

2.3. Spectral Preprocessing

After the fluorescence background was automatically removed by Vancouver Raman
algorithm software [21], the normalized mean spectra were obtained by Origin Pro 2017.
By using the line connecting the adjacent wave trough of each peak as the baseline, the
integral area of characteristic bands with significant changes was calculated by Python.
IBM SPSS 22 was used to conduct an independent sample T test for spectral band intensity
(band area) to evaluate the statistical significance of spectral differences between normal
and cancerous tissues by conventional and polarized spectroscopy (p < 0.05).

2.4. Data Augmentation and Data Set

The 12 polarized spectra of each detection point were arranged into a 12 × 1780 matrix
from 0 to 360◦, and a 100× 100 pseudo-color image was obtained after density slicing, scaling
and clipping (the input image in Figure 1). In this study, 300 pseudo-color image data were
finally obtained, including 100 from normal samples and 200 from cancerous samples.
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Figure 1. The architecture of the 2D-CNN discriminant model. Two convolutional layers were
abbreviated as Conv1 and Conv2, as well as two fully connected layers as FC1 and FC2. The
max-pooling layers are Maxpool1 and Maxpool2, respectively.

In order to fully evaluate the CNN model’s stability and the over-fitting risk, a k-
fold cross validation (k = 10) was performed to divide the training data and the test data.
Specifically, the pseudo-color image data were divided into 10 groups according to the
number of patients. Each group contained two cancerous samples and one normal sample,
and was selected as the test set in turn, while the rest of the groups were used for training.
In this way, the training was repeated 10 times, and all image data could be fully evaluated.

The number of cancerous samples was not balanced with that of normal samples,
which might affect discrimination performance. To solve this problem, in each cross
validation, three simple and effective data augmentation methods were used to expand
the amount of training data without introducing additional marking costs, which were
(1) Flip in horizontal and vertical; (2) Rotation: to rotate 90◦, 180◦ and 270◦, respectively;
(3) Noise injection: Gaussian noises with mean values of 0.1, 0.2 and 0.3 were added,
respectively. After that, the training data of cancerous and normal samples were expanded
to 5000, simultaneously. Then, all the expanded data were divided into a training set and a
validation set in a ratio of 7:3.

2.5. The 2D-CNN Model Building and Training

A 2D-CNN model consisting of an input layer, two convolutional layers (Conv1,
Conv2), two fully connected layers (FC1, FC2) and two max-pooling layers (Maxpool1,
Maxpool2) was constructed by Python. The architecture of the model is shown in Figure 1.
All input images were derived from pseudo-color images of 12 polarized Raman spectra at
each detection point, and then input in Conv1, which extracts features from the input data
via convolution operations. Each convolution layer was followed by a BN layer to improve
the generalization capability of the feedforward neural networks. After processing, the
output features would be close to the standard normal distribution and then activated
by the Leaky Rectified Linear Unit (ReLU) function. The (maximum) pooling layer was
used for dimensionality reduction of the data from the convolutional layer and decreasing
overfitting. The pooling kernel size was 2× 2, and the stride size was 2. The fully connected
layer made use of the results of the convolution and pooling processes to classify the image
into a label (cancerous and normal samples were labeled as 0 and 1, respectively).

A backpropagation algorithm was used to update the weight of the network model.
Binary Cross-Entropy was used as the loss function. Batch normalization (BN) layers,
dropout layers, and an Adam optimizer were introduced to optimize the network model.
The BN method was adopted to improve the training speed and reduce overfitting. A
portion of the neurons in iteration were temporarily inactivated by dropout layers, and the
risk of overfitting was decreased.

In order to evaluate the performance of the 2D-CNN model, a K nearest neighbor
(KNN) classifier was also constructed by Python to learn and predict the above samples.
During training, the KNN, settings of the cross validation, and the division of the datasets
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were consistent with that of the 2D-CNN. Moreover, a CNN model based on the conven-
tional Raman spectra was established for further comparison with the 2D-CNN model.
Since the conventional Raman spectrum is a one-dimensional vector, its discrimination
model was established using one-dimensional CNN (1D-CNN) in this study. The loss
function, optimizer, and network depth of 1D-CNN were consistent with 2D-CNN.

3. Results
3.1. Raman Spectral Analysis

There are heterogeneous structures in breast tissue [12], which shows the separation
of protein and lipid to some extent. Therefore, the collected Raman spectra can be divided
into protein spectra and lipid spectra, as shown in Figures 2 and 3, respectively. There
are significant differences between the spectra of the two components. The amide III
(1247 cm−1) and phenylalanine (1003 cm−1) bands only exist in the protein spectra as
strong bands [22,23]. The bands at 1084 cm−1 and 1745 cm−1, corresponding to C-O-C
stretching vibration and C=O stretching vibration, obviously exist in the lipid spectra [24].
It must be noted that the bands at the same wavenumber have different attributions since
they originate from different components; therefore, the Raman spectra of proteins and
lipids are separately studied in this paper.

Figure 2. Polarized (red lines for parallel and green lines for perpendicular) and conventional (blue
lines) Raman spectra of protein collected from normal (a) and cancerous (b) tissues. All shown are
average spectra, which were normalized to the band of 1450 cm−1 to reduce the influence of tissue
heterogeneity, respectively.

Figure 2 shows the parallel (red lines) and perpendicular (green lines) polarized
Raman spectra and conventional Raman spectra (blue) of protein collected from normal (a)
and cancerous (b) tissues. All those shown are average spectra, which were normalized
to the band of 1450 cm−1 to reduce the influence of tissue heterogeneity, respectively. The
Raman band assignments of protein spectra are listed in Table 1. The significant differences
between normal and cancer tissues are mentioned below.
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Figure 3. Polarized (red lines for parallel and green lines for perpendicular) and conventional (blue
lines) Raman spectra of lipids collected from normal (a) and cancerous (b) tissues. All those shown
are average Raman spectra, which were normalized to the band of 1442 cm−1 to reduce the influence
of tissue heterogeneity, respectively.

Table 1. Raman band assignments of protein in normal and cancerous breast tissues [22–29].

Raman Shift (cm−1) of
Normal (Cancerous) Tissues Mode of Vibration Assignment Spectral Difference and

Cancer vs. Normal Breast

875 ν(C—C) Hydroxyproline in collagen Decrease, more obvious in
polarized spectra

921 ν(C—C) Proline in collagen Decrease, more obvious in
polarized spectra

1003 ν(C—C) Phenylalanine Decrease
1032 δ(CH2CH3) Phenylalanine in collagen Decrease
1247 δ(N—H) Amide III Increase
1269 ν(C—N) Amide III \
1302 γt(CH2) Collagen Increase, more obvious in

polarized spectra
1318 γt(CH2) Collagen Decrease, more obvious in

polarized spectra
1450 δ(CH2 , CH3) Proteins Decrease

1660 (1656) ν(C=O) Amide I, α-helix Red shift, increase, more obvious
in conventional spectra

Note: ν-stretching coordinate; δ-deformation; γt-twisting coordinate.

The amide I band at 1660 cm−1 in the normal samples shifted to 1656 cm−1 after
cancerization, which was present in both conventional and polarized spectra. The amide III
band is a characteristic collagen band composed of two peaks at 1247 cm−1 and 1269 cm−1.
Although the two peaks had no significant difference between cancerous and normal
tissues in conventional Raman spectra, they varied with the change of polarization angle
in polarized Raman spectra. The intensity of the 1247 cm−1 peak in the perpendicular
polarized spectra of normal tissue exceeded that of 1269 cm−1; the opposite was true in
parallel polarized spectra. However, in cancerous tissues, the intensity of the 1247 cm−1

peak in either parallel or perpendicular polarized spectra was lower than that of 1269 cm−1.
This phenomenon indicates that the collagen structure changes after cancerization, and
optical anisotropy weakens.

In addition, the two bands of the twisting vibration of CH2 in collagen showed an
opposite trend in normal and cancerous tissues; that is, the spectral intensity of the 1318 cm−1
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band in the normal tissue spectra was stronger than that of 1302 cm−1 band, while it became
weaker than the latter in the cancerous case. This change was more obvious in polarized
spectra, which might be related to the change in the orientation of CH2 groups in the protein.

Table 2 shows the difference analysis of Raman intensity between normal and cancer-
ous breast tissues under the conditions of conventional and polarized spectra (only parallel
polarized spectra were considered), respectively. The bands of proline (921 cm−1), pheny-
lalanine (1032 cm−1), and collagen (1302 cm−1) had no obvious difference in conventional
Raman spectra (p = 0.113, 0.960, 0.063), but showed a significant difference in polarized
spectra (p = 0.008, 0.034, 0.035). In conclusion, polarized spectra could significantly magnify
the anisotropy differences between normal and cancerous tissues, resulting in significant
statistical differences in the intensity of the corresponding feature bands.

Table 2. Statistical differences (p-values) of protein band intensities between normal and cancerous
breast tissues collected with conventional and parallel PMRS, respectively.

Method
Raman Band (cm−1)

875 921 1003 1032 1247 1269 1302 1318 1450 1660

Polarized 0.019 0.008 0.026 0.034 0.562 0.397 0.035 0.067 0.319 0.072
Conventional 0.023 0.113 0.025 0.96 0.681 0.685 0.063 0.167 0.271 0.02

Note: p < 0.05 was considered statistically significant.

Furthermore, the band areas with standard deviation of the above protein peaks are listed
in Table 3. For the bands of 921, 1032 and 1302 cm−1, the differences of band area between
cancerous and normal tissues were more obvious in polarized spectra, which was consistent
with the above results, and proved the effectiveness of polarized Raman spectroscopy in the
diagnosis of protein spectra of cancerous breast tissues. The band areas of 921, 1032 and
1302 cm−1 in polarized Raman spectra may become the key for breast cancer diagnosis.

Table 3. Band area with standard deviation of each protein Raman peak.

Raman Band (cm−1)

875 921 1003 1032 1247 1269 1302 1318 1450 1660

Cancerous
Polarized

Area 1.03 1.17 4.16 2.66 5.88 1.64 0.37 0.18 40.82 49.99
Std 0.64 0.54 0.85 0.87 1.64 0.86 0.57 0.28 3.94 9.23

Normal
Polarized

Area 1.22 1.46 4.33 2.72 5.76 1.72 0.13 0.27 43.94 48.21
Std 0.62 0.5 0.79 0.78 1.56 0.86 0.55 0.31 4.38 8.26

Cancerous
Conventional

Area 1.09 1.34 4.78 2.73 6.42 1.42 0.32 0.24 39.07 56.52
Std 0.63 0.51 1.28 0.77 1.53 0.7 0.68 0.26 5.38 7.43

Normal
Conventional

Area 1.15 1.49 4.9 2.82 6.24 1.52 0.25 0.29 42.2 48.68
Std 0.49 0.53 1.31 0.94 2.18 0.97 0.95 0.34 5.61 8.94

Figure 3 shows the conventional and polarized spectra of the lipids, and Table 4 shows
their Raman band assignments. Due to the sample differences among different patients,
normalization can make the spectra display better. The band at 1442 cm−1 in the lipid
spectra was attributed to the deformation vibration of CH2. Therefore, the normalized
average spectra can represent the intensity variation of other bands relative to 1442 cm−1.

Table 4. Raman band assignments of lipids in normal and cancerous breast tissues [22–29].

Raman Shift (cm−1) of
Normal Tissues Mode of Vibration Assignment Spectral Difference and

Cancer vs. Normal Breast

871 ν(N+(CH3)3) Phospholipids Decrease, more obvious in
polarized spectra

971 ν(C—C) Phospholipids Decrease, more obvious in
polarized spectra

1032 δ(CH2CH3) Phospholipids Decrease
1084 ν(C—O—C) Phospholipids Decrease, more obvious in

polarized spectra
1269 ν(PO2), δ(=C—H) Lipids \
1302 δ(=C—H) Lipids \
1442 δ(CH2) Lipids \
1652 ν(C=C) Unsaturated bonds

of lipids Increase
1745 ν(C=O) Lipids Increase

Note: ν-stretching coordinate; δ-deformation; γt-twisting coordinate.
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The Raman intensity at the 1652 cm−1 band (C=C stretching) of cancerous tissue
was significantly higher than that of normal tissue, suggesting that the intensity ratio
(I1652/I1442) of breast tissue increased after cancerization [27]. The value of I1652/I1442 could
be used to characterize the ratio of the number of C=C groups to the number of CH2
groups in breast tissues (NC=C/NCH2) [30], whose increase indicated that the synthesis
of unsaturated fatty acids in breast tissues increased and saturated fatty acids relatively
decreased during cancerization. The relative changes between saturated and unsaturated
fatty acids affected the fluidity and viscosity of the cell membranes, and further affected
the diffusion and rotation of proteins and other biomolecules within the membrane [31].

The band at 1269 cm−1 (=C-H deformation vibration of lipid) in the conventional
Raman spectrum showed no significant difference between normal and cancerous tissues.
However, its intensity in cancerous cases was increased in polarized spectra. This indicated
that the content of unsaturated fatty acids was increased in cancerous tissues, which was
consistent with the analysis results above.

As with the collagen spectra, a difference analysis for the bands that showed apparent
differences in lipid spectra was performed, as shown in Table 5. The results showed that the
bands at 871, 971, 1084 and 1652 cm−1 did not show significant difference in conventional
Raman spectra (p = 0.767, 0.539, 0.781, 0.077), but showed an obvious difference in polarized
Raman spectra (p = 0.005, 0.011, 0.043, 0.033).

Table 5. Statistical differences (p-values) between lipid band intensities of normal and cancerous
breast tissues collected with conventional and parallel polarized spectra, respectively.

Method
Raman Band (cm−1)

871 971 1032 1084 1269 1302 1442 1652 1745

Polarized 0.005 0.011 0.052 0.043 0.68 0.375 0.214 0.033 0.008
Conventional 0.767 0.539 0.852 0.781 0.726 0.454 0.139 0.077 0.045

Note: p < 0.05 was considered statistically significant.

The band areas with standard deviation of the above lipid peaks are listed in
Table 6. For the band at 1745 cm−1, the band areas of polarized and conventional Raman
spectra both showed an increase in cancerous tissues. However, for the bands at 871,
971, 1084 and 1652 cm−1, the differences of band area between cancerous and normal
tissues were more obvious in polarized spectra. These results further confirmed the
advantages of polarized Raman spectroscopy in the diagnosis of breast cancer compared
with conventional Raman spectroscopy.

Table 6. Band area with standard deviation of each lipid Raman peak.

Raman Band (cm−1)

871 971 1032 1084 1269 1302 1442 1652 1745

Cancerous
Polarized

Area 0.24 1.06 1.18 1.36 6.94 8.47 37.55 17.54 2.98
Std 0.28 1.07 0.76 0.83 3.41 2.30 5.74 4.38 1.09

Normal
Polarized

Area 0.43 1.49 1.31 1.72 6.81 8.68 36.89 14.21 1.89
Std 0.63 1.13 1.2 2.45 4.71 4.49 8.64 4.59 1.76

Cancerous
Conventional

Area 0.63 1.23 0.76 2.12 7.89 8.72 38.91 19.93 3.98
Std 0.30 0.58 0.96 0.63 3.82 1.70 1.80 1.83 0.98

Normal
Conventional

Area 0.64 1.31 0.83 2.25 8.08 8.52 37.33 18.43 3.15
Std 0.46 0.63 0.50 0.35 1.43 1.22 2.77 0.93 0.46

Although many differences were found in the Raman spectra of cancerous and normal
tissues, such subtle changes in vibration modes may not be sufficient for cancer diagnosis,
yet. Thus, CNN was introduced to extract the shallow features in Raman spectra into
abstract deep features, and automatically find out the major and subtle spectral differences
between cancerous and normal tissues.

3.2. The 2D-CNN Discrimination Analysis

In this study, a small learning rate (learning rate = 5 × 10−5) was set to improve the
convergence results. In addition, to realize the visualization of the training effect, the
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model introduced the Visdom server, a professional drawing plugin based on the PyTorch
framework, which was instructed to display the loss function and the accuracy curves of
the 2D-CNN. The training was stopped when the loss function curves no longer dropped
significantly to avoid overfitting.

The curves of the loss function and training accuracy are shown in Figure 4a. The
abscissas indicate the number of iterations in training. The ordinates express the loss
value and the overall accuracy, respectively. The loss function curves showed a downward
trend, and both the training and validation sets eventually reached a stable value close to
0, indicating that the training of the CNN model was effective and stable. Similarly, the
accuracy curves trended to stabilize after 5000 iterations.

Figure 4. (a) The loss function curves and accuracy curves, and (b) confusion matrices of the training
set, validation set, and test set in the 2D-CNN prediction. 0: cancerous, 1: normal; unit: % in
horizontal and vertical axes of (b).

After training, the training set, validation set, and test set were predicted by the 2D-CNN.
The results and their confusion matrices are shown in Figure 4b. Each item in the matrices is
the average predictive ratio with its respective mean squared error (MSE) of 10 times cross
validation. The values on the diagonal squares indicate successful prediction (accuracy),
while the other values in the remaining squares indicate the possibility of miss-predictive
results (the lower left value represents a false negative, and upper right value represents
a false positive). The total accuracies of the training set, validation set and test set were
97.71%, 97.75% and 96.01%, respectively, which were the average values of the diagonal
squares in the matrices.

The trained 2D-CNN model obtained higher accuracies for the normal sample, which
might be caused by its smaller data amount. However, the relatively close accuracies of the
training set, validation set and test set with small MSE values indicate excellent stability of
the 2D-CNN model and small risk of overfitting.

Next, the KNN classifier was used to learn and predict the above data. Figure 5 shows
the predictive results of the training set, validation set, and test set under different K values.
Although the KNN classifier achieved higher accuracies for the training set and validation
set than the 2D-CNN under different K values, the accuracies of the test set were very low
and unstable, which reveals the severe overfitting and poor prediction ability of the KNN.
These results demonstrate the advantages of the 2D-CNN.
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Figure 5. Confusion matrices of the training set, validation set, and test set predicted by the KNN
classifier under different K values. 0: cancerous, 1: normal; unit: % in horizontal and vertical axes.

The results of the two models (2D-CNN and 1D-CNN) combined with polarized and
conventional Raman spectroscopy, respectively, are shown in Table 7. The accuracies of
the 2D-CNN model are 97.71%, 97.75% and 96.01% for the training set, validation set,
and test set, respectively, which are clearly higher than those of the 1D-CNN model, at
92.0%, 92.8%, and 92.0%. This suggests that the discrimination performance of the 2D-CNN
model is significantly better than that of the 1D-CNN model; further, the polarized Raman
spectroscopy has a more excellent discriminant ability.

Table 7. The discrimination results of normal and cancerous breast tissues by PMRS image with
2D-CNN and conventional Raman spectroscopy with 1D-CNN.

Algorithm Training Set Validation Set Test Set

2D-CNN 97.71% 97.75% 96.01%
1D-CNN 92.0% 92.8% 92.0%

4. Discussion

This study shows the potential interest of polarized Raman spectroscopy in analyz-
ing the structural changes of collagen fibers in breast cancer tissues and normal tissues.
According to the compositional heterogeneity of breast tissue, the spectra were divided
into two categories of proteins and lipids for analysis. No matter which one was inves-
tigated, the difference analysis showed that polarized spectra can significantly enlarge
the spectral difference between cancerous tissue and normal tissue, indicating that PMRS
can achieve better spectral discrimination. The band difference of amide I is reduced in
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polarized spectra due to the band of amide I containing a variety of protein secondary
structure information [32], and different secondary structures show different polarization
characteristics. Although the band difference of amide I does not increase, it still retained
significant differences (p = 0.019) in the polarized Raman spectra.

Some information about the orientation change of collagen fibers was also found
in polarized Raman spectra. The significant differences of the collagen amide III band
existed in the polarized spectra of normal and cancerous tissues. The band of amide III
is a characteristic band of collagen, with a unique bimodal structure of 1247 cm−1 and
1269 cm−1. In view of this feature, this study compared the bimodal ratio (I1247/I1269)
between the spectra of normal and cancerous tissues. To further study the cancerization
mechanism, polarized Raman spectra of paracancerous tissues (belonging to the undiseased
tissues and being ca. 3 cm away from cancerous tissues) were also detected and analyzed
together with normal tissues and cancerous tissues.

Figure 6 shows the trends of the I1247/I1269 values of the polarized Raman spectra of
normal, paracancerous and cancerous tissues with the polarization angle. The bimodal
ratios in normal and paracancerous tissues is less than 1 at 0◦ and over 1 at 90◦. In contrast,
the bimodal ratio of cancerous tissues never exceeds 1, which suggests that the amide
III in cancerous tissues does not show prominent polarization characteristics in the same
way as normal tissues. The bimodal ratio in cancerous cases is lower than normal and
paracancerous tissues, whether it is 0◦ or 90◦. Some researchers attributed the band at
1247 cm−1 to the 310 helix of collagen and the band at 1269 cm−1 to the α helix [33–35]; and
it is considered that the above changes are caused by the decrease of the 310 helix in collagen.
The bimodal ratio of amide III in collagen spectra is also related to its orientation [36]. The
trend of the I1247/I1269 value of the Raman spectra of normal tissues is unique to horizontal
collagen fibers, while it is not reflected in cancerous tissues [36]. This suggests that the
orientation of collagen fibers changes in the process of cancerization. When cancerization
occurs in breast tissue, the orientation of collagen fibers in the tissue gradually changes
from the original horizontal orientation to the vertical orientation, which is more conducive
to the spread of cancerous cells [37]. Therefore, a mixture of horizontal and vertical collagen
fibers will appear in the cancerous tissue and lead to the ratio result in Figure 6. The
reduction of the I1247/I1269 ratio of cancerous tissue at all angles may become the key for
cancer diagnosis.

Figure 6. The trends of the bimodal ratio (I1247/I1269) in the spectra of cancerous, paracancerous and
normal breast tissues with the polarization angle.
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Although the spectra of paracancerous tissues, which are very close to cancerous
tissues, do not show the spectral characteristics of cancerous tissues, the bimodal ratio is
lower than that of normal tissues. These paracancerous characteristics are imperceptible
and hard to be detected by other imaging techniques [36]. However, the polarized Raman
spectra is sensitive to the kinds of subtle changes happening at every moment.

Theoretically, collagen exists in the form of collagen fibers, and its secondary structure
is a triple helix composed of three strands of polypeptide chain [38]. This structure will
change due to the hydroxylation of some amino acids (such as proline), that will affect
the hydrogen bond mode and the secondary structure of collagen [38]. Therefore, the
relative content changes of hydroxyproline (875 cm−1) and proline (921 cm−1) between
cancerous and normal tissues were analyzed to investigate the reasons for the changes in
the orientation of the collagen fibers. Table 8 shows the intensity of the integral area ratios
(I875/I921) of proline and hydroxyproline bands in the average spectra of the cancerous
and normal tissues. It was found that whether using conventional or polarized Raman
spectra, the content of hydroxyproline increased, relatively, after cancerization. In this
sense, the hydroxylation degree of collagen became higher after cancerization, resulting in
the changes of the hydrogen bond mode of collagen fibers. Consequently, the changes in
the structure and orientation of the collagen fibers and a redshift of the amide I band were
induced simultaneously.

Table 8. Characteristic intensity of the integral area ratios of proline and hydroxyproline in cancerous
and normal tissues.

Ratios (I875/I921)

Conventional Polarized

Cancerous 0.79 ± 0.15 0.81 ± 0.22
Normal 0.74 ± 0.09 0.76 ± 0.14

In previous studies [11,12,39], the detailed structural changes during breast canceriza-
tion have been characterized and discussed by conventional Raman spectroscopy, autofluo-
rescence imaging and polarization imaging technology. On this basis, this study focused
on exploring the application of polarized Raman spectroscopy in breast cancer diagnosis,
and the possibility of combining polarized Raman spectroscopy with 2D-CNN.

In the training of the 2D-CNN, a key issue was to evaluate and reduce the risk of
overfitting. Thus, the following methods were performed in this study: (1) K-fold cross
validation was used for the full evaluation of all data. (2) Three data augmentation methods
were introduced to expand the data amount and balance the size of cancerous and normal
samples. (3) BN layers and dropout layers were added into the 2D-CNN model to overcome
the overfitting. (4) The training was stopped when the loss function curves no longer
dropped, which is known as the ‘early stop strategy’. (5) A KNN classifier was introduced
to process the same data set for comparison. The final results confirmed the effectiveness
of the above methods.

The deep learning discriminant models, 2D-CNN and 1D-CNN, were established
based on polarized and conventional Raman spectra, respectively. The 2D-CNN model
based on polarized Raman spectroscopy showed a superior capacity for distinguishing the
cancerous tissues from normal tissues from the latter. Some spectra from normal samples in
the 2D-CNN test set were identified as cancerous ones, which is ascribed to the fact that the
normal tissues used in the experiments were not taken from perfectly healthy people but
donated from cancer-free sites in the breast cancer patients. The tissue microenvironment
had, probably, changed before it became cancerous; with the components and bio-structure
subtly altered in the normal tissue, as explained in the discussion above.

Compared with normal Raman spectra, polarized Raman spectra can provide more
orientation information, which was found to have the potential for cancerous breast tissue
diagnosis. More importantly, the Raman spectra acquired at a set of linear polarization
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angles varying from 0◦ to 360◦, which were combined into a two-dimensional matrix in
parallel. In this situation, 2D-CNN not only extracted the respective characteristics of the
spectra, but also learned the spectral changes under different polarization angles, which
took the orientation changes of breast tissues into account. Therefore, the polarized Raman
spectra based 2D-CNN achieved better results than those of normal Raman spectra based
1D-CNN. Polarizing was of great importance to obtain the results of this study.

The purpose of this study was to explore a rapid and label-free diagnostic method for
breast cancer. Therefore, Raman spectra were obtained directly from the breast tissue. In
future, biosensing applications or a surface enhanced Raman spectroscopy method can be
introduced into the tissue section samples for better Raman spectra and to further improve
the 2D-CNN results.

5. Conclusions

Polarized Raman spectroscopy was applied in the research on breast cancer for the first
time. It discovered much more biochemical information and more significant differences
between cancerous and normal tissues than conventional Raman spectroscopy. The polar-
ized Raman spectral analysis of breast tissues discloses the structural changes in collagen
orientation, and suggests that the orientation of collagen fibers gradually transforms during
cancerization, as shown in the further study on paracancerous tissues. The results above
are very helpful for the study of the metastasis and prognosis of cancerous cells. The
discriminant model of 2D-CNN based on polarized Raman spectral images verifies that
it has an excellent capacity to distinguish between cancerous tissues and normal tissues.
This technique yields a higher accuracy when compared with the conventional Raman
spectroscopic technique. Polarized Raman spectroscopy with deep learning will be a valu-
able and innovative technique for cancer probing, and has the potential to be developed
as a sensitive and label-free optical tool for assessing aggressiveness and invasion during
tissue cancerization.
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