Specific and Sensitive Detection of Tartrazine on the Electrochemical Interface of a Molecularly Imprinted Polydopamine-Coated PtCo Nanoalloy on Graphene Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Fabrication of the Molecularly Imprinted Nanocomposites
2.3. Fabrication of Modified GCEs and Electrochemical Measurements
3. Results
3.1. Characterization and Electrochemical Behavior of Nanocomposites
3.2. Optimization of Conditions
3.2.1. Optimization of the Nanocomposite
3.2.2. Incubation and Elution Times of the MIPDA Sensor
3.2.3. Solution pH
3.2.4. Adsorption Characteristics
3.3. Analytical Performance
3.3.1. Calibration Curve
3.3.2. Sensor Selectivity, Reproducibility, and Stability
3.3.3. Application
3.4. Comparison of Sensor Performance
3.5. Discussion of Electrochemical Sensing Surfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaya, S.I.; Cetinkaya, A.; Ozkan, S.A. Latest Advances on the Nanomaterials-Based Electrochemical Analysis of Azo Toxic Dyes Sunset Yellow and Tartrazine in Food Samples. Food Chem. Toxicol. 2021, 156, 112524. [Google Scholar] [CrossRef] [PubMed]
- Rovina, K.; Siddiquee, S.; Shaarani, S.M. A Review of Extraction and Analytical Methods for the Determination of Tartrazine (E 102) In Foodstuffs. Crit. Rev. Anal. Chem. 2017, 47, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Torrinha, A.; Morais, S. Electrochemical (Bio)Sensors Based on Carbon Cloth and Carbon Paper: An Overview. TrAC-Trend Anal. Chem. 2021, 142, 116324. [Google Scholar] [CrossRef]
- Debus, B.; Parastar, H.; Harrington, P.; Kirsanov, D. Deep Learning in Analytical Chemistry. TrAC-Trend Anal. Chem. 2021, 145, 116459. [Google Scholar] [CrossRef]
- Garcia, Y.; Vera, M.; Giraldo, J.D.; Garrido-Miranda, K.; Jimenez, V.A.; Urbano, B.F.; Pereira, E.D. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal. Chem. 2022, 94, 464–478. [Google Scholar] [CrossRef]
- Li, X.; Yu, P.; Feng, Y.F.; Yang, Q.R.; Li, Y.G.; Ye, B.-C. Specific Adsorption and Highly Sensitive Detection of Methyl Red in Wastewater Using an Iron Paste Electrode Modified with a Molecularly Imprinted Polymer. Electrochem. Commun. 2021, 132, 107144. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Barton, S.J.; Wren, S.P.; Barker, J. Review on Molecularly Imprinted Polymers with a Focus on Their Application to the Analysis of Protein Biomarkers. TrAC-Trend Anal. Chem. 2021, 144, 116431. [Google Scholar] [CrossRef]
- Rebelo, P.; Costa-Rama, E.; Seguro, I.; Pacheco, J.G.; Nouws, H.P.A.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Molecularly Imprinted Polymer-Based Electrochemical Sensors for Environmental Analysis. Biosens. Bioelectron. 2021, 172, 112719. [Google Scholar] [CrossRef]
- Joshi, D.J.; Koduru, J.R.; Malek, N.I.; Hussain, C.M.; Kailasa, S.K. Surface Modifications and Analytical Applications of Graphene Oxide: A Review. TrAC-Trend Anal. Chem. 2021, 144, 116448. [Google Scholar] [CrossRef]
- Kumar, R.K.; Bandurin, D.A.; Pellegrino, F.M.D.; Cao, Y.; Principi, A.; Guo, H.; Auton, G.H.; Ben Shalom, M.; Ponomarenko, L.A.; Falkovich, G.; et al. Superballistic Flow of Viscous Electron Fluid through Graphene Constrictions. Nat. Phys. 2017, 13, 1182. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.J.; Yang, B.; Jiang, X.X.; Li, J.P. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing. Crit. Rev. Anal. Chem. 2018, 48, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.K.; Li, X.M.; Huang, M.R.; Zhen, Z.; Zhong, Y.J.; Chen, Q.; Zhao, X.L.; He, Y.J.; Hu, R.R.; Yang, T.T.; et al. The Physics and Chemistry of Graphene-on-Surfaces. Chem. Soc. Rev. 2017, 46, 4417–4449. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.B.; Zhang, X.F.; Pu, Y.L.; Chen, X.L.; Feng, J.J.; Han, D.M.; Wang, A.J. One-Pot Solvothermal Synthesis of Reduced Graphene Oxide-Supported Uniform PtCo Nanocrystals for Efficient and Robust Electrocatalysis. J. Colloid Interf. Sci. 2019, 543, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Qiao, J.S.; Wu, H.T.; Qi, J.; Li, W.Z.; Mao, Z.; Wang, Z.H.; Sun, W.; Rooney, D.; Sun, K.N. Bioethanol as a New Sustainable Fuel for Anion Exchange Membrane Fuel Cells with Carbon Nanotube Supported Surface Dealloyed PtCo Nanocomposite Anodes. Chem. Eng. J. 2017, 317, 623–631. [Google Scholar] [CrossRef]
- Liu, M.M.; Zhang, R.Z.; Chen, W. Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chem. Rev. 2014, 114, 5117–5160. [Google Scholar] [CrossRef]
- Feinberg, H.; Hanks, T.W. Polydopamine: A Bioinspired Adhesive and Surface Modification Platform. Polym. Int. 2022, 71, 578–582. [Google Scholar] [CrossRef]
- Liu, Y.L.; Ai, K.L.; Lu, L.H. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Scherer, N.F.; Messersmith, P.B. Single-Molecule Mechanics of Mussel Adhesion. Proc. Natl. Acad. Sci. USA 2006, 103, 12999–13003. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, A.; Yuan, Z.; Benck, J.D.; Rajan, A.G.; Chu, X.S.; Wang, Q.H.; Strano, M.S. Current and Future Directions in Electron Transfer Chemistry of Graphene. Chem. Soc. Rev. 2017, 46, 4530–4571. [Google Scholar] [CrossRef]
- Campidelli, S.; Khachfe, R.A.; Jaouen, K.; Monteiller, J.; Amra, C.; Zerrad, M.; Cornut, R.; Derycke, V.; Ausserre, D. Backside Absorbing Layer Microscopy: Watching Graphene Chemistry. Sci. Adv. 2017, 3, e1601724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, C.; Perkins, W.S.; Veber, G.; Williams, T.E.; Cloke, R.R.; Fischer, F.R. Synergistic Enhancement of Electrocatalytic CO2 Reduction with Gold Nanoparticles Embedded in Functional Graphene Nanoribbon Composite Electrodes. J. Am. Chem. Soc. 2017, 139, 4052–4061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahadır, E.B.; Sezgintürk, M.K. Applications of Graphene in Electrochemical Sensing and Biosensing. TrAC Trends Anal. Chem. 2016, 76, 1–14. [Google Scholar] [CrossRef]
- Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-Phase Synthesis of Molecularly Imprinted Nanoparticles. Nat. Protoc. 2016, 11, 443–455. [Google Scholar] [CrossRef]
- Isaacson, S.G.; Lionti, K.; Volksen, W.; Magbitang, T.P.; Matsuda, Y.; Dauskardt, R.H.; Dubois, G. Fundamental Limits of Material Toughening in Molecularly Confined Polymers. Nat. Mater. 2016, 15, 294–298. [Google Scholar] [CrossRef]
- Wattanakit, C.; Come, Y.B.S.; Lapeyre, V.; Bopp, P.A.; Heim, M.; Yadnum, S.; Nokbin, S.; Warakulwit, C.; Limtrakul, J.; Kuhn, A. Enantioselective Recognition at Mesoporous Chiral Metal Surfaces. Nat. Commun. 2014, 5, 3325. [Google Scholar] [CrossRef]
- Gan, T.; Sun, J.Y.; Cao, S.Q.; Gao, F.X.; Zhang, Y.X.; Yang, Y.Q. One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine. Electrochim. Acta 2012, 74, 151–157. [Google Scholar] [CrossRef]
- Gan, T.; Sun, J.Y.; Wu, Q.; Jing, Q.S.; Yu, S. Graphene Decorated with Nickel Nanoparticles as a Sensitive Substrate for Simultaneous Determination of Sunset Yellow and Tartrazine in Food Samples. Electroanalysis 2013, 25, 1505–1512. [Google Scholar] [CrossRef]
- Gan, T.; Sun, J.Y.; Meng, W.; Song, L.; Zhang, Y.X. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food. Food Chem. 2013, 141, 3731–3737. [Google Scholar] [CrossRef]
- Ye, X.L.; Du, Y.L.; Lu, D.B.; Wang, C.M. Fabrication of cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine. Anal. Chim. Acta 2013, 779, 22–34. [Google Scholar]
- Song, X.J.; Shi, Z.; Tan, X.H.; Zhang, S.H.; Liu, G.S.; Wu, K.B. One-step solvent exfoliation of graphite to produce a highly-sensitive electrochemical sensor for tartrazine. Sens. Actuators B Chem. 2014, 197, 104–108. [Google Scholar] [CrossRef]
- Wang, M.L.; Zhao, J.W. Facile synthesis of Au supported on ionic liquid functionalized reduced graphene oxide for simultaneous determination of Sunset yellow and Tartrazine in drinks. Sens. Actuators B Chem. 2015, 216, 578–585. [Google Scholar] [CrossRef]
- Yang, Y.J.; Li, W. CTAB Functionalized Graphene Oxide/Multiwalled Carbon Nanotube Composite Modified Electrode for the Simultaneous Determination of Sunset Yellow and Tartrazine1. Russ. J. Electrochem. 2015, 51, 218–226. [Google Scholar] [CrossRef]
- Wang, M.L.; Zhao, J.W. A Facile Method Used for Simultaneous Determination of Ponceau 4R, Allura Red and Tartrazine in Alcoholic Beverages. J. Electrochem. Soc. 2015, 162, H321–H327. [Google Scholar] [CrossRef]
- Jampasa, S.; Siangproh, W.; Duangmal, K.; Chailapakul, O. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta 2016, 160, 113–124. [Google Scholar] [CrossRef]
- Deng, K.Q.; Li, C.X.; Li, X.F.; Huang, H.W. Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide. J. Electroanal. Chem. 2016, 780, 296–302. [Google Scholar] [CrossRef]
- Yu, L.L.; Zheng, H.J.; Shi, M.X.; Jing, S.S.; Qu, L.B. A Novel Electrochemical Sensor Based on Poly (Diallyldimethylammonium Chloride)-Dispersed Graphene Supported Palladium Nanoparticles for Simultaneous Determination of Sunset Yellow and Tartrazine in Soft Drinks. Food Anal. Methods 2017, 10, 200–209. [Google Scholar] [CrossRef]
- Qiu, X.L.; Lu, L.M.; Leng, J.; Yu, Y.F.; Wang, W.M.; Jiang, M.; Bai, L. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine. Food Chem. 2016, 190, 889–895. [Google Scholar] [CrossRef]
- An, Z.-Z.; Li, Z.; Guo, Y.-Y.; Chen, X.-L.; Zhang, K.-N.; Zhang, D.-X.; Xue, Z.-H.; Zhou, X.-B.; Lu, X.-Q. Preparation of chitosan/N-doped graphene natively grown on hierarchical porous carbon nanocomposite as a sensor platform for determination of tartrazine. Chin. Chem. Lett. 2017, 28, 1492–1498. [Google Scholar] [CrossRef]
- Arvand, M.; Gaskarmahalleh, A.A.; Hemmati, S. Enhanced-Oxidation and Highly Sensitive Detection of Tartrazine in Foodstuffs via New Platform Based on Poly(5-Sulfosalicylic Acid)/Cu(OH)2 Nanoparticles. Food Anal. Methods 2017, 10, 2241–2251. [Google Scholar] [CrossRef]
- He, Q.G.; Liu, J.; Liu, X.P.; Li, G.L.; Deng, P.H.; Liang, J.; Chen, D.C. Sensitive and Selective Detection of Tartrazine Based on TiO2-Electrochemically Reduced Graphene Oxide Composite-Modified Electrodes. Sensors 2018, 18, 1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahtaisleyen, S.; Gorduk, O.; Sahin, Y. Electrochemical Determination of Tartrazine Using a Graphene/Poly(L-Phenylalanine) Modified Pencil Graphite Electrode. Anal. Lett. 2020, 53, 1683–1703. [Google Scholar] [CrossRef]
- Wu, J.H.; Lee, H.L. Determination of sunset yellow and tartrazine in drinks using screen-printed carbon electrodes modified with reduced graphene oxide and NiBTC frameworks. Microchem. J. 2020, 158, 105133. [Google Scholar] [CrossRef]
- Wang, P.L.; Liu, X.; Hu, Q.Q.; Gao, H.; Ma, W. Simple and Rapid Determination of Tartrazine Using Poly(l-arginine)/Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2020, 15, 8901–8912. [Google Scholar] [CrossRef]
- Qin, Z.R.; Zhang, J.Y.; Liu, Y.; Wu, J.T.; Li, G.L.; Liu, J.; He, Q.G. A Simple but Efficient Voltammetric Sensor for Simultaneous Detection of Tartrazine and Ponceau 4R Based on TiO2/Electro-Reduced Graphene Oxide Nanocomposite. Chemosensors 2020, 8, 70. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Erk, N.; Karaman, O.; Karimi, F.; Bijad, M.; Karaman, C. Three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles for highly selective determination of azo dye compound tartrazine. Food Chem. Toxicol. 2021, 158, 112698. [Google Scholar] [CrossRef]
- AL-Refai, H.H.; Ganash, A.A.; Hussein, M.A. Sensitive and selective voltammetric sensor based on polythiophene nanocomposite mixed MWCNT-G for the determination of Tartrazine. Synth. Met. 2021, 280, 116875. [Google Scholar] [CrossRef]
- Darabi, R.; Shabani-Nooshabadi, M. NiFe2O4-rGO/ionic liquid modified carbon paste electrode: An amplified electrochemical sensitive sensor for determination of Sunset Yellow in the presence of Tartrazine and Allura Red. Food Chem. 2021, 339, 127841. [Google Scholar] [CrossRef]
- Wu, T.X.; Wang, Q.; Peng, X.Y.; Guo, Y.J. Facile Synthesis of Gold/Graphene Nanocomposites for Simultaneous Determination of Sunset Yellow and Tartrazine in Soft Drinks. Electroanalysis 2022, 34, 83–90. [Google Scholar] [CrossRef]
- Jiang, S.H.; Xu, J.F.; Xu, P.D.; Liu, L.J.; Chen, Y.; Qiao, C.S.; Yang, S.F.; Sha, Z.L.; Zhang, J.K. A NOVEL MOLECULARLY IMPRINTED SENSOR FOR DIRECT TARTRAZINE DETECTION. Anal. Lett. 2014, 47, 323–330. [Google Scholar] [CrossRef]
- Zhao, L.J.; Zeng, B.Z.; Zhao, F.Q. Electrochemical determination of tartrazine using a molecularly imprinted polymer – multiwalled carbon nanotubes - ionic liquid supported Pt nanoparticles composite film coated electrode. Electrochim. Acta 2014, 146, 611–617. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Liu, Y.Z.; Zuo, J.J.; Zhang, J.; Zhu, L.; Zhang, J.K. Rapid and sensitive determination of tartrazine using a molecularly imprinted copolymer modified carbon electrode (MIP-PmDB/PoPD-GCE). J. Electroanal. Chem. 2017, 785, 90–95. [Google Scholar] [CrossRef]
- Wang, Z.H.; Shan, Y.J.; Xu, L.J.; Wu, G.F.; Lu, X.Q. Development and Application of the Tartrazine Voltametric Sensors Based on Molecularly Imprinting Polymer. Int. J. Polym. Anal. Charact. 2017, 22, 83–91. [Google Scholar] [CrossRef]
Samples | TZ Added (µM) | TZ Expected (µM) | TZ Found (µM) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
Orangeade | 0 | - | 0.061 | - | - |
0.090 | 0.151 | 0.147 | 97.4 | 3.52 | |
0.500 | 0.561 | 0.550 | 98.0 | 2.83 | |
Yellow wine | 0 | - | 0.027 | - | - |
0.090 | 0.117 | 0.119 | 101.7 | 1.65 | |
0.500 | 0.527 | 0.533 | 101.1 | 2.37 | |
Ice cream | 0 | - | 0.020 | - | - |
0.090 | 0.110 | 0.106 | 96.4 | 4.08 | |
0.500 | 0.520 | 0.507 | 97.5 | 3.62 | |
Jelly | 0 | - | 0.075 | - | - |
0.090 | 0.165 | 0.172 | 104.2 | 4.37 | |
0.500 | 0.575 | 0.568 | 98.8 | 3.55 | |
Instant juice powder | 0 | - | 0.047 | - | - |
0.090 | 0.137 | 0.144 | 105.1 | 4.30 | |
0.500 | 0.547 | 0.549 | 100.4 | 1.18 | |
Candy | 0 | - | 0.038 | - | - |
0.090 | 0.128 | 0.124 | 96.9 | 3.77 | |
0.500 | 0.538 | 0.519 | 96.5 | 3.91 | |
Cookie | 0 | - | 0.058 | - | - |
0.090 | 0.148 | 0.141 | 95.3 | 4.36 | |
0.500 | 0.558 | 0.535 | 95.9 | 4.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Tang, D.; Zhang, Y.; Xu, L.; Liu, K.; Huang, K.; Yin, Z. Specific and Sensitive Detection of Tartrazine on the Electrochemical Interface of a Molecularly Imprinted Polydopamine-Coated PtCo Nanoalloy on Graphene Oxide. Biosensors 2022, 12, 326. https://doi.org/10.3390/bios12050326
Cheng S, Tang D, Zhang Y, Xu L, Liu K, Huang K, Yin Z. Specific and Sensitive Detection of Tartrazine on the Electrochemical Interface of a Molecularly Imprinted Polydopamine-Coated PtCo Nanoalloy on Graphene Oxide. Biosensors. 2022; 12(5):326. https://doi.org/10.3390/bios12050326
Chicago/Turabian StyleCheng, Shuwen, Danyao Tang, Yi Zhang, Libin Xu, Kunping Liu, Kejing Huang, and Zhengzhi Yin. 2022. "Specific and Sensitive Detection of Tartrazine on the Electrochemical Interface of a Molecularly Imprinted Polydopamine-Coated PtCo Nanoalloy on Graphene Oxide" Biosensors 12, no. 5: 326. https://doi.org/10.3390/bios12050326
APA StyleCheng, S., Tang, D., Zhang, Y., Xu, L., Liu, K., Huang, K., & Yin, Z. (2022). Specific and Sensitive Detection of Tartrazine on the Electrochemical Interface of a Molecularly Imprinted Polydopamine-Coated PtCo Nanoalloy on Graphene Oxide. Biosensors, 12(5), 326. https://doi.org/10.3390/bios12050326