Visualization of Polymer–Surfactant Interaction by Dual-Emissive Gold Nanocluster Labeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Apparatus
2.3. Synthesis of DE-Au NCs
2.4. Temperature-Induced Fluorescence Response Measurement
2.5. hPEI-SDS Interaction Measurement
3. Results and Discussions
3.1. Synthesis and Characterization of DE-Au NCs
3.2. Temperature-Induced Ratiometric Change in DE-Au NCs
3.3. Mechanism of Temperature-Responsive Fluorescence of DE-Au NCs
3.4. Visualization of hPEI-SDS Interaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Najafi, H.; Jerri, H.A.; Valmacco, V.; Petroff, M.G.; Hansen, C.; Benczédi, D.; Bevan, M.A. Synergistic Polymer–Surfactant-Complex Mediated Colloidal Interactions and Deposition. ACS Appl. Mater. Interfaces 2020, 12, 14518–14530. [Google Scholar] [CrossRef] [PubMed]
- Bureiko, A.; Trybala, A.; Kovalchuk, N.; Starov, V. Current applications of foams formed from mixed surfactant–polymer solutions. Adv. Colloid Interface Sci. 2015, 222, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Junggeburth, S.C.; Diehl, L.; Werner, S.; Duppel, V.; Sigle, W.; Lotsch, B.V. Ultrathin 2D Coordination Polymer Nanosheets by Surfactant-Mediated Synthesis. J. Am. Chem. Soc. 2013, 135, 6157–6164. [Google Scholar] [CrossRef] [PubMed]
- Arief, I.; Biswas, S.; Bose, S. Tuning the Shape Anisotropy and Electromagnetic Screening Ability of Ultrahigh Magnetic Polymer and Surfactant-Capped FeCo Nanorods and Nanocubes in Soft Conducting Composites. ACS Appl. Mater. Interfaces 2016, 8, 26285–26297. [Google Scholar] [CrossRef] [PubMed]
- Guarrotxena, N.; Quijada-Garrido, I. Optical and Swelling Stimuli-Response of Functional Hybrid Nanogels: Feasible Route to Achieve Tunable Smart Core@Shell Plasmonic@Polymer Nanomaterials. Chem. Mater. 2016, 28, 1402–1412. [Google Scholar] [CrossRef]
- Al Attar, H.A.; Monkman, A.P. Effect of Surfactant on Water-Soluble Conjugated Polymer Used in Biosensor. J. Phys. Chem. B 2007, 111, 12418–12426. [Google Scholar] [CrossRef]
- Heeley, M.E.H.; Gallaher, J.K.; Nguyen, T.L.; Woo, H.Y.; Hodgkiss, J.M. Surfactant controlled aggregation of conjugated polyelectrolytes. Chem. Commun. 2013, 49, 4235–4237. [Google Scholar] [CrossRef]
- Fernández-Peña, L.; Abelenda-Nuñez, I.; Hernández-Rivas, M.; Ortega, F.; Rubio, R.G.; Guzmán, E. Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Adv. Colloid Interface Sci. 2020, 282, 102203. [Google Scholar] [CrossRef]
- Hussain, S.; Malik, A.H.; Iyer, P.K. Highly Precise Detection, Discrimination, and Removal of Anionic Surfactants over the Full pH Range via Cationic Conjugated Polymer: An Efficient Strategy to Facilitate Illicit-Drug Analysis. ACS Appl. Mater. Interfaces 2015, 7, 3189–3198. [Google Scholar] [CrossRef]
- Mészáros, R.; Thompson, L.; Bos, M.; Varga, I.; Gilányi, T. Interaction of Sodium Dodecyl Sulfate with Polyethyleneimine: Surfactant-Induced Polymer Solution Colloid Dispersion Transition. Langmuir 2003, 19, 609–615. [Google Scholar] [CrossRef]
- Han, J.; Cheng, F.; Wang, X.; Wei, Y. Solution properties and microstructure of cationic cellulose/sodium dodecyl benzene sulfonate complex system. Carbohydr. Polym. 2012, 88, 139–145. [Google Scholar] [CrossRef]
- Bell, C.G.; Breward, C.J.W.; Howell, P.D.; Penfold, J.; Thomas, R.K. Macroscopic Modeling of the Surface Tension of Polymer−Surfactant Systems. Langmuir 2007, 23, 6042–6052. [Google Scholar] [CrossRef] [PubMed]
- Szymczyk, K.; González-Martín, M.L.; Bruque, J.M.; Jańczuk, B. Effect of two hydrocarbon and one fluorocarbon surfactant mixtures on the surface tension and wettability of polymers. J. Colloid Interface Sci. 2014, 417, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Szymczyk, K.; Zdziennicka, A.; Krawczyk, J.; Jańczuk, B. Wettability, adhesion, adsorption and interface tension in the polymer/surfactant aqueous solution system. I. Critical surface tension of polymer wetting and its surface tension. Colloids Surf. A Physicochem. Eng. Asp. 2012, 402, 132–138. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, J.; Zhao, F.; Song, Z. Linearly descending viscosity for alkaline–surfactant–polymer flooding mobility modification in multilayer heterogeneous reservoirs. RSC Adv. 2018, 8, 8269–8284. [Google Scholar] [CrossRef]
- Reischl, M.; Stana-Kleinschek, K.; Ribitsch, V. Adsorption of Surfactants on Polymer Surfaces Investigated with a Novel Zeta-Potential Measurement System. Mater. Sci. Forum 2006, 514–516, 1374–1378. [Google Scholar] [CrossRef]
- Wang, C.; Tam, K.C. New Insights on the Interaction Mechanism within Oppositely Charged Polymer/Surfactant Systems. Langmuir 2002, 18, 6484–6490. [Google Scholar] [CrossRef]
- Yang, J.; Pal, R. Investigation of Surfactant-Polymer Interactions Using Rheology and Surface Tension Measurements. Polymers 2020, 12, 2302. [Google Scholar] [CrossRef]
- Zheng, J.-J.; Liu, W.-C.; Lu, F.-N.; Tang, Y.; Yuan, Z.-Q. Recent Progress in Fluorescent Formaldehyde Detection Using Small Molecule Probes. J. Anal. Test. 2022, 6, 204–215. [Google Scholar] [CrossRef]
- Sun, Z.; Li, J.; Tong, Y.; Zhao, L.; Zhou, X.; Li, H.; Wang, C.; Du, L.; Jiang, Y. Ratiometric Fluorescence Detection of Colorectal Cancer-Associated Exosomal miR-92a-3p with DSN-Assisted Signal Amplification by a MWCNTs@Au NCs Nanoplatform. Biosensors 2022, 12, 533. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, L.; Guan, W.; Lu, C. Fluorescence visualization of interactions between surfactants and polymers. RSC Adv. 2016, 6, 88954–88958. [Google Scholar] [CrossRef]
- Howse, J.R.; Steitz, R.; Pannek, M.; Simon, P.; Schubert, D.W.; Findenegg, G.H. Adsorbed surfactant layers at polymer/liquid interfaces. A neutron reflectivity study. Phys. Chem. Chem. Phys. 2001, 3, 4044–4051. [Google Scholar] [CrossRef]
- Yang, H.; Lu, F.; Sun, Y.; Yuan, Z.; Lu, C. Fluorescent Gold Nanocluster-Based Sensor Array for Nitrophenol Isomer Discrimination via an Integration of Host–Guest Interaction and Inner Filter Effect. Anal. Chem. 2018, 90, 12846–12853. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Du, Y.; Tseng, Y.-T.; Peng, M.; Cai, N.; He, Y.; Chang, H.-T.; Yeung, E.S. Fluorescent Gold Nanodots Based Sensor Array for Proteins Discrimination. Anal. Chem. 2015, 87, 4253–4259. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Li, Q.; Tan, L.-L.; Liu, C.-G.; Shang, L. Metal–Organic Frameworks-Mediated Assembly of Gold Nanoclusters for Sensing Applications. J. Anal. Test. 2022, 6, 163–177. [Google Scholar] [CrossRef]
- Zhao, Z.-X.; Guo, Y.-P.; Wei, J.; Chen, Q.-S.; Chen, X.-M. Fluorescent Copper Nanoclusters for Highly Sensitive Monitoring of Hypoxanthine in Fish. J. Anal. Test. 2021, 5, 76–83. [Google Scholar] [CrossRef]
- Wu, Z.; Yao, Q.; Chai, O.J.H.; Ding, N.; Xu, W.; Zang, S.; Xie, J. Unraveling the Impact of Gold(I)–Thiolate Motifs on the Aggregation-Induced Emission of Gold Nanoclusters. Angew. Chem. Int. Ed. 2020, 59, 9934–9939. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Y.; Yang, J.; Liu, Y.; Hu, F.; Zhu, K.; Jiang, X. Gold Nanoclusters for Targeting Methicillin-Resistant Staphylococcus aureus In Vivo. Angew. Chem. Int. Ed. 2018, 57, 3958–3962. [Google Scholar] [CrossRef]
- Xie, X.; Peng, Z.; Hua, X.; Wang, Z.; Deng, K.; Yang, X.; Huang, H. Selectively monitoring glutathione in human serum and growth-associated living cells using gold nanoclusters. Biosens. Bioelectron. 2020, 148, 111829. [Google Scholar] [CrossRef]
- Xie, X.; Peng, Z.; Wang, Z.; Hua, X.; Wang, Z.; Deng, K.; Yang, X.; Huang, H.; Liu, X. Monitoring biothiols dynamics in living cells by ratiometric fluorescent gold carbon dots. Talanta 2020, 218, 121214. [Google Scholar] [CrossRef]
- Yuan, Z.; Cai, N.; Du, Y.; He, Y.; Yeung, E.S. Sensitive and Selective Detection of Copper Ions with Highly Stable Polyethyleneimine-Protected Silver Nanoclusters. Anal. Chem. 2014, 86, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yuan, Z.; Xu, D.; Cai, N.; He, Y.; Yeung, E.S. Polyethyleneimine Solubilized Luminescent Au(I)-Thiolate Complexes for Highly Sensitive and Selective Cyanide Anion Sensing. J. Chin. Chem. Soc. 2013, 60, 1347–1352. [Google Scholar] [CrossRef]
- Yuan, Z.; Du, Y.; He, Y. Hyperbranched polyamine assisted synthesis of dual-luminescent gold composite with pH responsive character. Methods Appl. Fluoresc. 2017, 5, 014011. [Google Scholar] [CrossRef]
- Lu, F.; Yang, H.; Yuan, Z.; Nakanishi, T.; Lu, C.; He, Y. Highly fluorescent polyethyleneimine protected Au8 nanoclusters: One-pot synthesis and application in hemoglobin detection. Sens. Actuators B 2019, 291, 170–176. [Google Scholar] [CrossRef]
- Yang, H.; Yang, Y.; Liu, S.; Zhan, X.; Zhou, H.; Li, X.; Yuan, Z. Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters. Anal. Bioanal. Chem. 2020, 412, 5819–5826. [Google Scholar] [CrossRef]
- Tian, M.; Yuan, Z.; Liu, Y.; Lu, C.; Ye, Z.; Xiao, L. Recent advances of plasmonic nanoparticle-based optical analysis in homogeneous solution and at the single-nanoparticle level. Analyst 2020, 145, 4737–4752. [Google Scholar] [CrossRef]
- Yuan, Z.; Lu, F.; Peng, M.; Wang, C.-W.; Tseng, Y.-T.; Du, Y.; Cai, N.; Lien, C.-W.; Chang, H.-T.; He, Y.; et al. Selective Colorimetric Detection of Hydrogen Sulfide Based on Primary Amine-Active Ester Cross-Linking of Gold Nanoparticles. Anal. Chem. 2015, 87, 7267–7273. [Google Scholar] [CrossRef]
- Sun, S.; Ning, X.; Zhang, G.; Wang, Y.-C.; Peng, C.; Zheng, J. Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing. Angew. Chem. Int. Ed. 2016, 55, 2421–2424. [Google Scholar] [CrossRef]
- Huang, X.; Song, J.; Yung, B.C.; Huang, X.; Xiong, Y.; Chen, X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, M.; Yue, X.; Du, J. Ratiometric fluorometric determination of mercury(II) by exploiting its quenching effect on glutathione-stabilized and tetraphenylporphyrin modified gold nanoclusters. Microchim. Acta 2019, 186, 307. [Google Scholar] [CrossRef]
- Li, Z.; Guo, S.; Yuan, Z.; Lu, C. Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sens. Actuators B 2017, 241, 821–827. [Google Scholar] [CrossRef]
- Johal, M.S.; Chiarelli, P.A. Polymer–surfactant complexation in polyelectrolyte multilayer assemblies. Soft Matter 2007, 3, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Kwasniewski, S.P.; Francois, J.P.; Deleuze, M.S. Effect of thermal motions on the structure and UV-visible electronic spectra of stilbene and model oligomers of poly(p-phenylene vinylene). J. Phys. Chem. A 2003, 107, 5168–5180. [Google Scholar] [CrossRef]
- Tseng, Y.-T.; Yuan, Z.; Yang, Y.-Y.; Huang, C.-C.; Chang, H.-T. Photoluminescent gold nanodots: Role of the accessing ligands. RSC Adv. 2014, 4, 33629–33635. [Google Scholar] [CrossRef]
- Lu, F.; Yang, H.; Tang, Y.; Yu, C.-J.; Wang, G.; Yuan, Z.; Quan, H. 11-Mercaptoundecanoic acid capped gold nanoclusters with unusual aggregation-enhanced emission for selective fluorometric hydrogen sulfide determination. Microchim. Acta 2020, 187, 200. [Google Scholar] [CrossRef]
- Holzmeister, P.; Pibiri, E.; Schmied, J.J.; Sen, T.; Acuna, G.P.; Tinnefeld, P. Quantum yield and excitation rate of single molecules close to metallic nanostructures. Nat. Commun. 2014, 5, 5356. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lu, F.; Yang, H.; Ding, C.; Yuan, Z.; Lu, C. Fluorescent sensor array for separation-free dopamine analogue discrimination via polyethyleneimine-mediated self-polymerization reaction. Nanoscale 2019, 11, 12889–12897. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Zhang, J.; Lu, F.; Du, Y.; Cao, D.; Hu, S.; Yang, Y.; Yuan, Z. Visualization of Polymer–Surfactant Interaction by Dual-Emissive Gold Nanocluster Labeling. Biosensors 2022, 12, 686. https://doi.org/10.3390/bios12090686
Zheng J, Zhang J, Lu F, Du Y, Cao D, Hu S, Yang Y, Yuan Z. Visualization of Polymer–Surfactant Interaction by Dual-Emissive Gold Nanocluster Labeling. Biosensors. 2022; 12(9):686. https://doi.org/10.3390/bios12090686
Chicago/Turabian StyleZheng, Jiaojiao, Jing Zhang, Fengniu Lu, Yi Du, Ding Cao, Shui Hu, Yang Yang, and Zhiqin Yuan. 2022. "Visualization of Polymer–Surfactant Interaction by Dual-Emissive Gold Nanocluster Labeling" Biosensors 12, no. 9: 686. https://doi.org/10.3390/bios12090686
APA StyleZheng, J., Zhang, J., Lu, F., Du, Y., Cao, D., Hu, S., Yang, Y., & Yuan, Z. (2022). Visualization of Polymer–Surfactant Interaction by Dual-Emissive Gold Nanocluster Labeling. Biosensors, 12(9), 686. https://doi.org/10.3390/bios12090686