Ni Nanoparticles Embedded Ti3C2Tx-MXene Nanoarchitectures for Electrochemical Sensing of Methylmalonic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ni Nanoparticles (Ni NPs)
2.2. Synthesis of Ti3C2Tx and MX−Ni Composite
2.3. Characterization and Electrochemical Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, N.; Chen, M.; Cui, Y.; Liu, X.; Li, Y. Fluorescent sensor array constructed by functionalized carbon nanodots for qualitative and quantitative analysis of urinary organic acids biomarkers. Sens. Actuators B Chem. 2022, 350, 130825. [Google Scholar] [CrossRef]
- Held, P.K.; Singh, E.; Schwoerer, J.S. Screening for Methylmalonic and Propionic Acidemia: Clinical Outcomes and Follow-Up Recommendations. Int. J. Neonatal Screen. 2022, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.-W.; Klotz, A.; Guven, A.; Gray, K.; Friss, T.; Ravipaty, S.; Sarangarajan, R.; Tolstikov, V.; Kellogg, M.D.; Narain, N.R. Multiplexed LC-MS/MS analysis of methylsuccinic acid, ethylmalonic acid, and glutaric acid in plasma and urine. Anal. Biochem. 2022, 645, 114604. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.-l.; Ni, Y.-h.; Li, X.-b.; Zhuang, X.-h.; Liu, Y.-t.; Liu, X.-h.; Chen, S.-h. Urinary methylmalonic acid as an indicator of early vitamin B12 deficiency and its role in polyneuropathy in type 2 diabetes. J Diabetes Res 2014, 2014, 921616. [Google Scholar] [CrossRef] [Green Version]
- Fedosov, S.N.; Brito, A.; Miller, J.W.; Green, R.; Allen, L.H. Combined indicator of vitamin B12 status: Modification for missing biomarkers and folate status and recommendations for revised cut-points. Clin. Chem. Lab. Med. 2015, 53, 1215–1225. [Google Scholar] [CrossRef]
- Subburaj, D.; Ng, B.; Kariminia, A.; Abdossamadi, S.; Lauener, M.; Nemecek, E.R.; Rozmus, J.; Kharbanda, S.; Kitko, C.L.; Lewis, V.A. Metabolomic identification of α-ketoglutaric acid elevation in pediatric chronic graft-versus-host disease. Blood J. Am. Soc. Hematol. 2022, 139, 287–299. [Google Scholar] [CrossRef]
- Longo, N.; Sass, J.O.; Jurecka, A.; Vockley, J. Biomarkers for Drug Development in Propionic and Methylmalonic Acidemias. J. Inherit. Metab. Dis. 2022, 45, 132–143. [Google Scholar] [CrossRef]
- Baker, K.M.; Parikh, N.S.; Salsbery, K.T.; Shaw, G.R.; Steiner, R.D.; Oelstrom, M.J.; Manalang, M.A. A 17-Month-old Boy With Pancytopenia Caused by a Rare Genetic Defect of Vitamin B12 Malabsorption. J. Pediatric Hematol. Oncol. 2022, 44, 444–446. [Google Scholar] [CrossRef]
- Ma, X.; Zou, Y.; Tang, Y.; Wang, D.; Zhou, W.; Yu, S.; Qiu, L. High-throughput analysis of total homocysteine and methylmalonic acid with the efficiency to separate succinic acid in serum and urine via liquid chromatography with tandem mass spectrometry. J. Chromatogr. B 2022, 1193, 123135. [Google Scholar] [CrossRef]
- Mohamed, E.I.; El-Ghnam, S.M.; Bayoumi, A.M.; Abdel-Mageed, S.M.; Ghareeb, D.A.; Ross, B. Electronic nose versus quadrupole mass spectrometry for identifying viral hepatitis C patients. J. Viral Hepat. 2022, 29, 147–155. [Google Scholar] [CrossRef]
- Soomro, R.A.; Jawaid, S.; Zhu, Q.; Abbas, Z.; Xu, B. A mini-review on MXenes as versatile substrate for advanced sensors. Chin. Chem. Lett. 2020, 31, 922–930. [Google Scholar] [CrossRef]
- Soomro, R.A.; Jawaid, S.; Zhang, P.; Han, X.; Hallam, K.R.; Karakuş, S.; Kilislioğlu, A.; Xu, B.; Willander, M. NiWO4-induced partial oxidation of MXene for photo-electrochemical detection of prostate-specific antigen. Sens. Actuators B Chem. 2021, 328, 129074. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; de la Escosura Muñiz, A. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal. Chim. Acta 2022, 1206, 339658. [Google Scholar] [CrossRef]
- Xie, M.; Zhao, F.; Zhang, Y.; Xiong, Y.; Han, S. Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control 2022, 131, 108399. [Google Scholar] [CrossRef]
- Arshad, F.; Nabi, F.; Iqbal, S.; Khan, R.H. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf. B Biointerfaces 2022, 212, 112356. [Google Scholar] [CrossRef]
- Soomro, R.A.; Jawaid, S.; Kalawar, N.H.; Tunesi, M.; Karakuş, S.; Kilislioğlu, A.; Willander, M. In-situ engineered MXene-TiO2/ BiVO4 hybrid as an efficient photoelectrochemical platform for sensitive detection of soluble CD44 proteins. Biosens. Bioelectron. 2020, 166, 112439. [Google Scholar] [CrossRef]
- Ahmed, A.; Sharma, S.; Adak, B.; Hossain, M.M.; LaChance, A.M.; Mukhopadhyay, S.; Sun, L. Two-dimensional MXenes: New frontier of wearable and flexible electronics. InfoMat 2022, 4, e12295. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Meslam, M.; Eid, K.; Salah, B.; Abdullah, A.M.; Ozoemena, K.I.; Elzatahry, A.; Sharaf, M.A.; Sillanpää, M. A review of MXenes as emergent materials for dye removal from wastewater. Sep. Purif. Technol. 2022, 282, 120083. [Google Scholar] [CrossRef]
- Kabir, K.M.; Sabri, Y.M.; Esmaielzadeh Kandjani, A.; Matthews, G.I.; Field, M.; Jones, L.A.; Nafady, A.; Ippolito, S.J.; Bhargava, S.K. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors. Langmuir 2015, 31, 8519–8529. [Google Scholar] [CrossRef]
- Soomro, R.A.; Nafady, A.; Sirajuddin; Sherazi, S.T.H.; Kalwar, N.H.; Shah, M.R.; Hallam, K.R. Catalytic Reductive Degradation of Methyl Orange Using Air Resilient Copper Nanostructures. J. Nanomater. 2015, 2015, 136164. [Google Scholar] [CrossRef] [Green Version]
- Maduraiveeran, G. Metal Nanocomposites Based Electrochemical Sensor Platform for Few Emerging Biomarkers. Curr. Anal. Chem. 2022, 18, 509–517. [Google Scholar] [CrossRef]
- Gass, I.A.; Gartshore, C.J.; Lupton, D.W.; Moubaraki, B.; Nafady, A.; Bond, A.M.; Boas, J.F.; Cashion, J.D.; Milsmann, C.; Wieghardt, K.; et al. Anion Dependent Redox Changes in Iron Bis-terdentate Nitroxide {NNO} Chelates. Inorg. Chem. 2011, 50, 3052–3064. [Google Scholar] [CrossRef] [PubMed]
- Osuna, V.; Vega-Rios, A.; Zaragoza-Contreras, E.A.; Estrada-Moreno, I.A.; Dominguez, R.B. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. Biosensors 2022, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, H.; Zou, G.; Fernandez, C.; Liu, B.; Zhang, Q.; Hu, J.; Peng, Q. Self-Reduction Synthesis of New MXene/Ag Composites with Unexpected Electrocatalytic Activity. ACS Sustain. Chem. Eng. 2016, 4, 6763–6771. [Google Scholar] [CrossRef]
- Du, C.-F.; Yang, L.; Tang, K.; Fang, W.; Zhao, X.; Liang, Q.; Liu, X.; Yu, H.; Qi, W.; Yan, Q. Ni nanoparticles/V4C3Tx MXene heterostructures for electrocatalytic nitrogen fixation. Mater. Chem. Front. 2021, 5, 2338–2346. [Google Scholar] [CrossRef]
- Sarycheva, A.; Gogotsi, Y. Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488. [Google Scholar] [CrossRef]
- Ahghari, M.R.; Soltaninejad, V.; Maleki, A. Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Sci. Rep. 2020, 10, 12627. [Google Scholar] [CrossRef]
- Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779. [Google Scholar] [CrossRef]
- Rajeev, R.; Benny, L.; Roy, M.; Mathew, A.T.; Akshaya, K.B.; Varghese, A.; Hegde, G. A facile and economic electrochemical sensor for methylmalonic acid: A potential biomarker for vitamin B12 deficiency. New J. Chem. 2022, 46, 4114–4125. [Google Scholar] [CrossRef]
- Deepa, J.R.; Anirudhan, T.S.; Soman, G.; Sekhar, V.C. Electrochemical sensing of methylmalonic acid based on molecularly imprinted polymer modified with graphene oxide and gold nanoparticles. Microchem. J. 2020, 159, 105489. [Google Scholar] [CrossRef]
- Akshaya, K.B.; Anitha, V.; Nidhin, M.; Sudhakar, Y.N.; Louis, G. Electrochemical sensing of vitamin B12 deficiency marker methylmalonic acid using PdAu-PPy tailored carbon fiber paper electrode. Talanta 2020, 217, 121028. [Google Scholar] [CrossRef] [PubMed]
Technique | Active Material | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|
DPV | Ag-PEDOT/PGE (molecularly imprinted) | 0.50 pM–55 nM | 0.16 pM | [29] |
DPV | GO/AuNP-co-ATMS-g-AEMA/AA (molecularly imprinted) | 0.5–3 mg/dL | 0.2095 µM/L | [30] |
CV/DPV | PdAu-PPy tailored carbon fiber paper (molecularly imprinted) | 4.01 pM–52.5 nM | 1.23 pM | [31] |
DPV | MX-Ni NPs composites | 0.001–0.017 µM | 0.12 pM | This work |
Samples | Added (µg·mL−1) | Expected (µg·mL−1) | Detected * (µg·mL−1) | Recovery % | RSD % |
---|---|---|---|---|---|
Urine-Sample-1 | 1.2 | 6.64 | 6.55 | 0.98 | 0.85 |
Urine-Sample-2 | 2.0 | 7.45 | 7.52 | 100.9 | 1.02 |
Urine-Sample-3 | 2.5 | 8.50 | 8.45 | 99 | 1.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, J.; Soomro, R.A.; Neiber, R.R.; Ahmed, N.; Medany, S.S.; Albaqami, M.D.; Nafady, A. Ni Nanoparticles Embedded Ti3C2Tx-MXene Nanoarchitectures for Electrochemical Sensing of Methylmalonic Acid. Biosensors 2022, 12, 231. https://doi.org/10.3390/bios12040231
Kumar J, Soomro RA, Neiber RR, Ahmed N, Medany SS, Albaqami MD, Nafady A. Ni Nanoparticles Embedded Ti3C2Tx-MXene Nanoarchitectures for Electrochemical Sensing of Methylmalonic Acid. Biosensors. 2022; 12(4):231. https://doi.org/10.3390/bios12040231
Chicago/Turabian StyleKumar, Jai, Razium Ali Soomro, Rana R. Neiber, Nazeer Ahmed, Shymaa S. Medany, Munirah D. Albaqami, and Ayman Nafady. 2022. "Ni Nanoparticles Embedded Ti3C2Tx-MXene Nanoarchitectures for Electrochemical Sensing of Methylmalonic Acid" Biosensors 12, no. 4: 231. https://doi.org/10.3390/bios12040231
APA StyleKumar, J., Soomro, R. A., Neiber, R. R., Ahmed, N., Medany, S. S., Albaqami, M. D., & Nafady, A. (2022). Ni Nanoparticles Embedded Ti3C2Tx-MXene Nanoarchitectures for Electrochemical Sensing of Methylmalonic Acid. Biosensors, 12(4), 231. https://doi.org/10.3390/bios12040231