Paper-Based Molecular-Imprinting Technology and Its Application
Abstract
:1. Introduction
2. Paper-Based Molecular-Imprinting Technology
2.1. Preparation of MIP-PADs by In Situ Polymerization
2.2. Preparation of MIP-PADs by Post-Introduction Method
3. Paper-Based Molecular-Imprinting Technology
3.1. On-Site Environmental Analysis
3.2. Food-Safety Monitoring
3.3. Point-Of-Care Detection
3.4. Biomarker Detection
3.5. Exposure Assessment
4. Conclusions and Perspective
- (1)
- The affinity for MIP is still lower than that of natural receptors, and many MIP materials show poor selectivity in aqueous media, which is unsuitable for the analysis of biological samples. In the future, the synthesis of MIP materials with higher affinity and hydrophilicity will also be developed.
- (2)
- The preparation of multi-templated MIPs can generate distinct recognition cavities, allowing the simultaneous capture or removal of multiple analytes. Although challenging, the fabrication of multi-templated MIP-PADs holds promise for improving assay efficiency and multifunctional assays.
- (3)
- The application research of paper-based molecular-imprinting technology in different fields is still worthy of attention. For the field of point-of-care and biomarker testing, developing simple, fast, and efficient method of processing and testing real-life samples is particularly important. In the field of food-safety testing, the functional integration of MIP and PADs should be improved, such as the development of a multiplexed analysis system that can identify multiple bacteria at one time, helping further reduce analysis time and cost. For the detection of environmental pollutants, most of the existing MIP-PADs are still in the laboratory stage of detecting synthetic samples due to their low selectivity, and MIP-PADs that can be applied in real environmental samples require further development.
- (4)
- MIP-PADs can be combined with smartphones or through the development of various effective and portable intelligent signal-readout devices, which can be read anytime and anywhere, gradually become stable and generalized. They reduce the dependence on professional testing equipment and professional technicians. At the same time, realizing the development of MIP-PADs from pure qualitative analysis to semi-quantitative and fully quantitative with the help of smartphones will also become a trend.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angew. Chem. 2007, 119, 1340–1342. [Google Scholar] [CrossRef]
- Li, H.; Steckl, A.J. Paper microfluidics for point-of-care blood-based analysis and diagnostics. Anal. Chem. 2019, 91, 352–371. [Google Scholar] [CrossRef] [PubMed]
- Kiwfo, K.; Woi, P.M.; Seanjum, C.; Grudpan, K. New designs of paper based analytical devices (PADs) for completing replication analysis of a sample within a single run by employing smartphone. Talanta 2022, 236, 122848–122856. [Google Scholar] [CrossRef] [PubMed]
- Caratelli, V.; Fegatelli, G.; Moscone, D.; Arduini, F. A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: A flower-like origami biosensor for precision agriculture. Biosens. Bioelectron. 2022, 205, 114119–114125. [Google Scholar] [CrossRef]
- Tavares, M.C.; Oliveira, K.A.; de Fatima, A.; Coltro, W.K.T.; Santos, J.C.C. Paper-based analytical device with colorimetric detection for urease activity determination in soils and evaluation of potential inhibitors. Talanta 2021, 230, 122301–122309. [Google Scholar] [CrossRef]
- Huy, B.T.; Nghia, N.N.; Lee, Y.I. Highly sensitive colorimetric paper-based analytical device for the determination of tetracycline using green fluorescent carbon nitride nanoparticles. Microchem. J. 2020, 158, 105151–105157. [Google Scholar] [CrossRef]
- Danchana, K.; Iwasaki, H.; Ochiai, K.; Namba, H.; Kaneta, T. Determination of glutamate using paper-based microfluidic devices with colorimetric detection for food samples. Microchem. J. 2022, 179, 107513–107518. [Google Scholar] [CrossRef]
- Pholsiri, T.; Lomae, A.; Pungjunun, K.; Vimolmangkang, S.; Siangproh, W.; Chailapakul, O. A chromatographic paper-based electrochemical device to determine Δ⁹-tetrahydrocannabinol and cannabidiol in cannabis oil. Sens. Actuators B Chem. 2022, 355, 131353–131360. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Zhang, F.; Kuang, Z.; Fang, F.; and Song, Y.Y. Fast and sensitive colorimetric detection of pigments from beverages by gradient zone electrophoresis on a paper based analytical device. Microchem. J. 2022, 179, 107499–107505. [Google Scholar] [CrossRef]
- Kelkar, N.; Prabhu, A.; Prabhu, A.; Nandagopal, M.S.G.; Mani, N.K. Sensing of body fluid hormones using paper-based analytical devices. Microchem. J. 2022, 174, 107069–107081. [Google Scholar] [CrossRef]
- Tran, B.T.; Rijiravanich, P.; Puttaraksa, N.; Surareungchai, W. Wax gates in laminated microfluidic paper-based immunosensors. Microchem. J. 2022, 178, 107343–107350. [Google Scholar] [CrossRef]
- Yakoh, A.; Mehmeti, E.; Kalcher, K.; Chaiyo, S. Hand-Operated, Paper-Based Rotational Vertical-Flow Immunosensor for the Impedimetric Detection of α-Fetoprotein. Anal. Chem. 2022, 94, 5893–5900. [Google Scholar] [CrossRef] [PubMed]
- Gharaghani, F.M.; Akhond, M.; Hemmateenejad, B. A three-dimensional origami microfluidic device for paper chromatography: Application to quantification of Tartrazine and Indigo carmine in food samples. J. Chromatogr. A 2020, 1621, 461049–461058. [Google Scholar] [CrossRef]
- Chaikhan, P.; Udnan, Y.; Sananmuang, R.; Ampiah-Bonney, R.J.; Chaiyasith, W.C. A low-cost microfluidic paper-based analytical device (µPAD) with column chromatography preconcentration for the determination of paraquat in vegetable samples. Microchem. J. 2020, 159, 105355–105363. [Google Scholar] [CrossRef]
- Galanis, P.P.; Katis, I.N.; He, P.J.W.; Iles, A.H.; Kumar, A.J.U.; Eason, R.W.; Sones, C.L. Laser-patterned paper-based flow-through filters and lateral flow immunoassays to enable the detection of C-reactive protein. Talanta 2022, 238, 123056–123065. [Google Scholar] [CrossRef]
- Lou, Y.W.; Chen, W.Q.; Gan, Y.T.; Zhou, Y.; Ye, H.P.; Huan, W.W.; Zhang, Y.M. Lateral flow analysis of Pb (II) in green tea integrated with ionic imprinted paper-based chip. Microchem. J. 2022, 176, 107235–107243. [Google Scholar] [CrossRef]
- Ray, R.; Prabhu, A.; Prasad, D.; Garlapati, V.K.; Aminabhavi, T.M.; Mani, N.K.; Simal-Gandara, J. Paper-based microfluidic devices for food adulterants: Cost-effective technological monitoring systems. Food Chem. 2022, 390, 133173–133188. [Google Scholar] [CrossRef]
- Alidoust, M.; Yamini, Y.; Baharfar, M. Microfluidic paper-based analytical devices and electromembrane extraction; Hyphenation of fields towards effective analytical platforms. Anal. Chim. Acta 2022, 1216, 339987–339996. [Google Scholar] [CrossRef] [PubMed]
- Foest, D.; Knodel, A.; Brandt, S.; Franzke, J. Coupling paper spray ionization with the flexible microtube plasma for the determination of low polar biomarkers in mass spectrometry. Anal. Chim. Acta 2022, 1201, 339619–339626. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.C.M.; Lago, I.N.; Cardoso, C.F.; Nascimento, A.D.; Pereira, I.; Vaz, B.G. Rapid monitoring of pesticides in tomatoes (Solanum lycopersicum L.) during pre-harvest intervals by paper spray ionization mass spectrometry. Food Chem. 2020, 310, 125938–125943. [Google Scholar] [CrossRef]
- Vasapollo, G.; Del Sole, R.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, W.; Gariano, N.A.; Spivak, D.A. Macromolecular amplification of binding response in superaptamer hydrogels. J. Am. Chem. Soc. 2013, 135, 6977–6984. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, S.; Morkvenaite-Vilkonciene, I.; Samukaite-Bubniene, U.; Ratautaite, V.; Plikusiene, I.; Viter, R.; Ramanavicius, A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. Sensors 2022, 22, 1282. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Y.X.; Ma, Y.X.; Sun, H.; Huang, C.X.; Shen, X.T. Molecularly imprinted polymers based optical fiber sensors: A review. Trends Analyt. Chem. 2022, 152, 116608–116618. [Google Scholar] [CrossRef]
- Liu, H.M.; Jin, P.; Zhu, F.C.; Nie, L.; Qiu, H.D. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. Trends Analyt. Chem. 2021, 134, 116132–116149. [Google Scholar] [CrossRef]
- Yang, H.; Liu, H.B.; Tang, Z.S.; Qiu, Z.D.; Zhu, H.X.; Song, Z.X.; Jia, A.L. Synthesis, performance, and application of molecularly imprinted membranes: A review. JECE 2021, 9, 106352–106383. [Google Scholar] [CrossRef]
- Mamipour, Z.; Nematollahzadeh, A.; Kompany-Zareh, M. Molecularly imprinted polymer grafted on paper and flat sheet for selective sensing and diagnosis: A review. Mikrochim. Acta 2021, 188, 279–299. [Google Scholar] [CrossRef]
- Ge, L.; Wang, S.M.; Yu, J.H.; Li, N.Q.; Ge, S.G.; Yan, M. Molecularly Imprinted Polymer Grafted Porous Au-Paper Electrode for an Microfluidic Electro-Analytical Origami Device. Adv. Funct. Mater. 2013, 23, 3115–3123. [Google Scholar] [CrossRef]
- Diaz-Linan, M.C.; Lopez-Lorente, A.I.; Cardenas, S.; Lucena, R. Molecularly imprinted paper-based analytical device obtained by a polymerization-free synthesis. Sens. Actuators B Chem. 2019, 287, 138–146. [Google Scholar] [CrossRef]
- Wang, Y.H.; Ge, S.G.; Yan, M. Paper-based colorimetric analytical device based on molecularly imprinted polymers. Nanomedicine 2016, 12, 534. [Google Scholar] [CrossRef]
- Hao, G.Y.; Zhang, Z.; Ma, X.; Zhang, R.U.; Qin, X.X.; Sun, H.X.; Yang, X.B.; Rong, J.H. A versatile microfluidic paper chip platform based on MIPs for rapid ratiometric sensing of dual fluorescence signals. Microchem. J. 2020, 157, 105050–105058. [Google Scholar] [CrossRef]
- Zarejousheghani, M.; Schrader, S.; Moder, M.; Schmidt, M.; Borsdorf, H. A new strategy for accelerated extraction of target compounds using molecularly imprinted polymer particles embedded in a paper-based disk. J. Mol. Recognit. 2018, 31, e2629–e2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.P.; Sun, G.Q.; Ge, L.; Ge, S.G.; Yu, J.H.; Yan, M. Photoelectrochemical lab-on-paper device based on molecularly imprinted polymer and porous Au-paper electrode. Analyst 2013, 138, 4802–4811. [Google Scholar] [CrossRef]
- Liu, X.; Tao, X.M.; Xu, C.X.; Li, X.Y.; Chen, R.; Chen, Y.; Zhong, L.J.; Zhu, L.; Wang, X. Evaluation of the photocatalytic performance of molecularly imprinted S-TiO2 by paper microzones. Environ. Res. 2021, 199, 111258–111266. [Google Scholar] [CrossRef]
- Lamaoui, A.; Karrat, A.; Amine, A. Molecularly imprinted polymer integrated into paper-based analytical device for smartphone-based detection: Application for sulfamethoxazole. Sens. Actuators B Chem. 2022, 368, 132122–132130. [Google Scholar] [CrossRef]
- Huang, T.; Xu, Y.Q.; Meng, M.J.; Li, C.X. PVDF-based molecularly imprinted ratiometric fluorescent test paper with improved visualization effect for catechol monitoring. Microchem. J. 2022, 178, 107369–107376. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.Y.; Li, T.T.; Ji, Y.B.; Li, R.J. Molecularly imprinted polymer-enhanced biomimetic paper-based analytical devices: A review. Anal. Chim. Acta 2021, 1148, 238196–238209. [Google Scholar] [CrossRef]
- Hou, Y.; Lv, C.C.; Guo, Y.L.; Ma, X.H.; Liu, W.; Jin, Y.; Li, B.X.; Yang, M.; Yao, S.Y. Recent advances and applications in paper-based devices for point-of-care testing. JOAT 2022, 126, 1–27. [Google Scholar]
- Zhang, C.; Cui, H.Y.; Han, Y.F.; Yu, F.F.; Shi, X.M. Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl. Food Chem. 2018, 240, 893–897. [Google Scholar] [CrossRef]
- Han, J.L.; Liu, F.; Qi, J.; Arabi, M.; Li, W.P.; Wang, G.Q.; Chen, L.X.; Li, B.W. A ZnFe2O4-catalyzed segment imprinted polymer on a three-dimensional origami paper-based microfluidic chip for the detection of microcystin. Analyst 2022, 147, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Mei, X.C.; Peng, Z.C.; Yang, J.; Li, Y.C. A paper-based microfluidic sensor array combining molecular imprinting technology and carbon quantum dots for the discrimination of nitrophenol isomers. J. Hazard. Mater. 2022, 435, 129012–129019. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, B.W.; Wang, X.Y.; Fu, L.W.; Luo, L.Q.; Chen, L.X. Rotational paper-based microfluidic-chip device for multiplexed and simultaneous fluorescence detection of phenolic pollutants based on a molecular-imprinting technique. Anal. Chem. 2018, 90, 11827–11834. [Google Scholar] [CrossRef] [PubMed]
- Gremaud, E.; Turesky, R.J. Rapid analytical methods to measure pentachlorophenol in wood. J. Agric. Food Chem. 1997, 45, 1229–1233. [Google Scholar] [CrossRef]
- Mardones, C.; Palma, J.; Sepulveda, C.; Berg, A.; von Baer, D. Determination of tribromophenol and pentachlorophenol and its metabolite pentachloroanisole in Asparagus officinalis by gas chromatography/mass spectrometry. J. Sep. Sci. 2003, 26, 923–926. [Google Scholar] [CrossRef]
- Sun, G.Q.; Wang, P.P.; Ge, S.G.; Ge, L.; Yu, J.H.; Yan, M. Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosens. Bioelectron. 2014, 56, 97–103. [Google Scholar] [CrossRef]
- Nie, Y.X.; Liu, Y.; Su, X.G.; Ma, Q. Nitrogen-rich quantum dots-based fluorescence molecularly imprinted paper strip for p-nitroaniline detection. Microchem. J. 2019, 148, 162–168. [Google Scholar] [CrossRef]
- Chi, T.Y.; Chen, Z.Y.; Kameoka, J. Perfluorooctanesulfonic acid detection using molecularly imprinted polyaniline on a paper substrate. Sensors 2020, 20, 7301. [Google Scholar] [CrossRef]
- Tao, Y.; Phung, D.; Dong, F.S.; Xu, J.; Liu, X.G.; Wu, X.H.; Liu, Q.Y.; He, M.; Pan, X.L.; Li, R.N.; et al. Urinary monitoring of neonicotinoid imidacloprid exposure to pesticide applicators. Sci. Total Environ. 2019, 669, 721–728. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, Y.; Jiao, S.S.; Zhao, Y.; Guo, Y.R.; Wang, M.C.; Zhu, G.N. Quantum-dot-based lateral flow immunoassay for detection of neonicotinoid residues in tea leaves. J. Agri. Food Chem. 2017, 65, 10107–10114. [Google Scholar] [CrossRef] [PubMed]
- Nasr-Esfahani, P.; Ensafi, A.A.; Rezaei, B. Fabrication of a highly sensitive and selective modified electrode for imidacloprid determination based on designed nanocomposite graphene quantum dots/ionic liquid/multiwall carbon nanotubes/polyaniline. Sens. Actuators B Chem. 2019, 296, 126682–126689. [Google Scholar] [CrossRef]
- Zhao, P.N.; Liu, H.Y.; Zhang, L.N.; Zhu, P.H.; Ge, S.G.; Yu, J.H. Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification. ACS Appl. Mater. Interfaces 2020, 12, 8845–8854. [Google Scholar]
- Liu, W.; Guo, Y.M.; Luo, J.; Kou, J.; Zheng, H.Y.; Li, B.X.; Zhang, Z.J. A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos. Spectrochim Acta A 2015, 141, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Zang, D.J.; Ge, S.G.; Ge, L.; Yu, J.H.; Yan, M. A novel microfluidic origami photoelectrochemical sensor based on CdTe quantum dots modified molecularly imprinted polymer and its highly selective detection of S-fenvalerate. Electrochim. Acta 2013, 107, 147–154. [Google Scholar] [CrossRef]
- Wang, S.M.; Ge, L.; Li, L.; Yan, M.; Ge, S.G.; Yu, J.H. Molecularly imprinted polymer grafted paper-based multi-disk micro-disk plate for chemiluminescence detection of pesticide. Biosens. Bioelectron. 2013, 50, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Vodova, M.; Nejdl, L.; Pavelicova, K.; Zemankova, K.; Rrypar, T.; Sterbova, D.S.; Bezdekova, J.; Nuchtavorn, N.; Macka, M.; Adam, V.; et al. Detection of pesticides in food products using paper-based devices by UV-induced fluorescence spectroscopy combined with molecularly imprinted polymers. Food Chem. 2022, 380, 132141–132149. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Occurrence of Fusarium mycotoxins in cereal crops and processed products (Ogi) from Nigeria. Toxins 2016, 8, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasram, S.; Oueslati, S.; Mliki, A.; Ghorbel, A.; Silar, P.; Chebil, S. Ochratoxin A and ochratoxigenic black Aspergillus species in Tunisian grapes cultivated in different geographic areas. Food Control 2012, 25, 75–80. [Google Scholar] [CrossRef]
- Tolosa, J.; Graziani, G.; Gaspari, A.; Chianese, D.; Ferrer, E.; Manes, J.; Ritieni, A. Multi-mycotoxin analysis in durum wheat pasta by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. Toxins 2017, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Ramalho, R.R.F.; Pereiraet, I.; Lima, G.da.S.; dos Santos, G.F.; Maciel, L.I.L.; Simas, R.C.; Vaz, B.G. Fumonisin B1 analysis in maize by Molecularly Imprinted Polymer Paper Spray Ionization Mass Spectrometry (MIP-PSI-MS). J. Food Compos. Anal. 2022, 107, 104362–104367. [Google Scholar] [CrossRef]
- He, L.S.; Nan, T.G.; Cui, Y.L.; Guo, S.Q.; Zhang, W.; Zhang, R.; Tan, G.Y.; Wang, B.M.; Cui, L.W. Development of a colloidal gold-based lateral flow dipstick immunoassay for rapid qualitative and semi-quantitative analysis of artesunate and dihydroartemisinin. Malar. J. 2014, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Zhang, Z.; Wu, C.C.; Han, L.Y.; Zhang, H.Y. Molecularly imprinted polymer grafted paper-based method for the detection of 17β-estradiol. Food Chem. 2017, 221, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.M.; Hao, Q.Q.; Kan, X.W. Three-dimensional graphite paper based imprinted electrochemical sensor for tertiary butylhydroquinone selective recognition and sensitive detection. Sens. Actuators B Chem. 2018, 256, 520–527. [Google Scholar] [CrossRef]
- Chi, H.; Li, Y.J.; Liu, G.Q. Molecularly imprinted sensing platform based on electrochemically modified graphite paper for efficient detection of 3-monochloropropane-1, 2-diol. Food Chem. 2022, 386, 132829–132837. [Google Scholar] [CrossRef]
- da Silva, J.L.; Buffon, E.; Beluomini, M.A.; Pradela, L.A.; Araujo, D.A.G.; Santos, A.L.; Takeuchi, R.M.; Stradiotto, N.R. Non-enzymatic lactose molecularly imprinted sensor based on disposable graphite paper electrode. Anal. Chim. Acta 2021, 1143, 53–64. [Google Scholar] [CrossRef]
- Qi, J.; Li, B.W.; Wang, X.R.; Zhang, Z.; Wang, Z.; Han, J.L.; Chen, L.X. Three-dimensional paper-based microfluidic chip device for multiplexed fluorescence detection of Cu2+ and Hg2+ ions based on ion imprinting technology. Sens. Actuators B Chem. 2017, 251, 224–233. [Google Scholar] [CrossRef]
- Wang, X.R.; Li, B.W.; You, H.Y.; Chen, L.X. An ion imprinted polymers grafted paper-based fluorescent sensor based on quantum dots for detection of Cu2+ ions. Chinese J. Anal. Chem. 2015, 43, 1499–1504. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, C.M.; Hatamie, A.; Simchi, A.; Willander, M.; Malhotra, B.D. Nanomaterial-modified conducting paper: Fabrication, properties, and emerging biomedical applications. Glob. Chall. 2019, 3, 1900041–1900056. [Google Scholar] [CrossRef] [PubMed]
- Ratautaite, V.; Boguzaite, R.; Brazys, E.; Ramanaviciene, A.; Ciplys, E.; Juozapaitis, M.; Slibinskas, R.; Bechelany, M.; Ramanavicius, A. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim. Acta 2022, 403, 139581–139587. [Google Scholar] [CrossRef]
- Sun, X.L.; Jian, Y.N.; Wang, H.; Ge, S.G.; Yan, M.; Yu, J.H. Ultrasensitive microfluidic paper-based electrochemical biosensor based on molecularly imprinted film and boronate affinity sandwich assay for glycoprotein detection. ACS Appl. Mater. Interfaces 2019, 11, 16198–16206. [Google Scholar] [CrossRef]
- Al-Shehri, M.M.; El-Azab, A.S.; El-Gendy, M.A.; Hamidaddin, M.A.; Darwish, I.A. Synthesis of hapten, generation of specific polyclonal antibody and development of ELISA with high sensitivity for therapeutic monitoring of crizotinib. PLoS ONE 2019, 14, e0212048–e0212062. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, K.; Sugiura, K.; Kaji, N.; Tokeshi, M.; Baba, Y. Development of a microdevice for facile analysis of theophylline in whole blood by a cloned enzyme donor immunoassay. Lab. Chip. 2019, 19, 233–240. [Google Scholar] [CrossRef]
- Brozmanova, H.; Kacirova, I.; Urinovska, R.; Sistik, P.; Grundmann, M. New liquid chromatography-tandem mass spectrometry method for routine TDM of vancomycin in patients with both normal and impaired renal functions and comparison with results of polarization fluoroimmunoassay in light of varying creatinine concentrations. Clin. Chim. Acta 2017, 469, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, Y.; Zengin, A. A molecularly imprinted whatman paper for clinical detection of propranolol. Sens. Actuators B Chem. 2020, 304, 127276–127286. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Sitanurak, J.; Sroysee, W.; Sodanat, S.; Chairam, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Anal. Chim. Acta 2019, 1077, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Wright, C.; Dincel, O.; Chi, T.Y.; Kameoka, J. A low-cost paper glucose sensor with molecularly imprinted polyaniline electrode. Sensors 2020, 20, 1098. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.V.; Marques, A.C.; Oliveira, D.; Martins, R.; Moreira, F.T.C.; Sales, M.G.F.; Fortunato, E. Paper-based platform with an in situ molecularly imprinted polymer for β-amyloid. ACS Omega 2020, 5, 12057–12066. [Google Scholar] [CrossRef]
- Tawfik, S.M.; Elmasry, M.R.; Sharipov, M.; Azizov, S.; Lee, C.H.; Lee, Y.I. Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection. Biosens. Bioelectron. 2020, 160, 112211–112221. [Google Scholar] [CrossRef]
- Qi, J.; Li, B.W.; Zhou, N.; Wang, X.Y.; Deng, D.M.; Luo, L.Q.; Chen, L.X. The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosens. Bioelectron. 2019, 142, 111533–111541. [Google Scholar] [CrossRef]
- Rypar, T.; Adam, V.; Vaculovicova, M.; Macka, M. Paperfluidic devices with a selective molecularly imprinted polymer surface for instrumentation-free distance-based detection of protein biomarkers. Sens. Actuators B Chem. 2021, 341, 129999–130008. [Google Scholar] [CrossRef]
- Li, T.H.; Deng, Z.W.; Bu, J.Q.; Yang, Y.J.; Zhong, S.A. Quantum dot based molecularly imprinted polymer test strips for fluorescence detection of ferritin. Sens. Actuators B Chem. 2022, 358, 131548–131558. [Google Scholar] [CrossRef]
- Nontawong, N.; Ngaosri, P.; Chunta, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A.; Amatatongchai, M. Smart sensor for assessment of oxidative/nitrative stress biomarkers using a dual-imprinted electrochemical paper-based analytical device. Anal. Chim. Acta 2022, 1191, 339363–339374. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.V.; Marques, A.C.; Fortunato, E.; Sales, M.G.F. Paper-based (bio) sensor for label-free detection of 3-nitrotyrosine in human urine samples using molecular imprinted polymer. Sens. Bio-Sens. Res. 2020, 28, 100333–100341. [Google Scholar] [CrossRef]
- Tavares, L.S.; Carvalho, T.C.; Romao, W.; Vaz, B.G.; Chaves, A.R. Paper spray tandem mass spectrometry based on molecularly imprinted polymer substrate for cocaine analysis in oral fluid. J. Am. Soc. Mass Spectrom. 2017, 29, 566–572. [Google Scholar] [CrossRef]
- Mendes, T.P.P.; Pereira, I.; Ferreira, M.R.; Chaves, A.R.; Vaz, B.G. Molecularly imprinted polymer-coated paper as a substrate for highly sensitive analysis using paper spray mass spectrometry: Quantification of metabolites in urine. Anal. Methods 2017, 9, 6117–6123. [Google Scholar] [CrossRef]
- Cheng, Y.; Nie, X.M.; Wu, H.Q.; Hong, Y.H.; Yang, B.C.; Liu, T.; Zhao, D.; Wang, J.F.; Yao, G.H.; Zhang, F. A high-throughput screening method of bisphenols, bisphenols digycidyl ethers and their derivatives in dairy products by ultra-high performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2017, 950, 98–107. [Google Scholar] [CrossRef]
- Abnous, K.; Danesh, N.M.; Ramezani, M.; Alibolandi, M.; Taghdisi, S.M. A novel electrochemical sensor for bisphenol A detection based on nontarget-induced extension of aptamer length and formation of a physical barrier. Biosens. Bioelectron. 2018, 119, 204–208. [Google Scholar] [CrossRef]
- Lu, H.Z.; Xu, S.F. Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles. Biosens. Bioelectron. 2017, 92, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Alkasir, R.S.J.; Rossner, A.; Andreescu, S. Portable colorimetric paper-based biosensing device for the assessment of bisphenol A in indoor dust. Environ. Sci. Technol. 2015, 49, 9889–9897. [Google Scholar] [CrossRef]
- Zeng, L.S.; Zhang, X.; Wang, X.; Cheng, D.; Li, R.F.; Han, B.; Wu, M.M.; Zhuang, Z.J.; Ren, A.N.; Zhou, Y.K.; et al. Simultaneous fluorescence determination of bisphenol A and its halogenated analogs based on a molecularly imprinted paper-based analytical device and a segment detection strategy. Biosens. Bioelectron. 2021, 180, 113106–113114. [Google Scholar] [CrossRef]
- Mars, A.; Mejri, A.; Hamzaoui, A.H.; Elfil, H. Molecularly imprinted curcumin nanoparticles decorated paper for electrochemical and fluorescence dual-mode sensing of bisphenol A. Mikrochim. Acta 2021, 188, 1–11. [Google Scholar] [CrossRef]
- Kong, Q.K.; Wang, Y.H.; Zhang, L.N.; Ge, S.G.; Yu, J.H. A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sens. Actuators B Chem. 2017, 243, 130–136. [Google Scholar] [CrossRef]
- Kamel, A.H.; Jiang, X.J.; Li, P.J.; Liang, R.N. A paper-based potentiometric sensing platform based on molecularly imprinted nanobeads for determination of bisphenol A. Anal. Methods 2018, 10, 3890–3895. [Google Scholar] [CrossRef]
- D’Aurelio, R.; Chianella, I.; Goode, J.A.; Tothill, I.E. Molecularly imprinted nanoparticles based sensor for cocaine detection. Biosensors 2020, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Larpant, N.; Suwanwong, Y.; Boonpangrak, S.; Laiwattanapaisal, W. Exploring matrix effects on binding properties and characterization of cotinine molecularly imprinted polymer on paper-based scaffold. Polymers 2019, 11, 570. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Xu, Z.; Liu, Z. Paper-Based Molecular-Imprinting Technology and Its Application. Biosensors 2022, 12, 595. https://doi.org/10.3390/bios12080595
Xu S, Xu Z, Liu Z. Paper-Based Molecular-Imprinting Technology and Its Application. Biosensors. 2022; 12(8):595. https://doi.org/10.3390/bios12080595
Chicago/Turabian StyleXu, Shufang, Zhigang Xu, and Zhimin Liu. 2022. "Paper-Based Molecular-Imprinting Technology and Its Application" Biosensors 12, no. 8: 595. https://doi.org/10.3390/bios12080595
APA StyleXu, S., Xu, Z., & Liu, Z. (2022). Paper-Based Molecular-Imprinting Technology and Its Application. Biosensors, 12(8), 595. https://doi.org/10.3390/bios12080595