Immobilization of Firefly Bioluminescent System: Development and Application of Reagents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. ATP Measurement Using Firefly Luminescent System
2.3. Immobilization of Firefly Luciferase and D-Luciferin
2.4. Measuring the Activity of Immobilized Reagents
2.5. Biomass Cultivation
3. Results
3.1. Determining the Proportions of Components in the Firefly Bioluminescent System
3.2. Choosing the Stabilizer to Be Assessed to The Immobilized Reagent
3.3. Activity of Immobilized FLuc in The Presence of Stabilizers
3.4. Analytical Characterization of Immobilized FLuc
3.5. D-Luciferin Immobilization
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azad, T.; Janse van Rensburg, H.J.; Morgan, J.; Rezaei, R.; Crupi, M.J.F.; Chen, R.; Ghahremani, M.; Jamalkhah, M.; Forbes, N.; Ilkow, C.; et al. Luciferase-based biosensors in the era of the COVID-19 pandemic. ACS Nanosci. Au 2021, 1, 15–37. [Google Scholar] [CrossRef]
- Branchini, B.R.; Southworth, T.L.; Fontaine, D.M.; Kohrt, D.; Talukder, M.; Michelini, E.; Cevenini, L.; Roda, A.; Grossel, M.J. An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications. Anal. Biochem. 2015, 484, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Bottari, B.; Santarelli, M.; Neviani, E. Determination of Microbial Load for Different Beverages and Foodstuff by Assessment of Intracellular ATP. Trends Food Sci. Technol. 2015, 44, 36–48. [Google Scholar] [CrossRef]
- Samkutty, P.J.; Gough, R.H.; Adkinson, R.W.; Mcgrew, P. Rapid Assessment of the Bacteriological Quality of Raw Milk Using ATP Bioluminescence. J. Food Prot. 2001, 64, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Poghossian, A.; Geissler, H.; Schöning, M.J. Rapid Methods and Sensors for Milk Quality Monitoring and Spoilage Detection. Biosens. Bioelectron. 2019, 140, 111272. [Google Scholar] [CrossRef]
- Kračmarová, M.; Stiborová, H.; Horáčková, Š.; Demnerová, K. Rapid detection of microbial contamination in UHT milk: Practical application in dairy industry. Czech J. Food Sci. 2018, 36, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Nakakita, Y.; Watari, J.; Shinotsuka, K. Application of a Bioluminescence Method for the Beer Industry: Sensitivity of MicroStar-RMDS for Detecting Beer-Spoilage Bacteria. Biosci. Biotechnol. Biochem. 2000, 64, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Nakakita, Y.; Nakamura, T. Rapid Single Cell Detection of Lactic Acid Bacteria in the Beer Using Bioluminescence Method. Biocontrol Sci. 2019, 24, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Nakakita, Y. Rapid Single-Cell Detection of Beer-Contaminating Lactic Acid Bacteria Using Bioluminescence/Rapid Microbe Detection. In Bioluminescence. Methods in Molecular Biology; Kim, S.B., Ed.; Humana: New York, NY, USA, 2022; Volume 2524, pp. 173–182. [Google Scholar] [CrossRef]
- Frundzhyan, V.; Ugarova, N. Bioluminescent Assay of Total Bacterial Contamination of Drinking Water. Luminescence 2007, 22, 241–244. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, R.; Zhang, T.; Xu, J.; Zhou, X.; Yang, Y. A novel method: Using an adenosine triphosphate (ATP) luminescence–based assay to rapidly assess the biological stability of drinking water. Appl. Microbiol. Biotechnol. 2019, 103, 4269–4277. [Google Scholar] [CrossRef]
- Nanda, P.K.; Bhattacharya, D.; Das, J.K.; Bandyopadhyay, S.; Ekhlas, D.; Lorenzo, J.M.; Dandapat, P.; Alessandroni, L.; Das, A.K.; Gagaoua, M. Emerging Role of Biosensors and Chemical Indicators to Monitor the Quality and Safety of Meat and Meat Products. Chemosensors 2022, 10, 322. [Google Scholar] [CrossRef]
- Frundzhyan, V.G.; Parkhomenko, I.M.; Brovko, L.Y.; Ugarova, N.N. Improved Bioluminescent Assay of Somatic Cell Counts in Raw Milk. J. Dairy Res. 2008, 75, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Corbitt, A.J.; Bennion, N.; Forsythe, S.J. Adenylate Kinase Amplification of ATP Bioluminescence for Hygiene Monitoring in the Food and Beverage Industry. Lett. Appl. Microbiol. 2000, 30, 443–447. [Google Scholar] [CrossRef]
- Zambrano, A.A.; Jones, A.; Otero, P.; Ajenjo, M.C.; Labarca, J.A. Assessment of Hospital Daily Cleaning Practices Using ATP Bioluminescence in a Developing Country. Braz. J. Infect. Dis. 2014, 18, 675–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilar, M.J.; Rodríguez-Otero, J.L.; Diéguez, F.J.; Sanjuán, M.L.; Yus, E. Application of ATP Bioluminescence for Evaluation of Surface Cleanliness of Milking Equipment. Int. J. Food Microbiol. 2008, 125, 357–361. [Google Scholar] [CrossRef]
- Larson, E.L.; Aiello, A.E.; Gomez-Duarte, C.; Lin, S.X.; Lee, L.; Della-Latta, P.; Lindhardt, C. Bioluminescence ATP Monitoring as a Surrogate Marker for Microbial Load on Hands and Surfaces in the Home. Food Microbiol. 2003, 20, 735–739. [Google Scholar] [CrossRef]
- Ihssen, J.; Jovanovic, N.; Sirec, T.; Spitz, U. Real-Time Monitoring of Extracellular ATP in Bacterial Cultures Using Thermostable Luciferase. PLoS ONE 2021, 16, e0244200. [Google Scholar] [CrossRef]
- Yeh, H.-W.; Ai, H.-W. Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors. Annu. Rev. Anal. Chem. 2019, 12, 129. [Google Scholar] [CrossRef] [Green Version]
- Branchini, B.R.; Southworth, T.L. A Highly Sensitive Biosensor for ATP Using a Chimeric Firefly Luciferase. Methods Enzymol. 2017, 589, 14. [Google Scholar] [CrossRef]
- Halliwell, L.M.; Jathoul, A.P.; Bate, J.P.; Worthy, H.L.; Anderson, J.C.; Jones, D.D.; Murray, J.A.H. ΔFlucs: Brighter Photinus pyralis Firefly Luciferases Identified by Surveying Consecutive Single Amino Acid Deletion Mutations in a Thermostable Variant. Biotechnol. Bioeng. 2018, 115, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Binkowski, B.F.; Butler, B.L.; Stecha, P.F.; Lewis, M.K.; Wood, K.V. Novel Genetically Encoded Biosensors Using Firefly Luciferase. ACS Chem. Biol. 2008, 3, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Kargar, F.; Mortazavi, M.; Torkzadeh-Mahani, M.; Lotfi, S.; Shakeri, S. Evaluation of Luciferase Thermal Stability by Arginine Saturation in the Flexible Loops. Curr. Proteom. 2020, 17, 30–39. [Google Scholar] [CrossRef]
- Rajgopal, S.; Vijayalakshmi, M.A. Firefly Luciferase: Purification and Immobilization. Enzym. Microb. Technol. 1984, 6, 482–490. [Google Scholar] [CrossRef]
- Lonshakova-Mukina, V.; Esimbekova, E.; Kratasyuk, V. Impact of Enzyme Stabilizers on the Characteristics of Biomodules for Bioluminescent Biosensors. Sens. Actuators B Chem. 2015, 213, 244–247. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization Strategies to Develop Enzymatic Biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Yousefi-Nejad, M.; Hosseinkhani, S.; Khajeh, K.; Ranjbar, B. Expression, Purification and Immobilization of Firefly Luciferase on Alkyl-Substituted Sepharose 4B. Enzym. Microb. Technol. 2007, 40, 740–746. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Santos, R.M.; Rosário, L.M.; Gil, M.H. Immobilization of Luciferase from a Firefly Lantern Extract on Glass Strips as an Alternative Strategy for Luminescent Detection of ATP. J. Biolumin. Chemilumin. 1998, 13, 371–378. [Google Scholar] [CrossRef]
- Cruz-Aguado, J.A.; Chen, Y.; Zhang, Z.; Elowe, N.H.; Brook, M.A.; Brennan, J.D. Ultrasensitive ATP Detection Using Firefly Luciferase Entrapped in Sugar-Modified Sol-Gel-Derived Silica. J. Am. Chem. Soc. 2004, 126, 6878–6879. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Q.; Luo, M.; Li, M.; Wang, D.; Wang, Y.; Liu, Q. Immobilization of Firefly Luciferase on PVA-Co-PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP. ACS Appl. Mater. Interfaces 2015, 7, 20046–20052. [Google Scholar] [CrossRef]
- Nowroozi-Nejad, Z.; Bahramian, B.; Hosseinkhani, S. Efficient Immobilization of Firefly Luciferase in a Metal Organic Framework: Fe-MIL-88(NH2) as a Mighty Support for This Purpose. Enzym. Microb. Technol. 2019, 121, 59–67. [Google Scholar] [CrossRef]
- Belleti, E.; Bevilaqua, V.R.; Brito, A.M.M.; Modesto, D.A.; Lanfredi, A.J.C.; Viviani, V.R.; Nantes-Cardoso, I.L. Synthesis of Bioluminescent Gold Nanoparticle–Luciferase Hybrid Systems for Technological Applications. Photochem. Photobiol. Sci. 2021, 20, 1439–1453. [Google Scholar] [CrossRef] [PubMed]
- Käkinen, A.; Ding, F.; Chen, P.; Mortimer, M.; Kahru, A.; Ke, P.C. Interaction of Firefly Luciferase and Silver Nanoparticles and Its Impact on Enzyme Activity. Nanotechnology 2013, 24, 345101. [Google Scholar] [CrossRef] [PubMed]
- Samadi, E.; Javanmardi, M.; Porzani, S.J.; Hosseinkhani, S. Decrease of Catalytic Efficiency of Photinus Pyralis Firefly Luciferase in the Presence of Graphene Quantum Dots. Nanomed. J. 2020, 7, 308–314. [Google Scholar] [CrossRef]
- Alam, R.; Karam, L.M.; Doane, T.L.; Coopersmith, K.; Fontaine, D.M.; Branchini, B.R.; Maye, M.M. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod−Luciferase Nanoconjugates. ACS Nano 2016, 10, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.R.; Hosseinkhani, S.; Ghiasi, P.; Akbari, J.; Heydari, A. Magnetic Nanoparticles Supported Ionic Liquids Improve Firefly Luciferase Properties. Appl. Biochem. Biotechnol. 2014, 172, 3116–3127. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Hosseinkhani, S.; Heydari, A.; Akbari, J. Simple and Rapid Immobilization of Firefly Luciferase on Functionalized Magnetic Nanoparticles; a Try to Improve Kinetic Properties and Stability. Biomacromol. J. 2015, 1, 104–112. [Google Scholar]
- Vasquez, E.S.; Feugang, J.M.; Willard, S.T.; Ryan, P.L.; Walters, K.B. Bioluminescent Magnetic Nanoparticles as Potential Imaging Agents for Mammalian Spermatozoa. J. Nanobiotechnol. 2016, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Esimbekova, E.N.; Govorun, A.E.; Lonshakova-Mukina, V.I.; Kratasyuk, V.A. Gelatin and Starch: What Better Stabilizes the Enzyme Activity? Dokl. Biol. Sci. 2020, 491, 151–154. [Google Scholar] [CrossRef]
- Lomakina, G.Y.; Bezrukikh, A.E.; Ugarova, N.N. Effect of Gelatin on Properties of Luciola Mingrelica Firefly Luciferase. Mosc. Univ. Chem. Bull. 2012, 67, 8–12. [Google Scholar] [CrossRef]
- Bezrukikh, A.; Esimbekova, E.; Nemtseva, E.; Kratasyuk, V.; Shimomura, O. Gelatin and Starch as Stabilizers of the Coupled Enzyme System of Luminous Bacteria NADH:FMN–Oxidoreductase–Luciferase. Anal. Bioanal. Chem. 2014, 406, 5743–5747. [Google Scholar] [CrossRef]
- Govorun, A.E.; Esimbekova, E.N.; Kratasyuk, V.A. NAD(P)H:FMN-Oxidoreductase Functioning Under Macromolecular Crowding: In Vitro Modeling. Dokl. Biochem. Biophys. 2019, 486, 213–215. [Google Scholar] [CrossRef]
- Muthukumaran, T.; KrishnaMurthy, N.V.; Sivaprasad, N.; Sudhaharan, T. Isolation and Characterization of Luciferase from Indian Firefly, Luciola Praeusta. Luminescence 2014, 29, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Koksharov, M.I.; Ugarova, N.N. Thermostabilization of firefly luciferase by in vivo directed evolution. Protein Eng. Des. Sel. 2011, 24, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Esimbekova, E.N.; Kalyabina, V.P.; Kopylova, K.V.; Torgashina, I.G.; Kratasyuk, V.A. Design of Bioluminescent Biosensors for Assessing Contamination of Complex Matrices. Talanta 2021, 233, 122509. [Google Scholar] [CrossRef]
- Lonshakova-Mukina, V.I.; Esimbekova, E.N.; Kratasyuk, V.A. Stabilization of Butyrylcholinesterase by the Entrapment Into the Natural Polymer-Based Gels. Dokl. Biochem. Biophys. 2018, 479, 98–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonshakova-Mukina, V.I.; Esimbekova, E.N.; Kratasyuk, V.A. Thermal Inactivation of Butyrylcholinesterase in Starch and Gelatin Gels. Catalysts 2021, 11, 492–502. [Google Scholar] [CrossRef]
- Lonshakova-Mukina, V.I.; Esimbekova, E.N.; Kratasyuk, V.A. A Multicomponent Butyrylcholinesterase Preparation for Enzyme Inhibition-Based Assay of Organophosphorus Pesticides. Catalysts 2022, 12, 643–652. [Google Scholar] [CrossRef]
- Auton, M.; Rösgen, J.; Sinev, M.; Holthauzen, L.M.F.; Bolen, D.W. Osmolyte effects on protein stability and solubility: A balancing act between backbone and side-chains. Biophys. Chem. 2011, 159, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Khatibi, S.M.H.; Vahed, F.Z.; Sharifi, S.; Ardalan, M.; Shoja, M.M.; Vahed, S.Z. Osmolytes Resist against Harsh Osmolarity: Something Old Something New. Biochimie 2019, 158, 156–164. [Google Scholar] [CrossRef]
- Kumar, R. Role of naturally occurring osmolytes in protein folding and stability. Arch. Biochem. Biophys. 2009, 491, 1–6. [Google Scholar] [CrossRef]
- Cioni, P.; Bramanti, E.; Strambini, G.B. Effects of sucrose on the internal dynamics of azurin. Biophys. J. 2005, 88, 4213–4222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasouli, S.; Hosseinkhani, S.; Yaghmaei, P.; Ebrahim-Habibi, A. Effects of Sucrose and Trehalose on Stability, Kinetic Properties, and Thermal Aggregation of Firefly Luciferase. Appl. Biochem. Biotechnol. 2011, 165, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, M.; Hosseinkhani, S.; Ghobadi, S. Stabilization of Firefly Luciferase against Thermal Stress by Osmolytes. Int. J. Biol. Macromol. 2008, 43, 187–191. [Google Scholar] [CrossRef]
- Lomakina, G.Y.; Modestova, Y.A.; Ugarova, N.N. The thermostability enhancement of firefly luciferase Luciola mingrelica by site-directed mutagenesis of non-concervative residies Cys62 and Cys146. Moscow Univ. Chem. Bull. 2008, 49, 81. (In Russian) [Google Scholar]
- Holowachuk, E.W.; Stoltenborg, J.K.; Reed, R.G.; Peters, T. Bovine serum albumin: cDNA sequence and expression. EMBL Data Libr. 1991, 4, 235–240. [Google Scholar]
- Makemson, J.C.; Hastings, J.W. Bovine serum albumin interacts with bacterial luciferase. J. Biolumin. Chemilumin. 1991, 6, 131–136. [Google Scholar] [CrossRef]
- Tomoyasu, T.; Tabata, A.; Ishikawa, Y.; Whiley, R.A.; Nagamune, H. Small Heat Shock Protein AgsA: An Effective Stabilizer of Enzyme Activities. J. Biosci. Bioeng. 2013, 115, 15–19. [Google Scholar] [CrossRef]
- Esimbekova, E.N.; Kratasyuk, V.A.; Torgashina, I.G. Disk-shaped immobilized multicomponent reagent for bioluminescent analyses: Correlation between activity and composition. Enzym. Microb. Technol. 2007, 40, 343–346. [Google Scholar] [CrossRef]
- Esimbekova, E.N.; Torgashina, I.G.; Kalyabina, V.P.; Kratasyuk, V.A. Enzymatic Biotesting: Scientific Basis and Application. Contemp. Probl. Ecol. 2021, 14, 290–304. [Google Scholar] [CrossRef]
- Torgashina, I.G.; Kratasyuk, V.A. Comparative Study of Immobilized and Soluble NADH:FMN-oxidoreductase–luciferase coupled enzyme system. Biochemistry 2009, 74, 695–700. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Kim, H.R.; Jung, J.H.; Lee, K.-B.; Kim, B.C. The Development of Paper Discs Immobilized with Luciferase/D-Luciferin for the Detection of ATP from Airborne Bacteria. Sens. Actuators B Chem. 2018, 260, 274–281. [Google Scholar] [CrossRef]
- Calabretta, M.M.; Álvarez-Diduk, R.; Michelini, E.; Roda, A.; Merkoçi, A. Nano-Lantern on Paper for Smartphone-Based ATP Detection. Biosens. Bioelectron. 2020, 150, 111902. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esimbekova, E.N.; Kirillova, M.A.; Kratasyuk, V.A. Immobilization of Firefly Bioluminescent System: Development and Application of Reagents. Biosensors 2023, 13, 47. https://doi.org/10.3390/bios13010047
Esimbekova EN, Kirillova MA, Kratasyuk VA. Immobilization of Firefly Bioluminescent System: Development and Application of Reagents. Biosensors. 2023; 13(1):47. https://doi.org/10.3390/bios13010047
Chicago/Turabian StyleEsimbekova, Elena N., Maria A. Kirillova, and Valentina A. Kratasyuk. 2023. "Immobilization of Firefly Bioluminescent System: Development and Application of Reagents" Biosensors 13, no. 1: 47. https://doi.org/10.3390/bios13010047
APA StyleEsimbekova, E. N., Kirillova, M. A., & Kratasyuk, V. A. (2023). Immobilization of Firefly Bioluminescent System: Development and Application of Reagents. Biosensors, 13(1), 47. https://doi.org/10.3390/bios13010047