APTES-Modified Remote Self-Assembled DNA-Based Electrochemical Biosensor for Human Papillomavirus DNA Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments
2.2. Reagents
2.3. Electrode Pretreatment
2.4. Fabrication of Au/APTES
2.5. Preparation of the DNA Biosensor
2.6. Electrochemical Measurement
3. Results and Discussion
3.1. Mechanism of the Proposed DNA Biosensor
3.2. Electrochemical Characterization
3.3. Surface Characterization of Modified Electrodes by SEM
3.4. Optimization of the Experimental Conditions
3.5. Performance of the DNA Biosensor
3.6. Specificity and Longtime Stability of Biosensor
3.7. Analytical Capability of the Resulting Biosensor to Detect HPV-16 in Complex Environments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Human Papillomavirus (HPV) and Cervical Cancer. Available online: https://www.who.int/en/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer (accessed on 22 February 2022).
- Ekwunife, O.I.; O’Mahony, J.F.; Gerber Grote, A.; Mosch, C.; Paeck, T.; Lhachimi, S.K. Challenges in Cost-Effectiveness Analysis Modelling of HPV Vaccines in Low- and Middle-Income Countries: A Systematic Review and Practice Recommendations. Pharmacoeconomics 2017, 35, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Vu, M.; Yu, J.; Awolude, O.A.; Chuang, L. Cervical cancer worldwide. Curr. Probl. Cancer 2018, 42, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.X.; Munoz, M.M.; Muñoz, N.; Sherman, M.; Jansen, A.M.; Peto, J.; Schiffman, M.H.; Moreno, V.; Kurman, R.; Shah, K.V. Prevalence of Human Papillomavirus in Cervical Cancer: A Worldwide Perspective. J. Natl. Cancer Inst. 1995, 87, 796–802. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Van den Heuvel, C.; Loopik, D.L.; Ebisch, R.M.F.; Elmelik, D.; Andralojc, K.M.; Huynen, M.; Bulten, J.; Bekkers, R.L.M.; Massuger, L.; Melchers, W.J.G.; et al. RNA-based high-risk HPV genotyping and identification of high-risk HPV transcriptional activity in cervical tissues. Mod. Pathol. 2020, 33, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.R. Development of Point-of-Care Biosensors for COVID-19. Front. Chem. 2020, 8, 517. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Li, Y.; Qiao, Z.; Song, W.; Bi, S. Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol. 2021, 39, 1160–1172. [Google Scholar] [CrossRef]
- Panno, S.; Matić, S.; Tiberini, A.; Caruso, A.G.; Bella, P.; Torta, L.; Stassi, R.; Davino, S. Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology. Plants 2020, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Xu, F.; Gao, L.; Liu, J. The Correlation between the Determination of Vaginal Micro-Ecological Composition and the Outcome of HPV Infection by High-Throughput Metagene Sequencing Information Technology on the Illumina Platform. J. Infect. Public Health 2020, 13, 1961–1966. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Zou, Z.; Huang, Z.; Deng, H.; Chen, W.; Peng, H. Split-type electrochemiluminescent gene assay platform based on gold nanocluster probe for human papillomavirus diagnosis. Biosens. Bioelectron. 2021, 178, 113044. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Xia, F.; White, R.J.; Zuo, X.; Patterson, A.; Xiao, Y.; Kang, D.; Gong, X.; Plaxco, K.W.; Heeger, A.J. An Electrochemical Supersandwich Assay for Sensitive and Selective DNA Detection in Complex Matrices. J. Am. Chem. Soc. 2010, 132, 14346–14348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. Application of Hybridization Chain Reaction (HCR) in Electrochemical Analysis. Int. J. Electrochem. Sci. 2022, 17, 2. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, J.; Wang, H.; Xia, F. A new electrochemical aptasensor based on a dual-signaling strategy and supersandwich assay. Analyst 2016, 141, 4313–4318. [Google Scholar] [CrossRef]
- Wu, J.; Lv, J.; Zheng, X.; Wu, Z.S. Hybridization chain reaction and its applications in biosensing. Talanta 2021, 234, 122637. [Google Scholar] [CrossRef]
- Li, J.; Jiang, J.; Su, Y.; Liang, Y.; Zhang, C. A novel cloth-based supersandwich electrochemical aptasensor for direct, sensitive detection of pathogens. Anal. Chim. Acta 2021, 1188, 339176. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cai, Q.; Li, H.; Jie, G. Supersandwich Nanowire/Quantum Dots Sensitization Structure-Based Photoelectrochemical “Signal-On” Platform for Ultrasensitive Detection of Thrombin. Anal. Chem. 2020, 92, 6734–6740. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Qian, Y.; Liu, M.; Liu, N.; Tang, X. Nanopore-based DNA Supersandwich Structure for Detection of Streptavidin. Chem. Res. Chin. Univ. 2019, 35, 837–841. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, M.; Qin, L.; Wang, P. Dual-Signal Readout of DNA Methylation Status Based on the Assembly of a Supersandwich Electrochemical Biosensor without Enzymatic Reaction. ACS Sens. 2019, 4, 2615–2622. [Google Scholar] [CrossRef]
- Liu, N.; Hou, R.; Gao, P.; Lou, X.; Xia, F. Sensitive Zn2+ sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 2016, 141, 3626–3629. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wolf, N.; Hondrich, T.J.J.; Shokoohimehr, P.; Milos, F.; Glass, M.; Mayer, D.; Maybeck, V.; Prompers, M.; Offenhausser, A.; et al. Engineering Biocompatible Interfaces via Combinations of Oxide Films and Organic Self-Assembled Monolayers. ACS Appl. Mater. Interfaces 2020, 12, 17121–17129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lai, E.P.C. Chemical Functionalities of 3-aminopropyltriethoxy-silane for Surface Modification of Metal Oxide Nanoparticles. Silicon 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Dube, E.; Soy, R.; Shumba, M.; Nyokong, T. Photophysicochemical behaviour of phenoxy propanoic acid functionalised zinc phthalocyanines when grafted onto iron oxide and silica nanoparticles: Effects in photodynamic antimicrobial chemotherapy. J. Lumin. 2021, 234, 117939. [Google Scholar] [CrossRef]
- Raqeema, S.; Hashim, U.; Azizah, N. Study of surface functionalization on IDE by using 3-aminopropyl triethoxysilane (APTES) for cervical cancer detection. AIP Conf. Proc. 2016, 1733, 20081. [Google Scholar]
- Sasou, M.; Sugiyama, S.; Yoshino, T.; Ohtani, T. Molecular Flat Mica Surface Silanized with Methyltrimethoxysilane for Fixing and Straightening DNA. Langmuir 2003, 19, 9845–9849. [Google Scholar] [CrossRef]
- Tang, B.; Cheang, T.-Y.; Wang, S.-M.; Xu, P.; Xu, A.-W.; Chang, G.-Q.; Hu, Z.-J.; He, W.-L.; Xing, Z.-H.; Xu, J.-B.; et al. Promising plasmid DNA vector based on APTES-modified silica nanoparticles. Int. J. Nanomed. 2012, 7, 1061–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourkaib, M.C.; Gaudin, P.; Vibert, F.; Guiavarc’h, Y.; Delaunay, S.; Framboisier, X.; Humeau, C.; Chevalot, I.; Blin, J.-L. APTES modified SBA15 and meso-macro silica materials for the immobilization of aminoacylases from Streptomyces ambofaciens. Microporous Mesoporous Mater. 2021, 323, 111226. [Google Scholar] [CrossRef]
- Ali, M.R.; Bacchu, M.S.; Setu, M.A.A.; Akter, S.; Hasan, M.N.; Chowdhury, F.T.; Rahman, M.M.; Ahommed, M.S.; Khan, M.Z.H. Development of an advanced DNA biosensor for pathogenic Vibrio cholerae detection in real sample. Biosens. Bioelectron. 2021, 188, 113338. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Zhao, Y.; Cheng, L.; He, N.; Lu, Z. Assembly method fabricating linkers for covalently bonding DNA on glass surface. Sensors 2001, 1, 53–59. [Google Scholar] [CrossRef]
- Huang, H.; Bai, W.; Dong, C.; Guo, R.; Liu, Z. An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens. Bioelectron. 2015, 68, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Park, C.R.; Park, S.J.; Lee, W.G.; Hwang, B.H. Biosensors Using Hybridization Chain Reaction—Design and Signal Amplification Strategies of Hybridization Chain Reaction. Biotechnol. Bioprocess Eng. 2018, 23, 355–370. [Google Scholar] [CrossRef]
- Chekin, F.; Bagga, K.; Subramanian, P.; Jijie, R.; Singh, S.K.; Kurungot, S.; Boukherroub, R.; Szunerits, S. Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: Application to human papillomavirus (HPV). Sens. Actuators B Chem. 2018, 262, 991–1000. [Google Scholar] [CrossRef]
- Aspermair, P.; Mishyn, V.; Bintinger, J.; Happy, H.; Bagga, K.; Subramanian, P.; Knoll, W.; Boukherroub, R.; Szunerits, S. Reduced graphene oxide-based field effect transistors for the detection of E7 protein of human papillomavirus in saliva. Anal. Bioanal. Chem. 2021, 413, 779–787. [Google Scholar] [CrossRef]
- Jampasa, S.; Siangproh, W.; Laocharoensuk, R.; Yanatatsaneejit, P.; Vilaivan, T.; Chailapakul, O. A new DNA sensor design for the simultaneous detection of HPV type 16 and 18 DNA. Sens. Actuators B Chem. 2018, 265, 514–521. [Google Scholar] [CrossRef]
- Shariati, M.; Ghorbani, M.; Sasanpour, P.; Karimizefreh, A. An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment. Anal. Chim. Acta 2019, 1048, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Zhang, X.; Zhang, Q.; Liang, Z.; Ma, Q.; Su, X. A novel high efficient electrochemiluminescence sensor based on reductive Cu(I) particles catalyzed Zn-doped MoS2 QDs for HPV 16 DNA determination. Biosens. Bioelectron. 2020, 160, 112217. [Google Scholar] [CrossRef]
Name | Sequence (from 5′ to 3′) |
---|---|
Capture probe (CP) | CCC TCA GAC CCT TAG T |
Target DNA (TD) | GTA ATC CAA AAA TTG AAA ACT AAG GGT CTG AGG G |
Auxiliary probe 1 (AP1) | TTT CAA TTT TTG GAT TAC CGT GGA CCC CCT CAT |
Auxiliary probe 2 (AP2) | GTA ATC CAA AAA TTG AAA ATG AGG GGG TCC ACG |
Noncomplementary sequence (NC) | CCT TTT AGT CAG TGT GGA AAT CTC TAG CAG TGG C |
Single-base mismatch target (1MT) | GTA ATC CAA TAA TTG AAA ACT AAG GGT CTG AGG G |
Two-base mismatch target (2MT) | GTA ATC CAA TTA TTG AAA ACT AAG GGT CTG AGG G |
HPV-18 | GTA TAT TGC AAG ACA GTA TTG GAA CTT ACA GAG G |
HPV-31 | CCA AAA GCC CAA GGA AGA TCC ATT TAA A |
HPV-33 | CAC ATC CAC CCG CAC ATC GTC TGC AAA A |
Dynamic Line Arrange (mol/L) | LOD (mol/L) | Method | Reference |
---|---|---|---|
3.50 × 10−12 −3.53 × 10−11 | 1.750 × 10−12 | DPV | [33] |
/ | 1.750 × 10−9 | FET | [34] |
5.00 × 10−10 − 1.00 × 10−7 | 1.500 × 10−10 | DPV | [35] |
1.00 × 10−14 − 1.00 × 10−6 | 1.000 × 10−15 | EIS | [36] |
1.00 × 10−10 − 2.00 × 10−7 | 3.000 × 10−11 | ECL | [37] |
1.00 × 10−13 − 1.00 × 10−6 | 5.475 × 10−16 | DPV | This work |
TD Added (nmol/L) | Total Found (nmol/L) | Recovery (%) | RSD (%) |
---|---|---|---|
1.0 | 0.953 | 95.30 | 3.65 |
10.0 | 10.854 | 108.54 | 6.42 |
100.0 | 103.380 | 103.38 | 5.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Qing, Y.; Hao, X.; Fang, C.; Ouyang, P.; Li, H.; Wang, Z.; Liao, Y.; Fang, H.; Du, J. APTES-Modified Remote Self-Assembled DNA-Based Electrochemical Biosensor for Human Papillomavirus DNA Detection. Biosensors 2022, 12, 449. https://doi.org/10.3390/bios12070449
Yang Y, Qing Y, Hao X, Fang C, Ouyang P, Li H, Wang Z, Liao Y, Fang H, Du J. APTES-Modified Remote Self-Assembled DNA-Based Electrochemical Biosensor for Human Papillomavirus DNA Detection. Biosensors. 2022; 12(7):449. https://doi.org/10.3390/bios12070449
Chicago/Turabian StyleYang, Yuxing, Yang Qing, Xudong Hao, Chenxin Fang, Ping Ouyang, Haiyu Li, Zhencui Wang, Yazhen Liao, Haobin Fang, and Jie Du. 2022. "APTES-Modified Remote Self-Assembled DNA-Based Electrochemical Biosensor for Human Papillomavirus DNA Detection" Biosensors 12, no. 7: 449. https://doi.org/10.3390/bios12070449
APA StyleYang, Y., Qing, Y., Hao, X., Fang, C., Ouyang, P., Li, H., Wang, Z., Liao, Y., Fang, H., & Du, J. (2022). APTES-Modified Remote Self-Assembled DNA-Based Electrochemical Biosensor for Human Papillomavirus DNA Detection. Biosensors, 12(7), 449. https://doi.org/10.3390/bios12070449