Bio-Doped Microbial Nanosilica as Optosensing Biomaterial for Visual Quantitation of Nitrite in Cured Meats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentations
2.3. Biomimetic Synthesis of Silica nanoparticles and Fabrication of Microbial Optosensor
2.4. Validation Study
3. Results and Discussion
3.1. Morphology of R5-Fusion Microbial Nanosilica and Optical Nitrite Biosensing Response
3.2. Effect of Buffer pH on the Microbial Optosensor Response
3.3. Response Time and Dynamic Linear Response Range of the Microbial Optosensor for Nitrite Detection
3.4. Operational Stability and Repeatability of the Bio-Doped Microbial Biosensor
3.5. The Effect of Interferent on the Microbial Optosensor Response
3.6. Validation of Microbial Optosensor with Standard Griess Method for Nitrite Quantitation
3.7. Comparison of the Developed Nitrite Biosensor with Several Recently Reported Optical Nitrite Sensors and Biosensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, I.; Ballesteros, A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol−gel polymers: an efficient and generic approach. J. Am. Chem. Soc. 2015, 120, 8587–8598. [Google Scholar] [CrossRef]
- Carvaldo, N.B.; Vidal, B.T.; Barbosa, A.S.; Pereira, M.M.; Mattedi, S.; Freitas, L.S.; Lima, A.S.; Soares, C.M.F. Lipase immobilization on silica xerogel treated with protic ionic liquid and its application in biodiesel production from different oils. Int. J. Mol. Sci. 2018, 19, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, A.E.; Yang, A.J.; Wang, N.S. Enzyme stabilization and immobilization by sol-gel entrapment. Methods Mol. Biol. 2011, 679, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Gholami, T.; Salavati-Niasari, M.; Bazarganipour, M.; Noori, E. Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by organic ligand. Superlattices Microstruct. 2013, 61, 33–41. [Google Scholar] [CrossRef]
- Luckarift, H.R.; Spain, J.C.; Naik, R.R.; Stone, M.O. Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 2004, 22, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.H.; Lee, J.; Sang, B.; Won, K.; Kim, Y.H. Silaffin peptides as a novel signal enhancer for gravimetric biosensors. Biotechnol. Appl. Biochem. 2013, 170, 25–31. [Google Scholar] [CrossRef]
- Pamirsky, I.E.; Golokhvast, K.S. Silaffins of diatoms: From applied biotechnology to biomedicine. Mar. Drugs 2013, 11, 3155–3167. [Google Scholar] [CrossRef] [Green Version]
- Choi, O.; Kim, B.; An, J.; Min, K.; Kim, Y.H.; Um, Y.; Oh, M.; Sang, B. A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme. Enzym. Microb. Technol. 2011, 49, 441–445. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wojciak, K.M. Reduction of nitrite in meat products through the application of various plant-based ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Q. Isolation of antibacterial, nitrosylmyoglobin forming lactic acid bacteria and their potential use in meat processing. Front. Microbiol. 2020, 11, 1315. [Google Scholar] [CrossRef]
- Karwowska, A.; Kononiuk, A. Nitrates/nitrites in food—risk for nitrosative stress and benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govari, M.; Pexara, A. Nitrates and nitrites in meat products. J. Hell. Vet. Med. Soc. 2018, 66, 127. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Lee, S.Y.; Jo, C.; Yoon, Y.; Jeong, J.Y.; Hur, S.J. Effect on health from consumption of meat and meat products. J. Anim. Sci. Technol. 2021, 63, 955–976. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, S.M.; Topel, D.G.; Marple, D. The Science of Animal Growth and Meat Technology. 2019. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/saltpeter (accessed on 2 March 2021).
- Akyuz, M.; Ata, S. Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography–mass spectrometry and liquid chromatography with fluorescence detection. Talanta 2009, 79, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Coviello, D.; Pascale, R.; Ciriello, R.; Salvi, A.M.; Guerrieri, A.; Contursi, M.; Scrano, L.; Bufo, S.A.; Cataldi, T.R.I.; Bianco, G. Validation of an analytical method for nitrite and nitrate determination in meat foods for infants by ion chromatography with conductivity detection. Foods 2020, 9, 1238. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Bai, X.; Li, Y.; Wang, B.; Kong, B.; Liu, Q.; Xia, X. Changes in moisture, colour, residual nitrites and N-nitrosamine accumulation of bacon induced by nitrite levels and dry-frying temperatures. Meat Sci. 2021, 181, 108604. [Google Scholar] [CrossRef]
- Gapper, L.W.; Fong, B.Y.; Otter, D.E.; Indyk, H.E.; Woollard, D.C. Determination of nitrite and nitrate in dairy products by ion exchange LC with spectrophotometric detection. Int. Dairy J. 2004, 14, 881–887. [Google Scholar] [CrossRef]
- Tatarczak-Michalewska, M.; Flieger, J.; Kawka, J.; Plazinski, W.; Flieger, W.; Blicharska, E.; Majerek, D. HPLC-DAD determination of nitrite and nitrate in human saliva utilizing a phosphatidylcholine column. Molecules 2019, 24, 1754. [Google Scholar] [CrossRef] [Green Version]
- Altunay, N.; Elik, A. A green and efficient vortex-assisted liquid-phase microextraction based on supramolecular solvent for UV–VIS determination of nitrite in processed meat and chicken products. Food Chem. 2020, 332, 127395. [Google Scholar] [CrossRef]
- Thomas Scientific. Nitrite Ion Selective Electrode. 2022. Available online: https://www.thomassci.com/scientific-supplies/Nitrite-Ion-Selective-Electrode (accessed on 18 May 2022).
- Ntsensors. Nitrite Ion Selective Electrode (ISE). 2022. Available online: https://www.ntsensors.com/parameters/nitrite-ion-selective-electrode/ (accessed on 18 May 2022).
- True Science. Replacement TRUEscience Ion Selective Electrode for Nitrite NO2–S7 No Lead. 2022. Available online: https://www.truescience.co.uk/product/replacement-truescience-ion-selective-electrode-for-nitrite-no2-s7-no-lead/ (accessed on 18 May 2022).
- Thermo Electron Corporation. Orion Nitrite Electrode Instruction Electrode. 2022. Available online: https://www.fondriest.com/pdf/thermo_nitrite_manual.pdf (accessed on 18 May 2022).
- Clean Instruments-Strider Tech. A Nitrite Ion Selective Electrode Sensor. 2022. Available online: http://www.cleaninst.com/ions-nitrite.htm (accessed on 18 May 2022).
- Tan, S.S.; Yanagisawa, S.; Inagaki, K.; Morikawa, Y.; Mohammad, B.K. Augmented pH-sensitivity absorbance of a ruthenium(ii) bis(bipyridine) complex with elongation of the conjugated ligands: An experimental and theoretical investigation. Phys. Chem. Chem. Phys. 2017, 19, 25734–25745. Available online: http://xlink.rsc.org/?DOI=C7CP04268J (accessed on 10 February 2022). [CrossRef] [Green Version]
- Siti Nur Syazni, M.Z.; Tan, L.L.; Nina Suhaity, A.; Lee, Y.H.; Chong, K.F.; Saiful Nizam, T. A whole cell bio-optode based on immobilized nitrite-degrading microorganism on the acrylic microspheres for visual quantitation of nitrite ion. Sens. Actuators B. Chem. 2018, 255, 2844–2852. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0925400517317689 (accessed on 10 February 2022).
- FSSAI. Manual of Methods of Analysis of Foods: Meat and Meat Products & Fish and Fish Products, Food Safety and Standards Authority of India. 2012. Available online: https://old.fssai.gov.in/Portals/0/Pdf/15Manuals/MEAT%20AND%20FISH.pdf (accessed on 13 March 2021).
- Hildebrand, M. Diatoms, biomineralization processes, and genomics. Chem. Rev. 2008, 108, 4855–4874. [Google Scholar] [CrossRef] [PubMed]
- Senior, L.; Crump, M.P.; Williams, C.; Booth, P.J.; Mann, S.; Perriman, A.W.; Curnow, P. Structure and function of the silicifying peptide R5. J. Mater. Chem. B 2015, 3, 2607–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaedi, M. Adsorption: Fundamental processes and applications. Interface Sci. Technol. 2021, 3, 2–713. Available online: https://www.sciencedirect.com/topics/materials-science/silica-gel (accessed on 10 February 2022).
- Benitez-Medina, G.E.; Flores, R.; Vargas, L.; Cuenu, F.; Shama, P.; Castro, M.; Ramirez, A. Hybrid material by anchoring a ruthenium(II) imine complex to SiO2: Preparation, characterization and DFT studies. RSC Adv. 2021, 11, 6221–6233. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ruiz, N.; Curto, V.F.; Erenas, M.M.; Benito-Lopez, F.; Diamond, D.; Palma, A.J.; Capitan-Vallvey, L.F. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal. Chem. 2014, 86, 9554–9562. [Google Scholar] [CrossRef]
- Robinson, P.K. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015, 59, 1–41. [Google Scholar] [CrossRef]
- Oliveira, J.E.; Mattoso, L.H.C.; Medeiros, E.S.; Zucolotto, V. Poly(lactic acid)/carbon nanotube fibers as novel platforms for glucose biosensors. Biosensors 2012, 2, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Echaniz, J.; Benito-Fernández, J.; Mintegui-Raso, S. Methemoglobinemia and consumption of vegetables in infants. Pediatrics 2001, 107, 1024–1028. [Google Scholar] [CrossRef] [Green Version]
- Soren, N.M.; Biswas, A.K. Methods for nutritional quality analysis of meat. In Meat Quality Analysis; Academic Press: Cambridge, MA, USA, 2020; pp. 21–36. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, C.; Yang, C.; Huang, B.; Liu, C. Preparation and release properties of sol-gel encapsulated proteins. J. Anal. Sci. Methods Instrum. 2013, 3, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Demirkiran, N.; Ekinci, E.; Asilturk, M. Immobilization of glucose oxidase in silica sol-gel film for application to biosensor and amperometric determination of glucose. J. Chil. Chem. Soc. 2012, 57, 1136–1339. [Google Scholar] [CrossRef]
- Kamanina, O.A.; Saverina, E.A.; Rybochkin, P.V.; Arlyapow, V.A.; Vereshchagin, A.N.; Ananikov, V.P. Preparation of hybrid sol-gel materials based on living cells of microorganisms and their application in nanotechnology. Nanomaterials 2022, 12, 1086. [Google Scholar] [CrossRef] [PubMed]
- RoyChoudhury, S.; Umasankar, Y.; Hutcheson, J.D.; Lev-Tov, H.A.; Kirsner, R.S.; Bhansali, S. Uricase based enzymatic biosensor for non-invasive detection of uric acid by entrapment in PVA-SbQ polymer matrix. Electroanalysis 2018, 30, 2374–2385. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Ali, S.M.U.; Khun, K.; Chey, C.O.; Nur, O.; Williander, M. ZnO nanorods based enzymatic biosensor for selective determination of penicillin. Biosensors 2011, 1, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef]
- Tizioto, P.C.; Gromboni, C.F.; Nogueira, A.R.A.; Souza, M.M.; Mudadu, M.A.; Tholon, P.; Rosa, A.N.; Tullio, R.R.; Medeiros, S.R.; Nassa, R.T.; et al. Calcium and potassium content in beef: Influences on tenderness and associations with molecular markers in Nellore cattle. Meat Sci. 2014, 96, 436–440. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Ammonia, US Agency for Toxic Substances and Disease. Registry. 2004. Available online: www.atsdr.cdc.gov/toxprofiles/tp126-c4.pdf (accessed on 13 March 2021).
- Justnes, H.; Escudero-Onate, C.; Garmo, O.A.; Mendege, M. Transformation kinetics of burnt lime in freshwater and sea water. Materials 2020, 13, 4926. [Google Scholar] [CrossRef]
- Tamme, T.; Reinik, M.; Roasto, M.; Juhkam, K.; Tenno, K.; Kiis, A. Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. Food Addit. Contam. Part A 2006, 23, 355–361. [Google Scholar] [CrossRef]
- European Food Safety Authority. Nitrites and Nitrates Added to Food. 2017. Available online: https://doi.org/10.2805/485488 (accessed on 13 March 2021).
- Filgueiras, M.F.; Jesus, P.C.; Borges, E.M. Quantification of nitrite in food and water samples using the griess assay and digital images acquired using a desktop scanner. J. Chem. Educ. 2021, 98, 3303–3311. [Google Scholar] [CrossRef]
- Ho, T.Y.; Lan, Y.H.; Huang, J.E.; Chang, J.J.; Chen, C.H. Using diazotization reaction to develop portable liquid-crystal-based sensors for nitrite detection. ACS Omega 2020, 5, 11809–11816. [Google Scholar] [CrossRef] [PubMed]
- Pires, N.M.M.; Dong, T.; Yang, Z. A fluorimetric nitrite biosensor with polythienothiophene-fullerene thin film detectors for on-site water monitoring. Analyst 2019, 144, 4342–4350. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, X.; Jiang, C.; Zhang, W.; Yang, L. The trace detection of nitrite ions using neutral red functionalized SH-β-cyclodextrin @Au nanoparticles. Sensors 2018, 18, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habibzadeh, S.; Tavallali, H.; Esmaielzadeh, S.; Gharghani, Z. Introduction of a new nitrite-selective optical sensor for food analysis using a copper(II) schiff base complex. Eurasian Chem. Commun. 2020, 2, 247–256. [Google Scholar] [CrossRef] [Green Version]
Potential Interfering Species | Reflectance Intensity at Concentration Ratio between Nitrite and Potential Interfering Species, 608 nm (a.u.) | |||
---|---|---|---|---|
1:0 | 1:1 | 1:10 | 1:100 | |
NO3− | 2971.47 ± 0.79 | 3371.27 ± 0.71 | 3245.74 ± 0.46 a | |
NH4+ | 2971.47 ± 0.79 | 2901.41 ± 0.76 | 2967.94 ± 0.19 | 2842.22 ± 0.65 a |
K+ | 2971.47 ± 0.79 | 2968.80 ± 0.76 | 2761.83 ± 0.16 a | |
Ca2+ | 2971.47 ± 0.79 | 2858.51 ± 0.16 | 2828.42 ± 0.18 | 2749.58 ± 0.81 a |
Mg2+ | 2971.47 ± 0.79 | 3047.81 ± 0.19 | 2915.02 ± 0.19 | 2819.04 ± 0.87 a |
Fe2+ | 2971.47 ± 0.79 | 2872.67 ± 0.61 | 2716.51 ± 0.22 a | |
Fe3+ | 2971.47 ± 0.79 | 2873.07 ± 0.53 a |
Sample | Concentration of Nitrite (mg L−1) | t Value | |
---|---|---|---|
Griess Method | Microbial Optosensor | ||
Nugget | 1.47 ± 0.56 | 1.63 ± 0.17 | 1.9956 |
Sausage | 2.22 ± 0.45 | 2.50 ± 0.34 | 1.9993 |
Canned meat | 3.71 ± 0.34 | 3.93 ± 0.34 | 1.9996 |
Sensing Elements and Immobilization Matrix | Immobilization Technique | Detection Method | Linear Range (mg L−1) | Detection Limit (mg L−1) | Response Time (min) | Storage Stability (day) | Reference |
---|---|---|---|---|---|---|---|
R. planticola-NAD(P)H-Ru(II) complex-R5 fusion nanosilica | Biosilicification entrapment | Refelectance spectrophotometry | 1.000–100.000 | 0.250 | 4 | 15 | This work |
Tetradecyl 4-aminobenzoate (14CBA)-doped 4-cyano-4′-pentylbiphenyl (5CB) liquid-crystal (LC)-glass slide | Casting of LC mixture onto glass substrate | Absorption spectrophotometry | 1.725–690 | 1.725 | 60 | - | Ho et al. [51] |
Polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM integrate organic photodetectors (OPDs) | Spin-coating | Fluorescence spectophotometry | 0.076–1.932 | 0.025 | 14 | - | Pires et al. [52] |
Neutral red-SH-β-cyclodextrin (CD)@AuNPs | Chemical binding | Fluorescence spectophotometry | 0.300–0.900 | 0.250 | - | - | Du et al. [53] |
Cu(II) Schiff base complex- triacetylcellulose membrane | Polymer entrapment | Absorption spectrophotometry | 0.500–7.000 | 0.040 | 8–10 | - | Habibzadeh et al. [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Zuki, S.N.S.; Goh, C.T.; Kassim, M.B.; Tan, L.L. Bio-Doped Microbial Nanosilica as Optosensing Biomaterial for Visual Quantitation of Nitrite in Cured Meats. Biosensors 2022, 12, 388. https://doi.org/10.3390/bios12060388
Mohd Zuki SNS, Goh CT, Kassim MB, Tan LL. Bio-Doped Microbial Nanosilica as Optosensing Biomaterial for Visual Quantitation of Nitrite in Cured Meats. Biosensors. 2022; 12(6):388. https://doi.org/10.3390/bios12060388
Chicago/Turabian StyleMohd Zuki, Siti Nur Syazni, Choo Ta Goh, Mohammad B. Kassim, and Ling Ling Tan. 2022. "Bio-Doped Microbial Nanosilica as Optosensing Biomaterial for Visual Quantitation of Nitrite in Cured Meats" Biosensors 12, no. 6: 388. https://doi.org/10.3390/bios12060388
APA StyleMohd Zuki, S. N. S., Goh, C. T., Kassim, M. B., & Tan, L. L. (2022). Bio-Doped Microbial Nanosilica as Optosensing Biomaterial for Visual Quantitation of Nitrite in Cured Meats. Biosensors, 12(6), 388. https://doi.org/10.3390/bios12060388