Functionalization of Glucose Oxidase in Organic Solvent: Towards Direct Electrical Communication across Enzyme-Electrode Interface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instrumentations
2.3. Functionalization of GOx and Its Activity
2.4. Immobilization of the Self-Assembly Monolayers of the Enzymes on Au
2.5. Electrochemical Investigation of the Electrodes
3. Results and Discussion
3.1. Functionalization of Glucose Oxidase with Ferrocenyl Group
3.2. Characterization of the Functionalized Enzyme
3.3. Self-Assembly Monolayers of GOx and Fc-GOx on Au
3.4. Bioelectrocatalysis of GOx/MBA/Au and Fc-GOx/MBA/Au with and without Oxygen
3.5. Possible Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef] [PubMed]
- Mandpe, P.; Prabhakar, B.; Gupta, H.; Shende, P. Glucose Oxidase-Based Biosensor for Glucose Detection from Biological Fluids. Sens. Rev. 2020, 40, 497–511. [Google Scholar] [CrossRef]
- Bartlett, P.N.; Al-Lolage, F.A. There Is No Evidence to Support Literature Claims of Direct Electron Transfer (DET) for Native Glucose Oxidase (GOx) at Carbon Nanotubes or Graphene. J. Electroanal. Chem. 2018, 819, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.S. Native Glucose Oxidase Does Not Undergo Direct Electron Transfer. Biosens. Bioelectron. 2016, 82, vii–viii. [Google Scholar] [CrossRef] [PubMed]
- Bagdžiūnas, G.; Ramanavičius, A. Towards Direct Enzyme Wiring: A Theoretical Investigation of Charge Carrier Transfer Mechanisms between Glucose Oxidase and Organic Semiconductors. Phys. Chem. Chem. Phys. 2019, 21, 2968–2976. [Google Scholar] [CrossRef] [PubMed]
- Zanetti-Polzi, L.; Daidone, I.; Corni, S. Evidence of a Thermodynamic Ramp for Hole Hopping to Protect a Redox Enzyme from Oxidative Damage. J. Phys. Chem. Lett. 2019, 10, 1450–1456. [Google Scholar] [CrossRef]
- Bagdžiūnas, G.; Žukauskas, Š.; Ramanavičius, A. Insights into a Hole Transfer Mechanism between Glucose Oxidase and a P-Type Organic Semiconductor. Biosens. Bioelectron. 2018, 102, 449–455. [Google Scholar] [CrossRef]
- Žukauskas, Š.; Ramanavičius, A.; Bagdžiūnas, G. Organic Semiconductors with Carbazole and Triphenylamine Moieties for Glucose Oxidase-Based Biosensors. J. Electrochem. Soc. 2019, 166, B316. [Google Scholar] [CrossRef]
- Bagdžiūnas, G.; Palinauskas, D. Poly(9H-Carbazole) as a Organic Semiconductor for Enzymatic and Non-Enzymatic Glucose Sensors. Biosensors 2020, 10, 104. [Google Scholar] [CrossRef]
- Saleem, M.; Yu, H.; Wang, L.; Zain-ul-Abdin; Khalid, H.; Akram, M.; Abbasi, N.M.; Huang, J. Review on Synthesis of Ferrocene-Based Redox Polymers and Derivatives and Their Application in Glucose Sensing. Anal. Chim. Acta 2015, 876, 9–25. [Google Scholar] [CrossRef]
- Xu, L.; Kuan, S.L.; Weil, T. Contemporary Approaches for Site-Selective Dual Functionalization of Proteins. Angew. Chem. Int. Ed. 2021, 60, 13757–13777. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Lee, J.; Loew, N.; Takahashi-Inose, Y.; Okuda-Shimazaki, J.; Kojima, K.; Mori, K.; Tsugawa, W.; Sode, K. Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after a Quick-and-Easy Modification with a Mediator. Int. J. Mol. Sci. 2020, 21, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatada, M.; Loew, N.; Inose-Takahashi, Y.; Okuda-Shimazaki, J.; Tsugawa, W.; Mulchandani, A.; Sode, K. Development of a Glucose Sensor Employing Quick and Easy Modification Method with Mediator for Altering Electron Acceptor Preference. Bioelectrochemistry 2018, 121, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Lim, J.; Li, Z.; Wang, T.; Jiang, L.; Liu, S.; Zhou, L.; He, C. GOX-Hemin Nanogels with Enhanced Cascade Activity for Sensitive One-Step Glucose Detection. J. Mater. Chem. B 2021, 9, 3509–3514. [Google Scholar] [CrossRef]
- Bartlett, P.N.; Bradford, V.Q.; Whitaker, R.G. Enzyme Electrode Studies of Glucose Oxidase Modified with a Redox Mediator. Talanta 1991, 38, 57–63. [Google Scholar] [CrossRef]
- Sampath, S.; Lev, O. Renewable, Reagentless Glucose Sensor Based on a Redox Modified Enzyme and Carbon-Silica Composite. Electroanalysis 1996, 8, 1112–1116. [Google Scholar] [CrossRef]
- Degani, Y.; Heller, A. Direct Electrical Communication between Chemically Modified Enzymes and Metal Electrodes. 2. Methods for Bonding Electron-Transfer Relays to Glucose Oxidase and D-Amino-Acid Oxidase. J. Am. Chem. Soc. 1988, 110, 2615–2620. [Google Scholar] [CrossRef]
- Swetha, Y.; Reddy, E.R.; Kumar, J.R.; Trivedi, R.; Giribabu, L.; Sridhar, B.; Rathod, B.; Prakasham, R.S. Synthesis, Characterization and Antimicrobial Evaluation of Ferrocene–Oxime Ether Benzyl 1H-1,2,3-Triazole Hybrids. New J. Chem. 2019, 43, 8341–8351. [Google Scholar] [CrossRef]
- Strickland, E.H.; Beychok, S. Aromatic Contributions To Circular Dichroism Spectra Of Protein. CRC Crit. Rev. Biochem. 1974, 2, 113–175. [Google Scholar] [CrossRef]
- Pignataro, M.F.; Herrera, M.G.; Dodero, V.I. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020, 25, 4854. [Google Scholar] [CrossRef]
- Yan, X.; Tang, J.; Tanner, D.; Ulstrup, J.; Xiao, X. Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers. Catalysts 2020, 10, 1458. [Google Scholar] [CrossRef]
- Wohlfahrt, G.; Witt, S.; Hendle, J.; Schomburg, D.; Kalisz, H.M.; Hecht, H.-J. 1.8 and 1.9 Å Resolution Structures of the Penicillium Amagasakiense and Aspergillus Niger Glucose Oxidases as a Basis for Modelling Substrate Complexes. Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Şenel, M.; Abasıyanık, M.F. Construction of a Novel Glucose Biosensor Based on Covalent Immobilization of Glucose Oxidase on Poly(Glycidyl Methacrylate-Co-Vinylferrocene). Electroanalysis 2010, 22, 1765–1771. [Google Scholar] [CrossRef]
- Abasıyanık, M.F.; Şenel, M. Immobilization of Glucose Oxidase on Reagentless Ferrocene-Containing Polythiophene Derivative and Its Glucose Sensing Application. J. Electroanal. Chem. 2010, 639, 21–26. [Google Scholar] [CrossRef]
- Chen, M.; Diao, G. Electrochemical Study of Mono-6-Thio-β-Cyclodextrin/Ferrocene Capped on Gold Nanoparticles: Characterization and Application to the Design of Glucose Amperometric Biosensor. Talanta 2009, 80, 815–820. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, Y.; Wang, H.; Hou, S. Gold Nanoparticles Decorated on Single Layer Graphene Applied for Electrochemical Ultrasensitive Glucose Biosensor. J. Electroanal. Chem. 2019, 855, 113495. [Google Scholar] [CrossRef]
Entry | Electrode | Applied Potential, V vs. Ag/AgCl | Linear Range, mM | Average Sensitivity, μA cm−2 mM−1 | LOD, μM | Refs. |
---|---|---|---|---|---|---|
1 | Fc-GOx/MBA/Au without oxygen | 0.3 | 0.020–0.080 | 2.33 | 5.2 | This work |
2 | Fc-GOx/MBA/Au with oxygen | 0.3 | 0.020–0.080 | 1.40 | 8.3 | This work |
3 | GOx/MBA/Au without oxygen | 0.3 | 1.0–5.0 | 0.0138 | 38 | This work |
4 | GOx/MBA/Au with oxygen | 0.3 | 1.0–5.0 | 0.0357 | 210 | This work |
5 | GOx/polyGMA-co-VFc a | 0.35 | 0.5–6 | - | 3.0 | [23] |
6 | GOx/Th-COOH/Th–Fc b | 0.35 | 0.5–3.0 | - | 2.5 | [24] |
7 | GOx/CD-Fc/NPs/Pt c | 0.25 | 0.080–11.5 | 18.2 | 15 | [25] |
8 | GOx/Fc/NPAu/SLG d | 0.5 | 5 × 10−7–0.2 | - | 0.1 | [26] |
9 | GOx/polyCz/graphite e | 0.35 | 1.0–4.9 | 14 | 140 | [9] |
10 | GOx/polyCzEt/graphite e | 0.2 | 1–5 | 3.3 | 240 | [8] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudkaitė, V.; Bagdžiūnas, G. Functionalization of Glucose Oxidase in Organic Solvent: Towards Direct Electrical Communication across Enzyme-Electrode Interface. Biosensors 2022, 12, 335. https://doi.org/10.3390/bios12050335
Dudkaitė V, Bagdžiūnas G. Functionalization of Glucose Oxidase in Organic Solvent: Towards Direct Electrical Communication across Enzyme-Electrode Interface. Biosensors. 2022; 12(5):335. https://doi.org/10.3390/bios12050335
Chicago/Turabian StyleDudkaitė, Vygailė, and Gintautas Bagdžiūnas. 2022. "Functionalization of Glucose Oxidase in Organic Solvent: Towards Direct Electrical Communication across Enzyme-Electrode Interface" Biosensors 12, no. 5: 335. https://doi.org/10.3390/bios12050335
APA StyleDudkaitė, V., & Bagdžiūnas, G. (2022). Functionalization of Glucose Oxidase in Organic Solvent: Towards Direct Electrical Communication across Enzyme-Electrode Interface. Biosensors, 12(5), 335. https://doi.org/10.3390/bios12050335