Robust PVC Identification by Fusing Expert System and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. MIT-BIH-AR Database
2.2. INCART Database
2.3. CPSC2020 Database
3. Method
3.1. Signal Preprocessing
3.2. Heartbeats Clustering and Templates Classification
3.2.1. Feature Vectors Extraction Based on LSTM-AE
3.2.2. K-Means Clustering Using Feature Vectors
3.2.3. Template Construction and Template Classification
3.3. Heartbeat Classification
3.4. Evaluation Method
- For a false positive (FP) detection, deduct 1 point.
- For a false negative (FN) detection, deduct 5 points, since from a clinical perspective, missed diagnosis is more serious than misdiagnosis, thus we penalize FN detection. The final score for PVC is the sum of all deducted points.
4. Results
4.1. Effectiveness of Feature Vectors Extracted by LSTM-AE
4.2. Results of K-Means Clustering
4.3. Results on MIT-BIH-AR Database
4.4. Results on INCART Database
4.5. Results on CPSC2020 Dataset
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Record | Se (%) | P+ (%) | ACC (%) | Record | Se (%) | P+ (%) | ACC (%) |
---|---|---|---|---|---|---|---|
100 | 100.00 | 100.00 | 100.00 | 202 | 94.74 | 81.82 | 99.77 |
101 | - | - | 100.00 1 | 203 | 73.76 | 91.06 | 95.00 |
103 | - | - | 100.00 1 | 205 | 92.96 | 100.00 | 99.81 |
105 | 90.24 | 68.52 | 99.18 | 207 | 65.07 | 61.54 | 91.50 |
106 | 79.81 | 100.00 | 94.82 | 208 | 92.42 | 100.00 | 97.08 |
108 | 88.24 | 65.22 | 99.43 | 209 | 100.00 | 100.00 | 100.00 |
109 | 76.32 | 100.00 | 99.64 | 210 | 75.77 | 96.71 | 98.03 |
111 | 100.00 | 4.35 | 98.96 | 212 | - | - | 100.00 1 |
112 | - | - | 100.00 1 | 213 | 98.18 | 99.08 | 99.79 |
113 | - | - | 100.00 1 | 214 | 60.78 | 100.00 | 95.57 |
114 | 95.35 | 100.00 | 99.89 | 215 | 91.46 | 100.00 | 99.58 |
115 | - | - | 100.00 1 | 219 | 79.69 | 100.00 | 99.40 |
116 | 91.67 | 100.00 | 99.62 | 220 | - | - | 100.00 1 |
117 | - | - | 100.00a | 221 | 97.22 | 100.00 | 99.55 |
118 | 93.75 | 40.54 | 98.99 | 222 | - | 0.00 | 88.99 2 |
119 | 99.55 | 100.00 | 99.90 | 223 | 63.21 | 100.00 | 93.28 |
121 | 100.00 | 100.00 | 100.00 | 228 | 98.62 | 100.00 | 99.76 |
122 | - | - | 100.00a | 230 | 100.00 | 100.00 | 100.00 |
123 | 100.00 | 100.00 | 100.00 | 231 | 100.00 | 100.00 | 100.00 |
124 | 78.72 | 100.00 | 99.38 | 232 | 0.00 | - | 99.89 2 |
200 | 94.97 | 99.74 | 98.34 | 233 | 94.10 | 99.74 | 98.34 |
201 | 99.49 | 89.95 | 98.83 | 234 | 100.00 | 100.00 | 100.00 |
ID | Se (%) | P+ (%) | ACC (%) | ID | Se (%) | P+ (%) | ACC (%) | ID | Se (%) | P+ (%) | ACC (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
I01 | 100.00 | 86.00 | 97.97 | I26 | 25.00 | 50.00 | 99.73 | I51 | 97.63 | 100.00 | 99.32 |
I02 | 87.34 | 94.34 | 98.47 | I27 | 100.00 | 100.00 | 100.00 | I52 | 100.00 | 100.00 | 100.00 |
I03 | 92.00 | 100.00 | 99.59 | I28 | 75.00 | 33.33 | 99.59 | I53 | 96.94 | 100.00 | 98.50 |
I04 | 22.31 | 93.10 | 96.01 | I29 | 68.33 | 99.63 | 90.45 | I54 | 68.18 | 93.75 | 99.66 |
I05 | 83.40 | 99.52 | 97.62 | I30 | 80.13 | 99.83 | 93.86 | I55 | 94.12 | 100.00 | 99.95 |
I06 | 100.00 | 81.82 | 99.92 | I31 | 70.99 | 99.28 | 87.44 | I56 | 100.00 | 100.00 | 100.00 |
I07 | 100.00 | 5.88 | 99.41 | I32 | 84.21 | 97.96 | 99.38 | I57 | 100.00 | 48.84 | 99.23 |
I08 | 86.61 | 99.02 | 97.65 | I33 | 100.00 | 16.67 | 99.73 | I58 | 100.00 | 100.00 | 100.00 |
I09 | 73.17 | 83.33 | 99.43 | I34 | - | 0.00 | 99.03 | I59 | 64.20 | 96.30 | 98.56 |
I10 | 83.13 | 100.00 | 99.62 | I35 | 77.46 | 100.00 | 97.18 | I60 | - | 0.00 | 98.87 2 |
I11 | 100.00 | 50.00 | 99.81 | I36 | 86.89 | 100.00 | 98.49 | I61 | - | - | 100.00 1 |
I12 | 33.33 | 14.29 | 99.43 | I37 | 99.56 | 100.00 | 99.92 | I62 | 32.45 | 100.00 | 76.21 |
I13 | 100.00 | 100.00 | 100.00 | I38 | 86.61 | 100.00 | 97.29 | I63 | 58.70 | 100.00 | 97.13 |
I14 | 100.00 | 100.00 | 100.00 | I39 | 94.25 | 100.00 | 98.99 | I64 | 69.57 | 100.00 | 99.63 |
I15 | 33.33 | 50.00 | 99.89 | I40 | 92.39 | 92.39 | 99.47 | I65 | 93.46 | 100.00 | 99.06 |
I16 | 100.00 | 50.00 | 99.87 | I41 | 100.00 | 33.33 | 99.88 | I66 | 97.50 | 100.00 | 99.79 |
I17 | 92.59 | 100.00 | 99.88 | I42 | 99.29 | 99.87 | 99.58 | I67 | 97.93 | 100.00 | 99.63 |
I18 | 91.80 | 99.70 | 98.98 | I43 | 97.86 | 99.91 | 98.87 | I68 | 95.65 | 99.35 | 99.70 |
I19 | 84.59 | 100.00 | 93.65 | I44 | 100.00 | 100.00 | 100.00 | I69 | 99.40 | 98.81 | 99.86 |
I20 | 75.45 | 100.00 | 98.98 | I45 | 100.00 | 100.00 | 100.00 | I70 | - | 0.00 | 92.50 2 |
I21 | 87.50 | 77.78 | 99.86 | I46 | 98.34 | 99.76 | 99.70 | I71 | - | 0.00 | 86.22 2 |
I22 | 69.73 | 99.23 | 98.18 | I47 | 98.92 | 96.84 | 99.80 | I72 | 91.19 | 33.85 | 68.17 |
I23 | 61.54 | 100.00 | 99.77 | I48 | 98.72 | 100.00 | 99.87 | I73 | 94.29 | 100.00 | 99.80 |
I24 | 16.67 | 50.00 | 99.77 | I49 | 100.00 | 96.43 | 99.95 | I74 | 98.18 | 100.00 | 99.79 |
I25 | 60.00 | 37.50 | 99.59 | I50 | 50.00 | 50.00 | 99.87 | I75 | 99.02 | 100.00 | 99.71 |
References
- Yıldırım, Ö.; Pławiak, P.; Tan, R.; Acharya, U.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 2018, 102, 411–420. [Google Scholar] [CrossRef]
- Bashar, S.K.; Han, D.; Zieneddin, F.; Ding, E.; Fitzgibbons, T.P.; Walkey, A.J.; McManus, D.D.; Javidi, B.; Chon, K.H. Novel density poincare plot based machine learning method to detect atrial fibrillation from premature atrial/ventricular contractions. IEEE T. Biomed. Eng. 2020, 68, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Marcus, G.M. Evaluation and management of premature ventricular complexes. Circulation 2020, 141, 1404–1418. [Google Scholar] [CrossRef] [PubMed]
- Mullis, A.H.; Ayoub, K.; Shah, J.; Butt, M.; Suffredini, J.; Czarapata, M.; Delisle, B.; Ogunbayo, G.O.; Darrat, Y.; Elayi, C.S. Fluctuations in premature ventricular contraction burden can affect medical assessment and management. Heart Rhythm. 2019, 16, 1570–1574. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; San Tan, R. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, P.; Zhang, Y.; Zhang, Y.; Liu, C.; Wei, S. A Construction Method of Personalized ECG Template and Its Application in Premature Ventricular Contraction Recognition for ECG Mobile Phones. In Proceedings of the 2012 World Congress on Medical Physics and Biomedical Engineering, Beijing, China, 26 May 2013; pp. 585–588. [Google Scholar]
- Nahar, S.; Bin Munir, M.S. Automatic detection of premature ventricular contraction beat using morphological transformation and cross-correlation. In Proceedings of the 2009 3rd International Conference on Signal Processing and Communication Systems, Omaha, NE, USA, 28 September 2009; pp. 1–4. [Google Scholar]
- Li, P.; Liu, C.; Wang, X.; Zheng, D.; Li, Y.; Liu, C. A low-complexity data-adaptive approach for premature ventricular contraction recognition. Signal Image Video Process. 2014, 8, 111–120. [Google Scholar] [CrossRef]
- Yildirim, O.; Baloglu, U.B.; Tan, R.; Ciaccio, E.J.; Acharya, U.R. A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput. Meth. Prog. Biomed. 2019, 176, 121–133. [Google Scholar] [CrossRef]
- Yang, W.; Si, Y.; Wang, D.; Guo, B. Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine. Comput. Biol. Med. 2018, 101, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Shadmand, S.; Mashoufi, B. A new personalized ECG signal classification algorithm using block-based neural network and particle swarm optimization. Biomed. Signal Proces. 2016, 25, 12–23. [Google Scholar] [CrossRef]
- Oh, S.L.; Ng, E.Y.; San Tan, R.; Acharya, U.R. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 2018, 102, 278–287. [Google Scholar] [CrossRef]
- Sahoo, S.; Kanungo, B.; Behera, S.; Sabut, S. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 2017, 108, 55–66. [Google Scholar] [CrossRef]
- Afkhami, R.G.; Azarnia, G.; Tinati, M.A. Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recogn. Lett. 2016, 70, 45–51. [Google Scholar] [CrossRef]
- Allami, R. Premature ventricular contraction analysis for real-time patient monitoring. Biomed. Signal Proces. 2019, 47, 358–365. [Google Scholar] [CrossRef]
- Li, T.; Zhou, M. ECG classification using wavelet packet entropy and random forests. Entropy 2016, 18, 285. [Google Scholar] [CrossRef]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Pławiak, P. Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. Expert Syst. Appl. 2018, 92, 334–349. [Google Scholar] [CrossRef]
- Kalidas, V.; Tamil, L.S. Detection of Premature Ventricular Complexes using Semisupervised Autoencoders and Random Forests. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20 July 2020; pp. 337–340. [Google Scholar]
- Yang, W.; Si, Y.; Wang, D.; Zhang, G. A novel approach for multi-lead ECG classification using DL-CCANet and TL-CCANet. Sensors 2019, 19, 3214. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Liu, C.; Gao, H.; Wang, X.; Zhao, L.; Shen, Q.; Ng, E.; Li, J. An Open-Access Long-Term Wearable ECG Database for Premature Ventricular Contractions and Supraventricular Premature Beat Detection. J. Med. Imaging Health Inform. 2020, 10, 2663–2667. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Zhao, L.; Liu, F.; Chen, X.; Yao, Y.; Li, J. Signal quality assessment and lightweight QRS detection for wearable ECG SmartVest system. IEEE Internet Things J. 2018, 6, 1363–1374. [Google Scholar] [CrossRef]
- Qin, Q.; Li, J.; Yue, Y.; Liu, C. An adaptive and time-efficient ECG R-peak detection algorithm. J. Healthc. Eng. 2017, 2017, 5980541. [Google Scholar] [CrossRef]
- Krasteva, V.; Jekova, I. QRS template matching for recognition of ventricular ectopic beats. Ann. Biomed. Eng. 2007, 35, 2065–2076. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Yang, J.; Wang, P.; Yan, R. LSTM-based auto-encoder model for ECG arrhythmias classification. IEEE Tran. Instrum. Meas. 2019, 69, 1232–1240. [Google Scholar] [CrossRef]
- Cai, Z.; Li, J.; Johnson, A.E.; Zhang, X.; Shen, Q.; Zhang, J.; Liu, C. Rule-based rough-refined two-step-procedure for real-time premature beat detection in single-lead ECG. Physiol. Meas. 2020, 41, 54001–54004. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bai, Y.; Lin, F.; Liu, M.; Hou, Z.; Liu, X. A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression. Int. J. Mach. Learn. Cybern. 2018, 9, 1733–1740. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, H. Detection of PVC by using a wavelet-based statistical ECG monitoring procedure. Biomed. Signal Process. Control 2017, 36, 176–182. [Google Scholar] [CrossRef]
- Malek, A.S.; Elnahrawy, A.; Anwar, H.; Naeem, M. Automated detection of premature ventricular contraction in ECG signals using enhanced template matching algorithm. Biomed. Phys. Eng. Express 2020, 6, 15021–15024. [Google Scholar] [CrossRef]
- Talbi, M.L.; Ravier, P. Detection of PVC in ECG signals using fractional linear prediction. Biomed. Signal Process. Control 2016, 23, 42–51. [Google Scholar] [CrossRef]
- Wang, T.; Shi, R.X.; Xu, X.Y. Reliable classification of ventricular premature and tachycardia beats with novel feature extraction method and classifier ensembles. In Proceedings of the 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP), Singapore, 4 August 2017; pp. 402–412. [Google Scholar]
- Mazidi, M.H.; Eshghi, M.; Raoufy, M.R. Detection of premature ventricular contraction (PVC) using linear and nonlinear techniques: An experimental study. Clust. Comput. 2020, 23, 759–774. [Google Scholar] [CrossRef]
- Li, Q.; Liu, C.; Li, Q.; Shashikumar, S.P.; Nemati, S.; Shen, Z.; Clifford, G.D. Ventricular ectopic beat detection using a wavelet transform and a convolutional neural network. Physiol. Meas. 2019, 40, 55001–55002. [Google Scholar] [CrossRef]
- Wang, L.; Ding, L.; Xie, C.; Jiang, S.; Kuo, I.; Wang, X.; Gao, J.; Huang, P.; Abu, P.A.R. Automated Classification Model with OTSU and CNN method for Premature Ventricular Contraction Detection. IEEE Access 2021, 9, 156581–156591. [Google Scholar] [CrossRef]
- Oster, J.; Behar, J.; Sayadi, O.; Nemati, S.; Johnson, A.E.; Clifford, G.D. Semisupervised ECG ventricular beat classification with novelty detection based on switching Kalman filters. IEEE Tran. Biolmed. Eng. 2015, 62, 2125–2134. [Google Scholar] [CrossRef] [PubMed]
- Al Rahhal, M.M.; Al Ajlan, N.; Bazi, Y.; Al Hichri, H.; Rabczuk, T. Automatic premature ventricular contractions detection for multi-lead electrocardiogram signal. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3 May 2018; pp. 169–173. [Google Scholar]
- Khalaf, A.F.; Owis, M.I.; Yassine, I.A. A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst. Appl. 2015, 42, 8361–8368. [Google Scholar] [CrossRef]
- Arrais, E.; Valentim, R.A.D.M.; Brandão, G.B. Real-time premature ventricular contractions detection based on Redundant Discrete Wavelet Transform. Res. Biomed. Eng. 2018, 34, 187–197. [Google Scholar] [CrossRef]
Database | ECG Length | # PVC Beats | # Non_PVC Beats | # Total Beats | Sampling Frequency (Hz) | |
---|---|---|---|---|---|---|
Training | MIT-BIH 1 | 30 min | 6990 | 92,851 | 99,841 | 360 |
Test | INCART-12 | 30 min | 20,008 | 155,652 | 175,660 | 275 |
CPSC2020 Training | ~24 h | 42,075 | 853,636 | 895,711 | 400 |
Batch | 64 | 128 | 256 | |
---|---|---|---|---|
Feature Numbers | ||||
16 | 99.62% | 99.65% | 98.61% | |
32 | 99.68% | 99.78% | 98.59% | |
64 | 99.33% | 99.60% | 99.65% |
Code No. | CPSC1077 1 | CPSC1091 | CPSC1093 | CPSC1082 | CPSC1089 | This Work |
---|---|---|---|---|---|---|
Method | DenseNet + Rules | DL-based 2 +Rules | Bidirectional LSTM | WT + DL-based 3 | CNN | LSTM-AE + K-Means + Rules |
PVC Score of Test | 41,479 | 55,706 | 95,900 | 97,913 | 142,228 | 46,706 |
PVC Score of Training | - | 16,467 | 6370 | 4482 | 11,086 | 36,256 |
Running Time (s) | 1600.35 ± 311.32 | 695.55 ± 185.45 | 12,810.90 ± 726.48 | 18,260.57 ± 2100.84 | 368.29 ± 33.27 | 215.93 ± 59.32 |
Author | Class and Focus | Method | Database | # Total Beats | # PVC Beats | Se (%) | P+ (%) | ACC (%) |
---|---|---|---|---|---|---|---|---|
Talbi et al., 2016 [30] | PVC, Non_PVC | KNN + FLP | MIT-BIH-AR | 95,743 | 7147 | 80.88 | - | 94.63 |
Wang et al., 2017 [31] | PVC, Non_PVC | Statistics +SVM | 110,906 | - | 75.00 | - | 93.13 | |
Jung et al., 2017 [28] | PVC, Non_PVC | Wavelet-based SPC | - | - | 87.20 | 84.60 | 97.90 | |
Mazidi et al., 2019 [32] | PVC, Non_PVC | SVM | 82,163 | 7111 | 99.91 | - | 99.78 | |
Li et al., 2019 [33] | PVC, Non_PVC | Wavelet Transform | 100,372 | 6990 | 82.55 | 82.39 | 97.56 | |
Cai et al., 2020 [26] | Normal, PAC, PVC | +CNN | 98,426 | 6734 | 76.54 | 90.47 | 85.56 | |
Kalidas et al., 2020 [19] | PVC, Non_PVC | Rules | 93,432 | 6898 | 96.58 | 97.20 | - | |
Wang et al., 2021 [34] | PVC, Non_PVC | SSAE + Random Forests | 24,922 | 2187 | 95.47 | 98.75 | 98.25 | |
This study. 2021 | PVC, Non_PVC | OTSU + CNN | 99,841 | 6990 | 87.51 | 92.47 | 98.63 | |
Li et al., 2013 [8] | PVC, Non_PVC | LSTM-AE + K-Means+ | INCART | 175,892 | 20,011 | 93.40 | 66.50 | 94.00 |
Oster et al., 2015 [35] | PVC, Non_PVC | Rules | 175,871 | 20,011 | 95.40 | 99.30 | - | |
Rahhal et al., 2018 [36] | Normal, PVC and Others | Template-matching | - | - | 85.20 | 80.90 | 92.00 | |
Kalidas et al., 2020 [19] | PVC, Non_PVC | SKF with X-factor Mode | 175,674 | 19,990 | 88.08 | 94.70 | - | |
This study. 2021 | PVC, Non_PVC | SDAEs + DNN | 175,660 | 20,008 | 87.92 | 93.18 | 97.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Wang, T.; Shen, Y.; Xing, Y.; Yan, R.; Li, J.; Liu, C. Robust PVC Identification by Fusing Expert System and Deep Learning. Biosensors 2022, 12, 185. https://doi.org/10.3390/bios12040185
Cai Z, Wang T, Shen Y, Xing Y, Yan R, Li J, Liu C. Robust PVC Identification by Fusing Expert System and Deep Learning. Biosensors. 2022; 12(4):185. https://doi.org/10.3390/bios12040185
Chicago/Turabian StyleCai, Zhipeng, Tiantian Wang, Yumin Shen, Yantao Xing, Ruqiang Yan, Jianqing Li, and Chengyu Liu. 2022. "Robust PVC Identification by Fusing Expert System and Deep Learning" Biosensors 12, no. 4: 185. https://doi.org/10.3390/bios12040185
APA StyleCai, Z., Wang, T., Shen, Y., Xing, Y., Yan, R., Li, J., & Liu, C. (2022). Robust PVC Identification by Fusing Expert System and Deep Learning. Biosensors, 12(4), 185. https://doi.org/10.3390/bios12040185